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Abstract: In the regression and classification of remotely sensed images through meta-learning,
techniques exploit task-invariant information to quickly adapt to new tasks with fewer gradient
updates. Despite its usefulness, task-invariant information alone may not effectively capture task-
specific knowledge, leading to reduced model performance on new tasks. As a result, the concept
of task-covariance has gained significant attention from researchers. We propose task-covariant
representations for few-shot Learning on remote sensing images that utilizes capsule networks to
effectively represent the covariance relationships among objects. This approach is motivated by
the superior ability of capsule networks to capture such relationships. To capture and leverage the
covariance relations between tasks, we employ vector capsules and adapt our model parameters
based on the newly learned task covariance relations. Our proposed meta-learning algorithm offers a
novel approach to effectively address the real task distribution by incorporating both general and
specific task information. Based on the experimental results, our proposed meta-learning algorithm
shows a significant improvement in both the average accuracy and training efficiency compared to the
best model in the experiments. On average, the algorithm increases the accuracy by approximately
4% and improves the training efficiency by approximately 8%.

Keywords: capsule network; meta-learning; subspace learning; covariance

MSC: 68T45

1. Introduction

Task-invariant representation meta-learning methods [1–3] apply prior knowledge
learned from previous tasks to new ones and has been successfully used in few-shot
learning problems, such as classification and regression. However, the prerequisite for the
success of these methods is the invariant representation of all tasks, with no differences
among tasks, and good knowledge transfer can be achieved by learning globally shared
meta-knowledge for all tasks. The form of meta-knowledge includes the model structure,
initialization parameters, and loss function. Most existing meta-learning methods that
learn globally shared meta-knowledge fail to handle all tasks, because it is necessary to
consider the covariance among tasks, i.e., that there are both differences and correlations
among tasks. According to the covariant relationship between tasks, the learned meta-
knowledge is adaptively adjusted for each new task, which can address the deficiency of
task-invariant representation meta-learning, in which all tasks utilize the learned globally
shared meta-knowledge.

The covariant relationship among tasks should consider not only the differences
among tasks but also the correlations among tasks. The factors that affect the learning
effect of each task include the initialization parameters, loss function, and update rules.
To address the problem of invariant representation meta-learning, where all tasks utilize
the learned globally shared meta-knowledge, the concept of heterogeneity among tasks
has been proposed [4–6], which is based on differences among tasks and uses task-specific
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information to customize specific meta-knowledge for each task. Several works have
attempted to solve this problem by attempting to find better initialization parameters [7–10].
Baik et al. proposed a method to adaptively learn the loss function for each task during the
inner-loop optimization of meta-learning [11]. Several other works have developed faster
adaption processes, for example, by increasing the learning rate [12,13]. Considering the
importance of tasks, some studies have achieved better results by weighting different tasks
in the outer-loop update [14,15]. However, in addressing the problem of learning globally
shared meta-knowledge for all tasks, the above methods only consider differences among
tasks, and correlations among tasks are not taken into account.

A capsule is a group of neurons whose activity vector represents the instantiation
parameters of a specific type of entity, such as an object or an object part [16–19]. In contrast
to convolutional neural networks, it not only represents the presence of objects but also
more prominently represents the covariance between objects. Covariant relationships
can effectively describe the subtle differences among objects of the same category and
enhance the expressiveness of objects. Inspired by the covariant representation capability
of capsule networks, we propose a task-covariant representation meta-learning algorithm.
The real task distribution may contain several subdistributions with large differences,
and, using the covariant relationship among tasks, different subspace representations are
learned for different subdistributions. The correlations among tasks are reflected within
subspaces, and the differences between tasks are reflected among the subspaces. Different
modulation functions are learned for different subspaces, and the learned meta-knowledge
is modulated by using the task information and corresponding modulation functions in the
subspaces so as to achieve the fast learning and generalization of new tasks, as shown in
the covariance subplot in Figure 1.

Figure 1. Task-invariant, task-heterogeneous, and task-covariant representation meta-learning com-
parison diagram. Task-invariant representation meta-learning learns globally shared meta-knowledge
for all tasks, task-heterogeneous meta-learning uses task information to adaptively modulate learned
meta-knowledge, and task-covariant representation means that meta-learning uses the covariant
relationships among tasks to assign the current task to the corresponding subspace and uses the
modulation function and task information corresponding to the subspace to adaptively modulate the
learned meta-knowledge.

