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Abstract: There are several attempts in vision transformers to reduce quadratic time complexity
to linear time complexity according to increases in the number of tokens. Cross-covariance image
transformers (XCiT) are also one of the techniques utilized to address the issue. However, despite
these efforts, the increase in token dimensions still results in quadratic growth in time complexity, and
the dimension is a key parameter for achieving superior generalization performance. In this paper,
a novel method is proposed to improve the generalization performances of XCiT models without
increasing token dimensions. We redesigned the embedding layers of queries, keys, and values,
such as separate non-linear embedding (SNE), partially-shared non-linear embedding (P-SNE), and
fully-shared non-linear embedding (F-SNE). Finally, a proposed structure with different model size
settings achieved 71.4%, 77.8%, and 82.1% on ImageNet-1k compared with 69.9%, 77.1%, and 82.0%
acquired by the original XCiT models, namely XCiT-N12, XCiT-T12, and XCiT-S12, respectively.
Additionally, the proposed model achieved 94.8% in transfer learning experiments, on average,
for CIFAR-10, CIFAR-100, Stanford Cars, and STL-10, which is superior to the baseline model of
XCiT-S12 (94.5%). In particular, the proposed models demonstrated considerable improvements on
the out-of-distribution detection task compared to the original XCiT models.

Keywords: vision transformer; Q/K/V embedding; shared embedding; non-linear embedding;
image classification

MSC: 94A08

1. Introduction

Transformer models have attracted considerable research attention as dominant mod-
els in deep learning because of their superior performances [1,2]. Transformers were first
used in natural language processing (NLP) [1] and are subsequently being widely used
as the backbone network for state-of-the-art models [3–5]. Recently, transformers have
also been used in the computer vision field. Vision transformers (ViT) [6] exhibit superior
generalization performances to that of traditional convolutional neural network (CNN)
architectures [6–8].

In standard vision transformers, tokens, which are sequences of cropped image patches
extracted from two-dimensional color images, are used. Then, a global self-attention mech-
anism is applied to extract the relationship among tokens. This procedure can be used to
extract information on the long-range relationship among tokens, in contrast to CNNs, in
which the local relationship of image pixels is considered. However, this process requires
extensive computations that increase quadratically with image resolution [6,9]. To alleviate
these inefficiencies, convolutional features have been added explicitly in transformers [10–
13]. Another attempt is cross-covariance image transformers (XCiT) [9], which utilize a
modified multi-head self-attention (MHSA) technique based on a transposed self-attention
mechanism. XCiT considerably reduced time complexity from O(N2d) to O(Nd2), where N
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is the number of tokens and d is the dimension of each token. This implies that the number
of tokens is more crucial than the dimension of each token. However, increasing d is also
harmful in terms of computational cost (see the original XCiT paper [9]. The XCiT-N12 and
XCiT-T12 models in Table 1 of the paper have different d, and the other hyperparameters
are identical. GFLOPs for each model do not linearly increase with d. The computational
concern of increasing d is not more dominant than N but is also problematic.), and research
on resolving the issue is required. To the best of our knowledge, no study has focused on
resolving this problem.

To resolve this problem, a novel efficient architecture might be developed to ensure
linear time complexities in both N and d. In the second method of resolving the problem, the
performances of the conventional vision transformer models with small d are maximized.
In this paper, instead of presenting a new, efficient architecture design, we try to maximize
generalization performances by redesigning the embedding layers for queries (Q), keys
(K), and values (V) with fixed d values, which are the same values as in the original XCiT
models. We speculate that improved embedding spaces may exist under a fixed dimension
of space.

To achieve the goal, we propose three repetitive structures in XCiT models. The
structures are simple and can effectively increase generalization performances in XCiT
models. First, a two-layer embedding structure with a rectified linear unit activation
function (ReLU) is proposed. This method is called a separate non-linear embedding (SNE)
method. In contrast to the original embedding in XCiT models, the structure can transform
the input data into a non-linear space with activation functions. The second structure is
a one-layer shared structure, which is a variant of the first structure. This method is the
partially shared non-linear embedding (P-SNE) method. The third structure is a two-layer
shared structure with trainable code parameters that can improve the original self-attention
mechanism used in conventional transformers. This structure is a fully shared non-linear
embedding (F-SNE) model.

Finally, experimental results demonstrate that the proposed method outperforms the
original XCiT models in the ImageNet [14] classification task and transfer learning on
multiple datasets (i.e., CIFAR-10, CIFAR-100 [15], Stanford Cars [16], and STL-10 [17]).
Furthermore, the proposed method outperforms the original XCiT models in the out-of-
distribution (OOD) detection task. The contributions of this paper can be summarized
as follows:

• We show that two simple and well-known structures, SNE and P-SNE, can improve
the generalization ability of XCiT models under the small value of d.

• A novel structure called F-SNE was proposed, which outperforms the original XCiT,
SNE, and P-SNE models. The structure is a fully shared model, and a code was
adopted to feed different input values to the layers.

• The original XCiT models could not approach the top record among state-of-the-
art (SOTA) transformer models in image classification tasks, but the modified XCiT
models with the proposed structures are comparable with current SOTA models, such
as the Swin [18], CeiT [19], and ViTAE [20] models.

• The high uncertainty prediction capability of the proposed structure, F-SNE, which
largely improved the performance of the OOD detection task, was validated.