The key challenges in meta-learning of task-covariant representations are how current
tasks are assigned to the corresponding subspaces and how to learn the corresponding
modulation functions for each subspace. In the task-covariant representation meta-learning
algorithm, capsule representation is used to represent a task feature or a part of the task
feature, and the dynamic routing algorithm [16] is used to represent the covariant relation-
ships among tasks. In the dynamic routing algorithm, the number of output capsules in
the final layer indicates the number of subspaces. Each output capsule’s module length
is computed and compared to find the capsule with the highest probability of existence,
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which corresponds to the chosen subspace capsule. All other subspace capsules are then
set to zero using masking. The subspace capsule is converted into a vector format and then
used as input for the modulation function of the fully connected network. According to
the different positions of the retained task capsules in the vector and the characteristics of
the fully connected function, the corresponding modulation function can be learned for
each subspace capsule, and the learned meta-knowledge can be modulated in combination
with the current task information so as to obtain a solution more suitable for each task’s
meta-knowledge.

The proposed task-covariant representation meta-learning algorithm uses the capsule
network to accurately express the relationships among task covariates. By assigning corre-
sponding capsule subspaces to different subdistribution tasks and learning the modulation
function corresponding to each subspace, the learned meta-knowledge is better modulated
using the current task information and the corresponding modulation function. Experi-
mental results show that the proposed novel meta-learning algorithm can obtain results
comparable to advanced algorithms in terms of accuracy and can effectively increase the
model training performance.

The major contributions of our proposed task-covariant representation meta-learning
method are summarized as follows:

• Considering the covariant relationships among tasks in practical use, a task-covariant
representation meta-learning algorithm is proposed.

• According to the different distributions of tasks, the corresponding subspaces are
allocated to different subdistributions.

• A corresponding modulation function is learned for each subspace, and the learned
meta-knowledge is adaptively adjusted according to the task information and the
corresponding modulation function.

2. Related Work
2.1. Meta-Learning

“Meta-learning” or “learning to learn” [20,21] is the process of distilling learning
experience across multiple distribution-related tasks and using the extracted experience
to improve future learning performance. Meta-learning aims to provide an integrated
combination of next-step features, models, and algorithms, with the goal of replacing hand-
designed learners relying on prior knowledge with learned learning algorithms [20,22,23].
Model-agnostic meta-learning [1] adopts the invariant representation of tasks and can learn
globally shared meta-knowledge for all tasks. When a new task arrives, it can quickly
learn the globally shared meta-knowledge. However, globally shared meta-knowledge
does not consider the differences among tasks [4,5] and cannot effectively handle tasks
with different distributions. In order to address the limitation of globally shared meta-
learning in adapting to different tasks, some studies have introduced the concept of task
heterogeneity [4,5,24]. This approach improves the efficiency of learning in new tasks
by adaptively adjusting the learned meta-knowledge for each task, which includes the
initialization parameters, loss function, and update rules.

From the initialization parameter angle, some works have used probabilistic models
to tailor the globally shared initialization to suit each task [2,25,26]. Yao et al. [9] proposed
a method that constructs a meta-knowledge graph between tasks and adaptively adjusts
the model initialization parameters through the relationship between the new task and
the meta-knowledge graph so as to achieve the purpose of selecting the initialization pa-
rameters for each task. Baik et al. [27] proposed adaptive learning attenuation parameters
to adaptively adjust the learned prior knowledge for each task. From the loss function
angle, Baik et al. [11] proposed a method that learns a loss function that is adapted to each
task based on the current task state during inner-loop optimization. From the update rule
angle, Baik et al. [13] proposed a small meta-network that can adaptively generate per-step
hyperparameters: learning rate and weight decay coefficients. From the perspective of task
importance, inspired by curriculum learning [28,29] and hard sample learning [30,31], some
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researchers have proposed hard task strategies. By resampling tasks with lower validation
accuracy among the learned tasks, the difficult tasks are learned multiple times [32,33]; in
model-agnostic meta-learning, according to the gradient value of each task in the inner
loop and the similarity between the support set and the query set gradient, during the
update of the outer loop, the weight of each task loss in the total loss function is assigned
according to the different gradients [14]. From the perspective of task generation, the
random sampling of tasks may be sub-optimal and uninformative, so adaptive sampling
can be used to improve the performance and learning efficiency of the model. Accord-
ing to the impact of categories on learning efficiency, a greedy-based class-pair learning
algorithm was proposed to generate the class-pair potential for difficult tasks [34]. For
multi-modal tasks, Zheng et al. proposed a partially interactive collaboration method to
reduce the modality gap in VI-ReID [35] by utilizing complementary information from
different modalities. Yao et al. [5] used a hierarchical structure method that adaptively
customizes the learned prior knowledge for each task set, but the prior knowledge for each
task set is still customized on the basis of the globally shared prior knowledge. However,
the above methods only consider the differences among tasks or task sets and do not con-
sider the covariant relationships among tasks. We propose to adaptively adjust the learned
meta-knowledge for each task according to the real distribution of tasks and the ability of
the capsule network to represent the covariant relationships among tasks so as to improve
the learning efficiency of the adjusted meta-knowledge for the current task. Many methods
adopt a two-stream network and design additional constraint conditions to extract shared
features for different modalities. However, the interaction between the feature extraction
processes of different modalities is rarely considered. Finn et al. proposed Model-Agnostic
Meta-Learning for Fast Adaptation of Deep Networks (MAML [1]). Li et al. proposed
Learning to Learn Quickly for Few-Shot Learning (Meta-SGD [36]). Yoon et al. proposed
Bayesian model-agnostic meta-learning (BMAML [25]). Lee et al. proposed Gradient-Based
Meta-Learning with Learned Layerwise Metric and Subspace (MT-Net [7]).

2.2. Capsule Network

Inspired by the fact that manual features can effectively represent the position and
posture information of an object, Hinton proposed the concept of the “capsule” [37] in 2011,
which uses a vector to represent the capsule to increase the model’s ability to recognize
gestures. After the pose or position of the same object changes, its existence probability
remains unchanged, while the elements in the capsule change, that is, the covariance of
object representation. Sabour [16] proposed a vector-form capsule network and a dynamic
routing algorithm among capsules; using a 16-dimensional vector to represent the capsule,
the modulo length of the vector represents the probability of an object’s existence, and
the direction of the vector represents the attribute information of the object. In order to
strengthen the ability of the capsule network to express covariance between objects, the
“matrix capsule” [17] expands position sharing between different positions by adding a
“local-global” relationship: the capsule is represented by a two-tuple composed of a pose
matrix and an activation probability. The change in the angle of view usually has a complex
relationship with the change in pixel intensity and has a simple linear relationship with the
attitude matrix. The change in the angle of view can be better described by the change in the
attitude matrix; that is, the covariance representation of the change in the angle of view can
be obtained [38–40]. Objects are represented in the form of triples of the object’s existence
probability [37], eigenvector, and pose matrix. Assuming that an object is composed of a
series of components, an unsupervised capsule network autoencoder can be constructed to
represent the individual components and the geometric relationship between them, thereby
inferring the positional relationship between objects and objects.

The improvement of the vector capsule network mainly includes two aspects: the cap-
sule form and routing design method. Aiming at the improvement of capsules, compared
to the method of directly segmenting the extracted feature tensor with vector capsules,
a method of orthogonal projection was proposed to obtain capsules [41–43]. For the im-
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provement of routing, inspired by the better expressive ability of deep convolutional neural
networks [44], Rajasegaran et al. [45] improved the original dynamic routing by using 3D
convolution to construct a deeper network structure; DeCapsGAN [46] combined capsule
and generative confrontation, in which the networks are combined with skip connections
to increase the model depth. In order to strengthen the equivariant feature expression
ability of the capsule network, Choi et al. [47] tried to improve the original dynamic routing
by using attention routing and achieved good results in a perturbation interpretability
experiment of capsule elements. The application aspects of capsule networks include tasks
such as adversarial sample detection [48,49], point cloud segmentation [50], and 3D object
recognition [51,52].

3. Mathematical Preliminaries
3.1. Model-Agnostic Meta-Learning

We start with an introduction to meta-learning in the context of few-shot learning.
Assuming a task distribution p(τ), each task τi can be represented by a dataset Di that
consists of two disjoint sets: a support set DS

i and a query set DQ
i . Each set consists of some

pairs of samples x and the labels y: DS
i = {xs

i , ys
i }n

s=1 and DQ
i = {xq

i , yq
i }

m
q=1. In this work,

we focus on gradient-based meta-learning [1], where we aim to learn a well-generalized
parameter θ0 of a base predictive learner f from N meta-learning tasks {τi}N

i=1. The meta-
learning initialization for the base learner leads to bi-level optimization, with inner-loop
optimization and outer-loop optimization. In inner-loop optimization, the base learner is
initialized with θ0 and adapted to the i-th task by updating its weight for a fixed number of
steps via gradient descent with respect to the support set DS

i .

θi = θ0 − α∇θL
(

DS
i ; θ
)

(1)

Here, α represents the inner-loop learning rate, and θ0 denotes the initialized parameters of
the base learner. During outer-loop optimization, the meta-learned initialization parameter
θ0 is evaluated by the generalization performance of the task-specific base learner with the
parameter θi on the unseen query set DS

i . To evaluate and improve the initialization update,
we measure the performance of θi on the unseen query set DS

i and use the corresponding
loss to optimize the initialization as follows:

θk+1
0 = θk

0 − β
N

∑
i=1
L
(

DQ
i ; θi

)
(2)

where β is the outer-loop learning rate. In the outer-loop update, the meta-learner uses
the gradients of all query sets in N tasks {τi}N

i=1 to update the parameters, that is, to find
suitable initialization parameters for all query sets. After training for K time-step updates,
we can obtain the well-generalization model parameter initialization θ∗0 . During the meta-
test, θ∗0 is adapted to each task τt by performing a few gradient updates on the test task
support set, and the final model performance is obtained on the corresponding query set.