2. Related Works

We first summarize related works in transformer models as three aspects of architec-
ture, computational cost, and designing embedding layers.

2.1. Architectures

When ViT was first proposed, global self-attention was applied among image tokens
to handle long-range information [6]. However, global self-attention requires large-scale
pre-training, and its computation quadratically increases according to the input size [8,21].
To address this problem, ViTAE [20], ConViT [22], and LocalViT [23] proposed the use
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of convolutions besides self-attention to embed both local and global features into the
transformer, and T2T-ViT [11] progressively restructured image tokens into reduced-length
tokens including local features. Furthermore, Swin transformer [18] utilized windowed
attention with a hierarchical architecture to efficiently improve performance.

Few additional approaches to designing embedding layers have been proposed to
embed better features in the tokens without increasing dimensionality. CvT [10] utilized
convolutional projection for the Q, K, and V embedding of the transformer encoder to
take advantage of both the CNN and transformer. In the case of ViP [24], learnable part
representations are shared across transformer blocks to make Q, K, or V embeddings.
However, linear projection was used to make those embeddings. There are no studies that
use fully shared models, such as the proposed F-SNE structure. However, conventional
self-attention with linearly projected Q, K, and V embeddings may not sufficiently handle
this concern.

2.2. Approaches for Efficient Computational Cost

Current studies on vision transformers mainly focus on not only applying inductive
bias to vision transformers but also reducing the computational complexity from quadratic
to linear, such as GFNet [25], AFNO [26], and XCiT [9]. These approaches usually have
proposed efficient self-attention mechanisms or replaced self-attention with another global
operation, such as Fourier transformation. XCiT [9] is one of the representative approaches
that focuses on reducing the computational complexity. It introduces cross-covariance
attention (XCA) instead of standard self-attention. XCA effectively reduces computation
without a large performance gap compared to the baseline. However, XCA has a limitation
in that the computation quadratically increases according to the dimensionality of the
tokens, which motivates us to find better token embeddings while maintaining dimen-
sionality. However, it does not consider Q, K, and V embedding, which directly affects
the attention operation. In contrast to these works, we introduce Q, K, and V embedding
techniques to improve the performance of image recognition.

3. Attention Mechanism in Vision Transformer

In this section, we introduce preliminary knowledge about the self-attention and
cross-covariance attention mechanisms in vision transformers.

3.1. Self-Attention

Conventional transformers adopt self-attention as the core operation of the network [1,6,27].
In the transformer, the input token X is projected by the linear projection layer Wq, Wk,
and Wv to embed Q, K, and V vectors, respectively. Then, the self-attention is operated
as follows:

SA(Q, K, V) = So f tmax
(

QKT
√

dk

)
V, (1)

where SA(Q, K, V) is the output of self-attention, and Q, K, and V are processed by the
following linear projection:

Q = XWq, K = XWk, V = XWv, (2)

on X ∈ RN×d, Wq ∈ Rd×dq , Wk ∈ Rd×dk , Wv ∈ Rd×dv , where N is the number of tokens and
d is the token dimension. This process is typically conducted in a multi-headed manner.
When the number of heads is h, dq = dk = dv = d/h.

3.2. Cross-Covariance Attention

Cross-covariance attention is a modified self-attention mechanism that can reduce
the computational complexity from O(N2d) to O(Nd2) [9,28]. XCiT [9] proposed the use
of cross-covariance attention instead of standard self-attention, which is widely used in
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transformer networks, demonstrating its SOTA performance in CV tasks, including in, for
example, ImageNet classification, self-supervised learning, and semantic segmentation.
They conducted feature dimension self-attention instead of token dimension self-attention,
which is used in the standard transformer encoder. By simply transposing Q, K, and V
and reversing the order of the dot product, the computational complexity was reduced
from quadratic to linear with the number of tokens, N. This transposed feature dimension
self-attention can be represented as follows:

XCA(Q, K, V) = V · So f tmax

(
K̂TQ̂

τ

)
, (3)

where XCA(Q, K, V) is the output of cross-covariance attention and Q̂, K̂, and τ are the
l2-normalized Q, K vector, and temperature scaling parameter, respectively. This provides
better generalization performances than a traditional self-attention mechanism, and XCiT
was adopted as a baseline model to verify the performance of the proposed method.

4. Method

As mentioned in Equation (2), in the conventional embedding method, a linear layer
was used for each Q, K, and V. The layer is not shared across the embedding spaces of Q,
K, and V. We propose three types of embedding techniques to improve the performance of
XCiT, as displayed in Figure 1.

Input

Linear Linear

Q K V

Multi Head Self-Attention

Feed Forward Network

Linear

(a) Conventional

Input

Linear Linear

Q K V

Multi Head Self-Attention

Feed Forward Network

Linear

Linear LinearLinear
ReLU ReLUReLU

(b) SNE

Input

Linear Linear

Q K V

Multi Head Self-Attention

Feed Forward Network

Linear

LinearLinear Linear
ReLUReLU ReLU

(c) P-SNE

Linear

Q K V

Multi Head Self-Attention

Input

CQ CK CV

Linear

Feed Forward Network

(Trainable, 
Shared)

Linear

Linear

Linear

Linear
ReLUReLU ReLU

(d) F-SNE
Figure 1. Four types of Q, K, and V embedding methods are shown. (a) The figure depicts conven-
tional embedding used in the standard transformer encoder. (b) Separate non-linear embedding
utilizes a two-layer embedding, including non-linearity functions (e.g., ReLU). (c) Partially shared
non-linear embedding includes a weight-sharing linear layer. The weight-sharing layer is depicted as
the gray dotted line block, and it follows after the separated linear layer and ReLU. (d) Fully shared
non-linear embedding includes two weight-sharing linear layers, also depicted as a gray dotted
line, with ReLU. In this case, trainable codes of Q, K, V (Cq, Ck, and Cv) are concatenated to the
input tokens.