3.2. Setting Up the System: Task-Covariant Representation Meta-Learning

In this section, we introduce the details of our proposed task-covariant representation
meta-learning method. In order to better explain how our proposed model works, we
use Figure 2, Algorithm 1, and Figure 3 to show the working principle of our model.
The goal of task-covariant representation meta-learning is to effectively solve the multi-
distribution problem of tasks by leveraging the transferable knowledge learned from
historical tasks, with each distribution learning a modulated function. As shown in the
task-covariant representation part of Figure 1, the adaptation is entirely determined by the
real task distribution, which is represented by the learning of the capsule network. Task
representation techniques are discussed, which aim to improve the efficiency of feature
representation, the performance of task-invariant learning, and task-specific knowledge
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adaptation. We also introduce the concept of task-covariant representation, which allows
for adaptive task assignment to appropriate distributions when new tasks are introduced.
Task-specific knowledge adaptive modulation involves choosing the suitable modulation
technique based on the distribution of tasks while adjusting initialization parameters
according to task-specific information.

Figure 2. The framework for the task-covariant representation meta-learning algorithm.

Algorithm 1 Task-covariant representation for meta-learning.

Input: p(T ): Overall distribution of tasks; α: each task gradient update step size (inner-
loop update); β: meta-optimization gradient update step size (outer-loop update); µ1
and µ2: weight coefficients in the loss function.

1: Randomly initialize all learnable parameters Φ.
2: while not done do
3: Sample a batch of tasks {Ti | i ∈ [1, I]} from task distribution p(T ).
4: for Ti do
5: Sample training set Dtr

i and testing set Dts
i .

6: Extract features to obtain task representation cn
i by Equation (3).

7: Extract deep task features based on recurrent neural network autoencoder Tn
i and

compute class feature autoencoding loss Lq by Equation (4).
8: Dynamic routing represents the covariant relationship between tasks, and the

capsule decoder uses Equation (5) to calculate the task capsule reconstruction
Lcapsule.

9: Compute the task-specific initialization θ0i in Equation (7) and update parameters
θ0 = θ0i − α5 L

(
fθ , Dtr

i
)
.

10: end for
11: Update parameters Φ← Φ− β5θ ∑I

i=1

[
L
(

fθ , Dts
i
)
+ µ1Lq + µ2Lcapsule

]
.

12: end while

3.2.1. Task Representation Learning

To accurately reconcile the learned meta-knowledge, it is necessary to represent the
current task information using covariance. When dealing with classification or regression
problems in few-shot learning, we typically begin by investigating the task representation
with respect to a set of samples. Initially, the samples in the task can be represented as
vectors after feature extraction. To reduce the complexity of task representation in meta-
learning, we typically average the feature vectors of samples belonging to the same class
and then combine the resulting task feature vectors into a matrix format, where each row
represents a class or cluster. In a regression problem, the image’s class information is
replaced by clustering results. Constructing the task’s feature representation based on
classes can effectively reduce the impact of outlier samples on tasks. Specifically, for a
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classification problem, the support set DS
i = {xs

i , ys
i }n

s=1 of the corresponding task, with the
class feature representation denoted by cn

i ∈ R, is defined as:

cn
i =

1
KS

n

KS
n

∑
j=1

F
(
xj
)

(3)

where KS
n denotes the number of samples of the corresponding class in the support set of

each task, and i represents the i-th task. F(·) is a feature extraction function that contains
a convolutional layer and fully connected layer, which projects xj into a feature space
in which samples from the same class are located closer to each other, while samples
from different classes are farther apart. For a regression problem, we first extract the
feature of each sample and then cluster the extracted feature vectors to obtain the feature
representation of the regression problem. The extracted task features are input into the
recurrent neural network (RNN) autoencoder to extract the deep features of the task,
where each class or cluster of features in the task is individually self-encoded to obtain a
better task representation. In order to obtain better self-encoded intermediate features, we
use the L2 norm as the recurrent autoencoding loss function; the autoencoder loss function
is defined as:

Lq =
NS

k

∑
n=1
‖cn

i − cn
i
∗‖2 (4)

where cn
i and cn

i
∗ are the input and output of the autoencoder, and NS

k is the number of
support set classes or clusters.

From the above support-centralized sample feature extraction and class feature self-
encoding operations, a better class feature representation Tn

i can be obtained, which pre-
pares for subsequent task distribution division and the customization of specific task
initialization parameters.

3.2.2. Task-Covariant Representation

In this section, we introduce task-covariant representation by leveraging the capsule
network. Our goal is to use capsules for the covariant representation of tasks based on
different task distributions. We take the intermediate variable generated by the encoder or
the divided intermediate variable of the class feature vector in the task as a capsule; the class
feature vector is denoted by Tn

i . The class feature vector is used as the input of the capsule
network. First, projection transformation is performed to effectively represent covariant
transformation among tasks. At the same time, the dimension of the class feature vector
can be changed; the output of the capsule network consists of multiple capsules, and each
capsule represents one of the multiple distributions. Capsules are assigned to positions that
represent different distributions, and the value of the position where the capsule with the
largest modulus length is retained, while other positions are masked (all set to 0) so that the
task representation of the corresponding distribution can be obtained, as shown in Figure 4.
In order to ensure that the task presentation information is not lost due to different mask
operations, we transform the matrix composed of differently distributed capsules into a
vector form and input it into the decoding network, which consists of three fully connected
layers. The recurrent neural network self-encoder generates the intermediate variable Tn

i
as the input of the capsule network. The output and decoding of the capsule network
are tcapsule and Tn

i
∗, respectively, and the L2 norm is used as the loss function of the task

capsule.
Lcapsule = ‖Tn

i − Tn
i
∗‖2 (5)

where Tn
i and Tn

i
∗ are the capsule network input and decoding output. The capsule

reconstruction error in Equation (5) can enhance the training stability, leading to the
improvement of task representation learning.
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Figure 3. Algorithm flow diagram.

The output tcapsule of the capsule network is transformed into a vector form vcapsule
after being masked by Equation (6), which helps the modulation function of the fully
connected form to modulate the learned meta-knowledge.

vcapsule ←− tcapsule (6)
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Figure 4. In the routing process of the capsule network, the number of input and output capsules are
N and M, respectively; the mask mechanism is used so that the output capsule retains the largest
capsule of the model, and the rest of the capsules are all zero.

3.2.3. Task-Specific Knowledge Adaption and Loss Function

We will discuss how to adjust the initialization parameters and loss function of a
model corresponding to different distributions for each task. In the method developed in
this study, we use modulation functions to tailor initialization parameters for particular
tasks across diverse distributions. Differently distributed task capsules utilize distinct
modulation functions.

The prerequisite for the effective operation of the modulation function is task-covariant
representation. We use multi-distribution covariant representation to more effectively
represent the true distribution of each task. The true distribution of tasks may take the
form of multiple distributions. For each distribution, a modulation function is used. In
other words, multiple tasks form a task set and share a modulation function. The number
of task sets determines the number of modulation functions needed. To simplify the
form of multiple modulation functions, a fully connected network and sigmoid activation
function are used as the modulation function for initialization parameters. The input is a
masked vector, where different mask positions are equivalent to using different modulation
functions. Therefore, one network can perform multiple modulation functions. This is
formulated as:

θ0i = M
(

W ∗ vcapsule + b
)
· θ0 (7)

where W and b are a fully connect layer of weights and biases when using the sigmoid
activation function. The trained model parameters are utilized as the starting point for the
meta-learning model, with a number of tasks sampled from various relational datasets. The
meta-learning model is trained to optimize the similarity vectors of tasks. When selecting a
task, the current state of the meta-learning model is used as input, and a selection strategy
is output based on the similarity vectors between the current task and the tasks previously
encountered by the meta-learning model. This selection strategy is used to choose the next
task, followed by retraining the meta-learning model to adapt to the new task.

For each task τi, we use the gradient descent algorithm to update the modulated ini-
tialization parameter θ0i to θi. The total loss function includes meta-learning loss; class task
reconstruction error, defined by Equation (4); and multi-distribution capsule reconstruction
loss, defined by Equation (5). The total loss function is:

Ltotal = Lmeta + µ1Lq + µ2Lcapsule (8)

where µ1 and µ2 are the proportions of task representation autoencoder loss and multi-
distribution capsule reconstruction loss in the total loss. The goal of our neural network
training is to minimize the total loss. Finally, we also provide a detailed table of common
mathematical symbols, which can be referred to in Appendix A Table A1 if necessary.
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4. Experiments

In this section, we describe experiments performed on several few-shot learning prob-
lems, such as few-shot regression, few-shot classification, and ablation experiments to
corroborate the effectiveness of task-covariant representation meta-learning. All our experi-
ments were supervised small-sample learning problems that did not use pre-trained models.

4.1. Two-Dimensional Regression

To demonstrate the effectiveness of our proposed task-covariant meta-learning algo-
rithm, we evaluated our method and other methods in a few-shot regression experiment. To
verify the superiority of the model for more complex regression problems, AID, UCMerced-
LandUse, and WHU-RS-19 were combined into a single dataset, and then 2D regression
tests were performed on these data. Inputs x and y were sampled from a uniform distribu-
tion U [0.0, 0.5], and random Gaussian noise with a standard deviation of 0.3 was added to
the output. The regression functions include line, sinusoidal, quadratic, cubic quadratic
surface, and ripple functions. Compared with task-invariant meta-learning algorithms, our
proposed task-covariant meta-learning method has notable advantages in regression tasks
and can still achieve competitive results compared with task-heterogeneous meta-learning
methods. The experimental results are shown in Table 1.