4.1. Separate Non-Linear Embedding

In contrast to the original XCiT-based models, non-linear transformations were applied
to extract Q, K, and V, as follows:

Q = σ(XW(1)
q )W(2)

q ,

K = σ(XW(1)
k )W(2)

k ,

V = σ(XW(1)
v )W(2)

v ,

(4)

where W(1)
q ∈ Rd×dq and W(2)

q ∈ Rdq×d represent the weight parameters of the first and
second fully connected layers, respectively, and the layers encode the input token as Q.
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W(1)
k ∈ Rd×dk and W(2)

k ∈ Rdk×d correspond to K, and W(1)
v ∈ Rd×dv and W(2)

v ∈ Rdv×d

extract V. σ is an activation function. Based on the obtained Q, K, and V, Equation (3) is
computed for self-attention.

The layers for the SNE consist of two fully connected layers with an activation func-
tion (e.g., ReLU) to conduct a non-linear transformation of input tokens. The non-linear
embedding approach exhibits the following advantages. This method could increase the
total number of non-linearities of the model. Under a limited number of parameters, the
increased number of non-linearities could positively affect generalization. Furthermore,
the search space can be expanded to find new combinations of Q, K, and V in non-linear
embedding spaces.

4.2. Partially Shared Non-Linear Embedding

P-SNE shares a layer from two fully connected layers in the SNE model. There are two
options for which the layer will be selected (i.e., first or second layers). Sharing the first
layer is similar to the linear embedding originally used in the XCiT model. The shared first
layer produces the same output because the input values are the same. Consequently, we
chose the second layer to be shared among Q, K, and V. The shared second layer linearly
transforms each activation value extracted from the first non-linear layer. With the shared
layer, Q, K, and V can share knowledge on how to build each token.

In general, separate layers of original or SNE structures could result in a problem. In
separate layers, even if one of the layers responsible for Q, K, and V extraction does not
learn well, the training loss can be minimized. Thus, the network is trained well even if
one of the three separate layers for Q, K, and V is not properly updated. However, the
phenomenon cannot be shown in the shared layers.

Finally, Q, K, and V in the P-SNE are extracted as follows:

Q = σ(XW(1)
q )W(2)

s ,

K = σ(XW(1)
k )W(2)

s ,

V = σ(XW(1)
v )W(2)

s ,

(5)

where W(2)
s ∈ Rds×d denotes the weight parameters of the shared second layer when

ds = dq = dk = dv. The weight parameters W(2)
q , W(2)

k , and W(2)
v of the second layer of the

SNE were replaced with W(2)
s .

4.3. Fully Shared Non-Linear Embedding

For F-SNE, we first integrate the Q, K, and V projection layers W(i)
q , W(i)

k , and W(i)
v

into the shared projection layers W(i)
s for i = {1, 2}, as shown in Figure 1d. Instead of Q, K,

and V projection layers that separately transform input token X into Q, K, and V vectors,
the shared projection layers transform the input token X into Q, K, and V in the same
embedding space.

When fully shared projection layers are used, we adopt codes of Cq, Ck, and Cv. The
codes correspond to Q, K, and V embeddings and convert the same inputs into three
different vectors. Cq, Ck, and Cv are trainable vectors that are concatenated to the input
token X before passing the shared projection layers Ws. Additionally, the same Cq, Ck, and
Cv are shared among all the encoders in the transformer. By this sharing, codes converge at
the optimal semantic representation of Q, K, and V that exists consistently regardless of
the encoder.
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Finally, Q, K, and V embeddings by the proposed shared projection layers with codes
Cq, Ck, and Cv can be represented as follows:

Q = σ((X⊕ Cq)W
(1)
s )W(2)

s ,

K = σ((X⊕ Ck)W
(1)
s )W(2)

s ,

V = σ((X⊕ Cv)W
(1)
s )W(2)

s ,

(6)

on X ∈ RN×d and Cq, Ck, Cv ∈ RN×c, where ⊕ denotes vector concatenation and c is an
arbitrary code size. Here, Cq, Ck, Cv ∈ R1×c, but these are repeated N times to match the
dimension with X. Codes Cq, Ck, and Cv are concurrently computed with the network
parameter θ to minimize the loss function as follows:

θ̂, Ĉq, Ĉk, Ĉv = min
θ,Cq ,Ck ,Cv

L(D; θ, Cq, Ck, Cv) (7)

where L is a loss function (e.g., cross-entropy loss). D is the training dataset, and θ denotes
the network parameters of the transformer network, including the embedding layers of Q,
K, and V (i.e., Wq, Wk, Wv, or Ws). Note that Cq, Ck, Cv, and θ are updated at the same step.
A detailed procedure of Equation (7) is implemented as Algorithm 1.