Table 1. Comparison of experimental error (mean square error with 95% confidence) results between
the task-covariant meta-learning algorithm and other meta-learning algorithms in 2D regression tasks.

Model MAML Meta-SGD BMAML MT-Net Our Enhancement

10-shot 0.89 1.05 0.65 0.68 0.45 0.26
7-shot 0.93 1.08 0.67 0.70 0.48 0.24
5-shot 1.0 1.12 0.70 0.75 0.56 0.14

4.2. Few-Shot Classification

In a few-shot classification problem, each task is defined by N-way K-shot classifica-
tion, where N is the number of classes, and K is the number of examples per class.

4.2.1. Datasets and Setting

In the few-shot classification task, we used common remote sensing image datasets,
which mainly include AID, SIRI-WHU, UCMerced-LandUse, and WHU-RS-19. In these
experiments, the size of the data images was made uniform at 84× 84, and each dataset
was divided into a support set and query set at a ratio of 8:2, with each experiment being
run for 4000 epochs. First, we conducted experiments on the classification of AID and
UCMerced-LandUse datasets. We compared our proposed method not only internally
but also with other methods. To demonstrate the effectiveness of our proposed task-
covariant meta-learning in handling more complex underlying structures and highlight
its application ability for remote sensing images, we increased the difficulty of few-shot
image classification by adding synthetic data that introduce blur and sharpening to the
original AID dataset. The processed datasets were used separately to conduct experiments
in the few-shot classification task. Finally, to validate the performance of our method on
other datasets, experiments were carried out on UCMerced-LandUse and WHU-RS-19
datasets, and the results were compared with task-invariant meta-learning (MAML) and
task-heterogeneous meta-learning (MeTAL) methods.

4.2.2. Internal Comparison of Our Method

We verified the effectiveness of our proposed scheme through a large number of ex-
periments, the results of which are shown in Table 2. The experiments tested the following
settings: (a) The type of image corresponding to the task is directly input to the encoder
to generate intermediate features, which are then directly input to the modulation func-
tion. This exploits the heterogeneity between tasks to customize initialization parameters.
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(b) Building on experiment (a), the self-encoder result is first used with a fully connected
layer, and then the initialization parameters are modulated. (c) The task-specific features
are directly input to the capsule network, which has no reconstruction loss and produces a
single output capsule. The initialization parameters are customized for each task using the
output of the capsule network and modulation functions. (d) Similar to (c), but the number
of output capsules is 5, and all other settings remain unchanged. (e) Similar to (c), but
the number of output capsules is 10, and all other settings remain unchanged. (f) Similar
to (c), but the number of output capsules is 15, and all other settings remain unchanged.
(g) A fully connected neural network layer and capsule routing are used simultaneously,
and then the modulation function is applied to customize the initialization parameters
for a specific task. (h) Similar to (g), but a three-layer fully connected network is used.
(i) Similar to (g), but each type of class task feature is separately encoded using the fully
connected network.

Table 2. Comparison of classification accuracy (accuracy ± 95%) between different settings of
task-covariant meta-learning algorithm and other similar works on the AID and UCMerced-
LandUse datasets.

AID

Algorithm 5-way 1-shot 5-way 3-shot 5-way 5-shot

(a) Initialization parameters 78.47% 81.91% 85.58%
(b) Adjusting parameters with FCN 76.31% 80.96% 83.50%
(c) Number of capsules is 1 79.43% 82.19% 85.55%
(d) Number of capsules is 5 78.33% 81.80% 85.07%
(e) Number of capsules is 10 78.23% 82.10% 84.42%
(f) Number of capsules is 15 77.35% 80.93% 84.93%
(g) Adding a layer of FCN 77.69% 80.85% 82.45%
(h) Adding three layers of FCN 78.45% 81.65% 83.23%
(i) Coding each task separately 78.65% 82.14% 85.90%

UCMerced-LandUse

(a) Initialization parameters 75.23% 82.61% 84.12%
(b) Adjusting parameters with FCN 73.59% 79.59% 83.03%
(c) Number of capsules is 1 75.29% 82.74% 84.53%
(d) Number of capsules is 5 74.73% 82.06% 83.91%
(e) Number of capsules is 10 73.59% 81.47% 84.36%
(f) Number of capsules is 15 75.07% 80.88% 82.84%
(g) Adding a layer of FCN 74.89% 81.01% 83.16%
(h) Adding three layers of FCN 75.29% 81.83% 83.74%
(i) Coding each task separately 75.37% 82.37% 84.03%

Experiment analysis: (1) From experimental settings (a) and (b), it can be seen that
directly using the fully connected neural network to extract features as the class feature
mean and then using the modulation function reduces the model’s performance. (2) From
experiments (c–f), it can be observed that as the number of capsules (i.e., the number of
distributions of multi-distribution tasks) increases, the model’s performance decreases.
However, there is almost no difference between using 10 and 20 capsules. (3) From
experiment (f) and experiments (g–i), it can be observed that extracting features from the
intermediate coding of class features will reduce the performance of the model. (4) It can
be seen from experiments (g) and (h) that the number of layers of the fully connected
network has almost no effect on the experimental results, and (g) and (i) reveal that the
fully connected neural network’s separate coding can slightly improve the performance of
the model. Through the above experimental analysis, we determined the final model as the
form from experiment (a). The following sections introduce the experimental comparison
between our proposed algorithm and other similar algorithms.
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4.2.3. Comparison with Other Methods

Based on the experimental results obtained with different settings, we always se-
lected setting (a) as the final model and compared its performance with other similar
methods. We compared our proposed task-covariant meta-learning method with different
types of baselines: (1) the task-invariant representation method in the original gradient-
based learning method (all tasks share global initialization parameters, such as MAML
and Meta-SGD) and the task-heterogeneous representation method (adaptive custom ini-
tialization parameters for different tasks, such as MT-Net, MUMO-MAML, HSML, and
DMAML); (2) other original learning algorithms, including task-invariant representation
methods (VERSA, Prototypical network, and TapNet) and task-heterogeneous representa-
tion (TADAM) as baselines.

The experimental results are shown in Table 3, in which our proposed task-covariant
learning method is compared with other schemes. From the experimental data, it is clear
that in the few-shot classification task, our method has a slight advantage over the other
solutions. At the same time, we can find that our method has some advantages over global
parameter-sharing meta-learning for task-covariant learning for the classification of real
data with fewer samples. The results show that adaptively customizing the initialization
parameters for each task according to the task information is more in line with the ac-
tual situation than the global sharing setting. In contrast to independently customizing
each parameter, task covariance means that both the invariance between tasks and the
heterogeneity between tasks are considered. However, the large amount of calculation
required for the meta-knowledge graph is computationally intensive; the method of using
the capsule network can significantly reduce the amount of calculation and has a higher
training efficiency, and the running time is more stable. To verify the operational efficiency
of our proposed method, we compared the ARML method with our method on the AID
dataset. For task-covariant learning and the ARML method, under the condition that other
settings remain the same, the running times of each iteration were compared (the average
was taken once for 100 iterations, and all results were averaged again), and the results are
shown in Table 4. Compared to RAML, the advantage of the proposed method in operating
efficiency is significant, resulting in substantial time savings during training.

In order to compare the accuracy of trials during the training of task covariance
learning and the ARML method, the following experimental settings were used: AID
dataset and 5-way 5-shot. The verification accuracy of the two is drawn in the graph
as scatter points, where the red dots are task-covariant learning, and the cyan dots are
task-heterogeneous meta-learning. As can be seen in Figure 5, after a sufficient training
process, the validation accuracy of both methods is similar, but our method also has a
smaller range of fluctuations.

At the same time, in order to verify the effectiveness of our method, we added blur
to and sharpened the AID dataset images to produce a degraded dataset. In the setup of
the fuzzy dataset, a Gaussian fuzzy method was used with a radius value of 3, and the
original default bound value was used. When sharpening the dataset, we used horizontal
sharpening with the depth value set to −1 and the convolutional kernel matrix set to B.

B =

 0 −1 0
−1 5 −1
0 −1 −1

 (9)

On the degraded AID dataset, the above methods and our method were compared on
a small sample classification task; the experiments are shown in Table 5. We found that, on
the degraded dataset, although the performance of our method decreased, it still exhibited
some advantages over the other methods. This demonstrates that the capsule network’s
ability to provide a covariant representation of tasks can effectively enhance the expressive
power of the tasks.
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Table 3. Comparison of few-shot classification accuracy of task-covariant learning, task-invariant,
and task-heterogeneous methods on AID and UCMerced-LandUse datasets.

AID

Algorithm 5-way 1-shot 5-way 3-shot 5-way 5-shot

VERSA 68.58% 72.40% 75.86%
ProtoNet 70.11% 73.28% 77.67%
TapNet 70.90% 73.91% 79.07%

TADAM 69.58% 75.60% 79.13%
MAML 66.94% 72.01% 78.52%

Meta-SGD 68.58% 74.95% 77.87%
BMAML 67.89% 73.39% 79.01%
MT-Net 71.72% 77.54% 79.22%

MUMOMAML 69.82% 75.73% 80.49%
HSML 73.98% 79.84% 81.68%

Proposed 79.27% 81.91% 85.90%

Enhancement 5.29% 2.07% 4.22%

UCMerced-LandUse

VERSA 67.43% 72.81% 73.46%
ProtoNet 68.52% 74.62% 80.21%
TapNet 69.44% 74.56% 80.54%