Algorithm 1 F-SNE

Require: D: Training data, θ: Network parameters
1: Randomly initialize θ, Cq, Ck, Cv
2: while not done do
3: Sample batch of data D
4: Compute L(D; θ, Cq, Ck, Cv) in Equation (7)
5: Update θ, Cq, Ck, Cv
6: end while

5. Experiments and Results

We first introduce the detailed experimental setup and datasets. Then, we evaluate
the ImageNet-1k classification performance of the proposed structures according to their
scale and conduct brief experiments using distillation. Additionally, we use those models
to transfer to the other datasets (i.e., CIFAR-10, CIFAR-100, Stanford Cars, and STL-10).
Lastly, we evaluate uncertainty prediction performance through the OOD detection task.

5.1. Experimental Setup

Experiments for the proposed methods were conducted based on XCiT models. In the
following sections, the notations XCiT-N12, XCiT-T12, and XCiT-S12 were used to denote
XCiT-Nano, XCiT-Tiny, and XCiT-Small models with 12 blocks. We implemented small (S),
medium (M), large (L) models based on XCiT-N12, XCiT-T12, and XCiT-S12, respectively.
The input image size of the models was fixed at 224×224. The models were trained using a
batch size of 4096, 2816, and 1280 for XCiT-N12, XCiT-T12, and XCiT-S12-based models,
respectively. For ImageNet training, we trained the model for 400 epochs with an initial
learning rate of 5× 10−4. For transfer learning, an initial learning rate of 5× 10−5 was used
for 1000 epochs of training. We followed other experimental setups of the XCiT. Overall
experiments were conducted on NVIDIA DGX A100 (8 GPUs).

For the Q, K, and V projection layers, dimensions of output tokens depicted in Table 1
were used according to the variants. The starred (*) model is used to compare the proposed
method using the same number of parameters as the original XCiT model. Additionally,
the shared layers for the F-SNE-Cn-S, F-SNE-Cn-M, and F-SNE-Cn-L models have input
dimensions of (128 + n), (192 + n), and (384 + n) to take the input concatenated with the
n-dimensional code. Code is a vector of arbitrary code size (e.g., n = 8, 16, 32, 64) defined
outside the encoder to be shared among encoders. For a fair comparison, we compare the
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number of parameters and image size as well as the performance in the following sections.
In the case of F-SNE, codes were also included in the number of model parameters.

Table 1. Corresponding output dimensions of Q, K, and V embedding layers to each model variant
are listed below.

Model
Small (S) Medium (M) Large (L)

d dq,k,v d dq,k,v d dq,k,v

SNE 128 64 192 96 384 192
P-SNE 128 96 192 144 384 288

F-SNE-C 128 128 192 192 384 384
F-SNE-C8* 128 186 192 282 384 556

F-SNE-C16* 128 182 192 276 384 544

5.2. Dataset

We used ImageNet-1k [14] to train the models from scratch. Then, we used the
CIFAR-10, CIFAR-100 [15], Stanford Cars [16], and STL-10 [17] datasets to evaluate transfer
learning performance. In the case of an out-of-distribution (OOD) detection task, we used
the CIFAR-10 dataset as an in-distribution (ID) and the LSUN-R, LSUN-C [29], iSUN [30],
SVHN [31], and DTD [32] datasets as OOD. The detailed information of these datasets is
described below.

The ImageNet dataset consists of 1.28 M training images and 50,000 validation images
with 1000 categories.

The CIFAR-10 and CIFAR-100 datasets consist of 50,000 training images and 10,000
test images with 10 and 100 categories, respectively.

The Stanford Cars dataset consists of 8144 training images and 8041 test images of
196 categories.

The STL-10 dataset contains 5000 training images and 8000 test images from 10 cate-
gories.

The LSUN dataset consists of 10 scene classes and contains around 120,000 to 3,000,000
images for each class. It has 1000 test images for each class. LSUN-R (resize) and LSUN-C
(crop) were reconstructed by [33] for OOD detection, so we used these datasets.

The iSUN dataset consists of 6000 training images, 926 validation images, and 2000
test images. We used whole images from this dataset for OOD detection.

The SVHN dataset consists of 73,257 training images and 26,032 test images from
10 digit classes. We randomly selected 10,000 images from test images while uniformly
sampling for 10 classes when evaluating OOD detection.

The DTD dataset consists of 5640 texture images from 47 classes. We used whole
images of this dataset for OOD detection.

5.3. Imagenet Classification

Tables 2–4 present the ImageNet-1k classification results to compare the proposed
method with other models considering the number of parameters. The top-1 accuracies of
other models noted in the table originated directly from publications of each model. To
investigate the performance of the proposed method, we selected XCiT as a baseline model
and modified the Q, K, and V projection layers corresponding to each model variant.

As presented in Table 2, the P-SNE-S model achieved the best score for the below
4M-parameter-constrained models, such as Mobile-Former [34] and PVTv2 [35], improving
the accuracy by 1.5% compared to the baseline model.
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Table 2. Proposed models were evaluated on ImageNet classification task. The number of parameters
was constrained to be below 4 M to be compared to the small (S) models.

Model Image Size Param # Top-1 (%)

Mobile-Former-26M 224× 224 3.2 M 64.0
Mobile-Former-52M 224× 224 3.5 M 68.7
XCiT-N12 (baseline) 224× 224 3.1M 69.9
F-SNE-C16-S (ours) 224× 224 2.9 M 70.2

PVTv2-B0 224× 224 3.4 M 70.5
F-SNE-C8-S (ours) 224× 224 2.9 M 70.6

F-SNE-C16* -S (ours) 224× 224 3.1 M 70.6
F-SNE-C8* -S (ours) 224× 224 3.1 M 70.8

SNE-S (ours) 224× 224 3.1 M 70.9
P-SNE-S (ours) 224× 224 3.1 M 71.4

In the case of a constraint of less than 10M parameters, the P-SNE-M model surpassed
the previous SOTA model, CoaT-Lite [36], which recorded 77.5% top-1 accuracy, while
improving accuracy by 0.3%. Moreover, the non-linear embedding method (i.e., SNE-
M) also improved the classification rates on the ImageNet-1k dataset compared with the
baseline model. The results were compared with the other models, including other vision
transformers, such as DeiT [8], Swin [18,34], LocalViT [23], PiT [37], ConViT [22], ViP [24],
ConT [38], T2T-ViT [11], ResT [39], and CoaT-Lite [36], which used a linear embedding
method, in Table 3.

Table 3. Proposed models were evaluated on ImageNet classification task. The number of parameters
was constrained to be below 10 M to be compared to the medium (M) models.

Model Image Size Param # Top-1 (%)

ViT-Ti 224× 224 5.7 M 68.7
T2T-ViT-7 224× 224 4.3 M 71.7

DeiT-Ti 224× 224 5.7 M 72.2
LocalViT-T2T 224× 224 4.3 M 72.5

Mobile-Former-96M 224× 224 4.6 M 72.8
PiT-Ti 224× 224 4.9 M 73.0

ConViT-Ti 224× 224 5.7 M 73.1
GFNet-Ti 224× 224 7 M 74.6

LocalViT-T 224× 224 5.9 M 74.8
ConT-Ti 224× 224 5.8 M 74.9
ViP-Mo 224× 224 5.3 M 75.1
ViTAE-T 224× 224 4.8 M 75.3
CeiT-T 224× 224 6.4 M 76.4
ConT-S 224× 224 10.1 M 76.5

T2T-ViT-12 224× 224 6.9 M 76.5
F-SNE-C8-M (ours) 224× 224 6.3 M 76.8
XCiT-T12 (baseline) 224× 224 6.7 M 77.1
F-SNE-C16-M (ours) 224× 224 6.3 M 77.2

ResT-Lite 224× 224 10.5 M 77.2
Swin-1G 224× 224 7.3 M 77.3

F-SNE-C16 * -M (ours) 224× 224 6.7 M 77.4
CoaT-Lite Tiny 224× 224 5.7 M 77.5
SNE-M (ours) 224× 224 6.7 M 77.6

F-SNE-C8 * -M (ours) 224× 224 6.7 M 77.7
P-SNE-M (ours) 224× 224 6.7 M 77.8

While achieving SOTA performances with the parameter constraints (4 M and 10
M), the proposed method also exhibited performances comparable to large models such
as PVTv2 [35], CvT [10], GFNet [25], CaiT [40], ViTAE [20], and CeiT [19], as shown in
Table 4. In particular, the F-SNE-C16*-L and F-SNE-C32-L models achieved the highest



Mathematics 2023, 11, 1933 9 of 16

accuracy, which was the same as the previous SOTA model, PVTv2 [35]. As presented
in Tables 2–4, the starred (*) models revealed that the performance can be improved by
adding parameters to the embedding layers as much as the capacity saved by fully sharing
embedding layers.

Table 4. Proposed large (L) models were evaluated on ImageNet classification task.

Model Image Size Param # Top-1 (%)

DeiT-S 224× 224 22 M 79.8
PVT-S 224× 224 25 M 79.8

GFNet-S 224× 224 25 M 80.0
Swin-T 224× 224 29 M 81.3

T2T-ViT-14 224× 224 22 M 81.5
GFNet-H-S 224× 224 32 M 81.5

CvT-13 224× 224 20 M 81.6
ResT-Base 224× 224 30 M 81.6
CaiT-XS-24 224× 224 27 M 81.8

ViP-Ti 224× 224 32 M 81.9
F-SNE-C8-L (ours) 224× 224 25 M 81.9

ViTAE-S 224× 224 24 M 82.0
CeiT-S 224× 224 24 M 82.0

PVTv2-B2 224× 224 25 M 82.0
XCiT-S12 (baseline) 224× 224 26 M 82.0

SNE-L (ours) 224× 224 26 M 82.0
P-SNE-L (ours) 224× 224 26 M 82.0

F-SNE-C8* -L (ours) 224× 224 26M 82.0
F-SNE-C16-L (ours) 224× 224 25 M 82.0
F-SNE-C64-L (ours) 224× 224 25 M 82.0

PVTv2-B2-Li 224× 224 23 M 82.1
F-SNE-C16* -L (ours) 224× 224 26 M 82.1
F-SNE-C32-L (ours) 224× 224 25 M 82.1

5.4. Distillation

We evaluated the performances on the ImageNet classification task using the dis-
tillation technique as well. We used RegNetY-16GF [41] as a teacher model to conduct
hard distillation as proposed in [8]. Similar to the previous experimental results in [8,9],
distillation could improve the performance of each model. Additionally, shared non-linear
embedding methods improve the performance of the baseline model, although a separate
non-linear embedding method decreased performance. This reminds us of the better prop-
erties of the shared embedding methods, which is consistent with the results of the paper.
These results are organized in Table 5.

Table 5. Proposed models were evaluated on ImageNet classification with distillation. XCiT perfor-
mance was obtained from [9]. § indicates the distilled model.

Model Image Size Param # Top-1 (%)

SNE-S§ (ours) 224× 224 3.1 M 71.5
XCiT-N12§ (baseline) 224× 224 3.1 M 71.7
F-SNE-C8-S§ (ours) 224× 224 2.9 M 71.7

P-SNE-S§ (ours) 224× 224 3.1 M 71.9
F-SNE-C16-S§ (ours) 224× 224 2.9 M 72.0

F-SNE-C16* -S§ (ours) 224× 224 3.1 M 72.2
F-SNE-C8* -S§ (ours) 224× 224 3.1 M 72.4

5.5. Transfer Learning

To demonstrate the transferable performances of the proposed method, we conducted
transfer learning experiments on CIFAR-10, CIFAR-100, Stanford Cars, and STL-10, as
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presented in Table 6. All images were resized to 224× 224 for transfer learning, as in the
aforementioned experiments.

As displayed in the average accuracy of Table 6, the proposed method generally
improved the performance of the baseline model. In particular, F-SNE-C16*-S, F-SNE-C8-
M, and F-SNE-C16*-M achieved the best score under each parameter constraint, below
4M and 10M, despite fewer parameters. Including these best models, on average, F-SNE
models showed mostly superior transfer performance for the tiny models compared with
other variants. Comparing this model with CeiT (the previous SOTA model) is not a
fair comparison because repeated augmentation [42] was not used in the F-SNE models.
However, the F-SNE models achieved comparable scores. Fully shared embedding may
provide superior generalization capability compared to other variants in the case of tiny
model constraints.

The general performance improvement can also be observed in L models, especially
F-SNE-C16-L, which achieved the highest accuracy among the SOTA models, such as the
T2T-ViT-14, CeiT-S, and XCiT-S12 models. Furthermore, the proposed model achieved
accuracies comparable with GFNet-H-B [25] on the CIFAR-100 and Stanford Cars datasets,
although it has over twice the number of parameters of the proposed models. This general-
ization performance may originate from extracting domain-agnostic properties by sharing
properties, such as sharing embedding layers between Q, K, and V and sharing codes
between blocks.

Table 6. Proposed models were evaluated on transfer learning task as below. All models were pre-
trained using the ImageNet-1k dataset. † indicates the results are obtained from the paper. ‡ indicates
that the experiment could not be performed because of a lack of source code. \ indicates the use of
additional data augmentation, specifically repeated augmentation [42].

Model Image Size Param # CIFAR10 (%) CIFAR100 (%) Cars (%) STL10 (%) Average (%)
XCiT-N12 (baseline) 224× 224 3.1 M 98.0 85.5 87.9 97.5 92.2
F-SNE-C8-S (ours) 224× 224 2.9 M 98.1 86.2 89.0 97.8 92.8

F-SNE-C8* -S (ours) 224× 224 3.1 M 98.3 86.2 89.0 97.8 92.8
SNE-S (ours) 224× 224 3.1 M 98.4 86.6 88.9 97.8 92.9

P-SNE-S (ours) 224× 224 3.1 M 98.2 86.5 88.9 97.9 92.9
F-SNE-C16-S (ours) 224× 224 2.9 M 98.2 86.3 90.2 97.8 93.1

F-SNE-C16* -S (ours) 224× 224 3.1 M 98.3 86.3 90.5 97.9 93.2

ViTAE-T 224× 224 4.8 M 97.3 † 86.0 † 89.5 † _ ‡ _
XCiT-T12 (baseline) 224× 224 6.7 M 98.5 86.7 92.7 98.3 94.0

SNE-M (ours) 224× 224 6.7 M 98.6 87.2 91.8 98.6 94.0
P-SNE-M (ours) 224× 224 6.7 M 98.7 87.2 91.8 98.6 94.1

F-SNE-C8* -M (ours) 224× 224 6.7 M 98.5 87.6 92.1 98.3 94.1
F-SNE-C16-M (ours) 224× 224 6.3 M 98.5 87.2 92.3 98.7 94.2

CeiT-T \ 224× 224 6.4 M 98.6 87.7 92.8 98.3 94.3
F-SNE-C8-M (ours) 224× 224 6.3 M 98.4 88.0 92.3 98.6 94.3

F-SNE-C16* -M (ours) 224× 224 6.7 M 98.6 87.8 92.3 98.6 94.3

T2T-ViT-14 224× 224 22 M 97.5 † 88.4 † _ _ _
ViTAE-S 224× 224 24 M 98.8 † 90.8 † 91.4 † _ ‡ _

GFNet-XS 224× 224 16 M 98.6 † 89.1 † 92.8 † _ _
GFNet-H-B 224× 224 54 M 99.0 † 90.3 † 93.2 † _ _

F-SNE-C16* -L (ours) 224× 224 26 M 98.4 87.3 93.2 98.9 94.4
XCiT-S12 (baseline) 224× 224 26 M 98.6 87.3 93.3 98.7 94.5
F-SNE-C64-L (ours) 224× 224 25 M 98.8 87.7 92.6 99.0 94.5

CeiT-S \ 224× 224 24 M 98.9 88.0 92.7 98.9 94.6
SNE-L (ours) 224× 224 26 M 98.8 87.7 93.2 98.9 94.6

F-SNE-C8* -L (ours) 224× 224 26 M 98.7 87.6 92.9 99.3 94.6
P-SNE-L (ours) 224× 224 26 M 98.6 88.1 93.1 99.0 94.7

F-SNE-C32-L (ours) 224× 224 25 M 98.8 88.2 92.9 98.7 94.7
F-SNE-C8-L (ours) 224× 224 25 M 98.5 88.0 93.1 99.0 94.7

F-SNE-C16-L (ours) 224× 224 25 M 98.7 88.2 93.3 99.1 94.8
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5.6. Out-of-Distribution Detection

In addition to the evaluation within in-distribution (ID) data, as aforementioned,
detecting the input from OOD data is critical to constructing a reliable and generalized
model [33]. To demonstrate the generalization performance on OOD datasets, we evaluate
the performance of OOD detection according to the procedure proposed by [33,43]. As
presented in Table 7, the proposed model improved the OOD detection performances. In
particular, the proposed F-SNE models significantly improved performance while achieving
6.9%, 9.84%, and 9.59% lower FPR (at 95% TPR) and 1.97%, 2.87%, and 5.47% higher AU-
ROC compared with the baseline models XCiT-N12, XCiT-T12, and XCiT-S12, respectively.
This improvement might be attributed to fully shared embedding layers and shared codes.
The shared architecture might embed input data into a smaller manifold and makes tight
decision boundaries. Thanks to tight decision boundaries, our F-SNE models accurately
distinguish OOD data. This speculation is similar to prior research [44].

Table 7. Proposed models were evaluated on the OOD detection task as below. The models fine-tuned
on CIFAR-10, mentioned in Table 6, were used. We considered CIFAR-10 as ID and LSUN-R, LSUN-C,
iSUN, SVHN, and DTD as OOD. Scores are averaged for the OOD datasets.

Model
FPR

(95% TPR) ↓
Detection

Error↓ AUROC↑

XCiT-N12 19.22 11.74 93.66
SNE-S 20.87 12.42 93.25

P-SNE-S 21.87 12.22 93.41
F-SNE-C8-S 13.89 9.11 95.03
F-SNE-C16-S 12.32 8.44 95.63
F-SNE-C32-S 16.01 10.21 93.94
F-SNE-C64-S 14.49 9.06 95.52

XCiT-T12 21.82 12.99 92.70
SNE-M 23.54 13.45 91.10

P-SNE-M 26.59 15.19 90.42
F-SNE-C8-M 20.61 12.56 91.21

F-SNE-C16-M 14.62 9.56 93.95
F-SNE-C32-M 11.98 8.21 95.57
F-SNE-C64-M 16.66 10.71 92.98

XCiT-S12 23.18 13.59 90.73
SNE-L 20.68 12.29 93.02

P-SNE-L 18.72 11.57 93.46
F-SNE-C8-L 17.98 11.15 93.99

F-SNE-C16-L 13.59 8.69 96.20
F-SNE-C32-L 15.67 9.70 94.45
F-SNE-C64-L 18.76 11.61 93.42

6. Ablation Study and Analysis

We analyzed the performances of the proposed structures to determine the best
structure and subsequently conducted ablation studies, such as a comparison of shared and
unshared code, a code size search in F-SNE, code visualization of F-SNE, and correlation
plots of ImageNet and transfer learning performances.

6.1. Which Structure Is the Best?

Among the three proposed structures, the F-SNE structure achieved the highest ac-
curacies, especially in transfer learning tasks. As displayed in Figure 2, each structure of
F-SNE coherently surpassed other structures with the corresponding computational cost.
The F-SNE structure required a small increase in FLOPs to achieve this improvement but
had fewer parameters compared to the XCiT, SNE, and P-SNE structures. According to
these results, we can interpret that shared properties of the F-SNE structure have more
generalized features within similar expressivity, and this results in the model’s ability to
be easily adapted to downstream tasks. In addition, we observed that this improvement
occurred obviously in smaller structures with limited generalization capacity.
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6.2. Sharing or Unsharing Codes in F-SNE

Thanks to the code, the input token can be identified in the F-SNE structure for
separately extracting Q, K, and V. In the F-SNE structure, codes Cq, Ck, and Cv are shared
among all embedding modules in the transformer model. This sharing can slightly reduce
the total number of parameters. In addition, as presented in Table 8, the generalization
performance can be improved. Without sharing, the codes could have distinct values across
the embedding modules, which could hinder finding the optimal code vectors for Q, K,
and V. From this perspective, sharing could be a method for finding the optimal solution.

Figure 2. Performances were compared among proposed structures. Averaged top-1 accuracies of
transfer learning were used. Circle size corresponds to FLOPs of each structure.

Table 8. The cases of code sharing and unsharing were compared using the ImageNet-1k dataset.
The numbers in brackets denote the number of total parameters for each model.

Model Top-1 (%)

F-SNE-C8-S
(Sharing) 70.82 (2.9 M)

F-SNE-C8-S
(W/o Sharing) 70.28 (3.05 M)

6.3. Code Size
Selecting an appropriate code size is critical for using the code Cq, Ck, and Cv in the F-SNE

structures. Therefore, we conducted experiments on different code sizes from 8 to 64 to determine an
appropriate code size that can provide superior performance. As displayed in Figure 3, a code size
of 8 achieved the best accuracy among S models, and a code size of 16 achieved the best accuracy
among the M models. A code size of 32 achieved the best accuracy among L models. The M models
have an embedding dimension of approximately 1.5 times, and the L models have three times the
embedding dimension of the S models, as presented in Table 1. The results can be interpreted to
mean that a larger code size is required when the embedding dimension of the model increases.
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Figure 3. Top-1 accuracies on ImageNet-1k of F-SNE-Cn-S, F-SNE-Cn-M, and F-SNE-Cn-L structures
were compared with respect to code sizes from 8 to 64. Results of F-SNE-Cn-S, F-SNE-Cn-M, and
F-SNE-Cn-L structures are organized from bottom to top.

6.4. CQ, CK, and CV in Different Tasks
The optimal code values were initially found on the ImageNet-1k dataset, and subsequently, the

computed code values were used as the initial codes for the downstream tasks. Even if the pre-trained
codes were used, the code values might vary according to the tasks because the codes were updated
using a back-propagation process using the downstream task dataset.

Figure 4 details the correlation values of codes extracted from each downstream task. Notably,
the correlation matrices are similar even if the task is changed. The diagonal elements provide
some information on the similarity between the same codes, and non-diagonal elements depict the
similarity between different codes. Non-diagonal elements are close to zero, and each code of Cq, Ck,
and Cv tends to exhibit orthogonality. These results can be interpreted to indicate that Cq, Ck, and Cv
learn their inherent feature to be used as Q, K, and V, regardless of the task; furthermore, the values
of the l2-norm for each dataset can be obtained, as presented in Table 9. The codes of ImageNet-1k,
Stanford Cars, and STL-10 exhibit similar l2-norm values, but CIFAR-10 and 100 exhibit distinct
l2-norm values.

Table 9. l2-norms of Cq, Ck, and Cv are extracted from F-SNE-C8-S model according to the trained
dataset. The codes exhibit similar l2-norm values regardless of the dataset.

Dataset ‖Cq‖ ‖Ck‖ ‖Cv‖
ImageNet 8.86 8.13 8.53
CIFAR-10 9.05 8.34 8.74
CIFAR-100 9.06 8.35 8.77

Cars 8.84 8.13 8.53
STL-10 8.86 8.14 8.56

(a) (b) (c) (d)
Figure 4. l2-normalized Cq, Ck, and Cv are dot-producted according to the trained datasets. “IMNet”,
“C10”, “C100”, and “S10” denote ImageNet, CIFAR-10, CIFAR-100, and STL-10, respectively. Cq, Ck,
and Cv are extracted from the F-SNE-C8-S model. (a) IMNet-C10. (b) IMNet-C100. (c) IMNet-Cars.
(d) IMNet-S10.
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6.5. Do Better Imagenet Models Transfer Better?
Generally, better ImageNet models transfer better [45]. An experiment was conducted to verify

whether this fact can be applied to our cases. As displayed in Figure 5, a correlation could be
observed between performances on ImageNet and on downstream tasks. The correlation tendency is
reflected by the domain difference between the upstream and downstream tasks. Thus, the tasks of
the CIFAR-10, CIFAR-100, and STL-10 datasets are similar to the task of ImageNet. Therefore, these
tasks exhibit high correlations between two tasks. However, correlations are difficult to observe in
the Stanford Cars dataset.

(a) (b) (c) (d)
Figure 5. Correlation between pre-training and transfer learning performances is plotted. S models
are used. ‘X’ markers denote the accuracies of each model, and the blue line denotes the regression
slope of the results. In contrast to other correlated plots, the results on the Stanford Cars dataset
are not correlated with the results on the ImageNet dataset. Best viewed in color. (a) IMNet-C10.
(b) IMNet-C100. (c) IMNet-Cars. (d) IMNet-S10.

7. Limitations
This study has several limitations that need to be addressed in future research. (1) While the

proposed methods demonstrated significant performance improvements for tiny models, their impact
on large models was relatively weak. Further research is required to improve their performances
on larger models. (2) The evaluation was limited to classification, transfer learning, and out-of-
distribution detection tasks. Future work should demonstrate the performances on other tasks, such
as object detection and segmentation. (3) This study focused on supervised learning, but the potential
benefits of the proposed methods in the context of self-supervised learning should be investigated.
(4) Due to computational resource constraints, the experiments were conducted using ImageNet-1k
or smaller datasets. Further evaluation on large-scale datasets is encouraged. (5) This study was
unable to clearly interpret the precise function of the shared code. Additional analysis is needed to
obtain a deeper understanding of the mechanisms of the proposed methods.

8. Conclusions
We proposed Q, K, and V vector embedding structures for XCiT. In the first embedding structure,

two non-linear layers were used to embed the input token into separate non-linear spaces of Q, K,
and V. In the second structure, a single layer was shared between the two layers. The results of
the experiment revealed that sharing a single layer could improve generalization performance on
ImageNet-1k. The third structure shares two layers with the Q, K, and V codes. The codes are trained
via a back-propagation algorithm to minimize the loss. The structure can be used for improving the
classification rates in several downstream tasks, such as CIFAR-100 and STL-10. Furthermore, the
third structure could considerably improve OOD detection performance. Finally, we could improve
the XCiT model under the fixed token dimensions using the proposed structures.

For future research, extensive experiments on a variety of vision tasks should be conducted to
evaluate the effectiveness of the proposed structures. Moreover, a deeper analysis of the shared code
is needed to elucidate its exact role and potential for improvement on larger models and datasets. By
addressing these aspects, the proposed structures can be improved in the field of computer vision.
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