TADAM 68.34% 74.70% 79.78%
MAML 68.66% 73.61% 78.56%

Meta-SGD 68.38% 74.31% 81.49%
BMAML 69.53% 75.50% 80.06%
MT-Net 68.80% 74.27% 82.57%

MUMOMAML 70.81% 75.36% 81.89%
HSML 71.01% 77.91% 82.08%

Proposed 75.23% 82.61% 84.12%

Enhancement 4.22% 4.70% 2.06%

Figure 5. Comparison of accuracy between our proposed method and a task-heterogeneous meta-
learning process, where the red dots represent task-covariant learning and the cyan dots represent
task-heterogeneous meta-learning.
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Table 4. Run time comparison.

Dataset Algorithm
Time (Minutes)

5-Way 1-Shot 5-Way 3-Shot 5-Way 5-Shot

AID
Proposed 2.85 3.73 4.39

ARML 3.06 4.07 5.42
Enhancement 0.21 0.34 1.02

UCMerced-LandUse
Proposed 3.01 4.12 4.82

ARML 4.10 4.92 5.47
Enhancement 1.09 0.8 0.65

Table 5. Comparison of the few-shot classification accuracy of task-covariant learning, task-invariant,
and task-heterogeneous methods on the degraded AID dataset.

Setting Algorithm Avg. Original Avg. Blur Avg. Sharpened

5-way 1-shot

VERSA 68.58% 65.98% 60.70%
ProtoNet 70.11% 64.51% 58.24%
TapNet 70.90% 65.16% 59.25%

TADAM 69.58% 66.44% 61.02%
MAML 66.94% 64.53% 58.71%

Meta-SGD 69.58% 66.36% 62.21%
BMAML 67.89% 65.08% 60.70%
MT-Net 71.72% 64.64% 59.05%

MUMOMAML 69.82% 66.59% 61.24%
HSML 73.89% 64.62% 61.78%

Proposed 79.27% 72.07% 66.55%

Enhancement 5.29% 7.45% 4.77%

5-way 3-shot

VERSA 72.40% 70.10% 70.48%
ProtoNet 73.28% 69.25% 68.34%
TapNet 73.91% 70.24% 69.03%

TADAM 75.60% 72.46% 71.78%
MAML 72.01% 70.83% 68.04%

Meta-SGD 74.95% 71.36% 70.37%
BMAML 73.39% 69.84% 69.57%
MT-Net 77.54% 73.69% 70.62%

MUMOMAML 75.73% 70.23% 71.21%
HSML 79.84% 72.17% 73.16%

Proposed 81.91% 78.52% 77.49%

Enhancement 2.07% 6.35% 4.33%

5-way 5-shot

VERSA 75.86% 75.41% 71.93%
ProtoNet 77.67% 75.07% 72.15%
TapNet 79.07% 75.21% 71.68%

TADAM 79.13% 77.36% 75.15%
MAML 78.52% 74.93% 71.59%

Meta-SGD 77.82% 75.54% 72.24%
BMAML 79.01% 76.21% 73.22%
MT-Net 79.22% 76.65% 71.18%

MUMOMAML 80.49% 78.29% 73.9%
HSML 81.68% 78.93% 77.27%

Proposed 85.90% 80.14% 80.42%

Enhancement 4.22% 1.21% 3.15%
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4.2.4. SIRI-WHU and WHU-RS19 Datasets

To confirm that the task-covariant representation meta-learning method is also ad-
vantageous using other widely used remote sensing image classification datasets, two
commonly employed datasets for few-shot classification, SIRI-WHU and WHU-RS19, were
utilized. The experimental results presented in Table 6 demonstrate that, compared with
task-invariant meta-learning (MAML) and task-heterogeneous meta-learning (MeTAL,
which involves the adaptive learning of the loss function for each task using task-specific
information) methods, our method still exhibited superior performance. However, our
classification accuracy was slightly lower than that of the MeTAL method.

Table 6. Comparison of classification accuracy on SIRI-WHU and WHU-RS19 datasets.

SIRI-WHU

Model 1-shot 3-shot 5-shot

MAML 68.52% 75.84% 79.06%
MAML++ 72.12% 81.59% 83.15%

MeTAL 77.48% 85.40% 86.40%
proposed 78.83% 83.57% 85.02%

Enhancement 1.3% −1.83% −1.83%

WHU-RS19

MAML 74.63% 83.79% 87.75%
MAML++ 78.57% 86.23% 88.95%

MeTAL 81.96% 89.93% 92.41%
proposed 84.63% 90.05% 91.75%

Enhancement 2.2% 0.21% −0.66%

5. Conclusions

In this paper, we propose a task-covariant meta-learning method for representation
learning specifically designed for remotely sensed images. The proposed approach tack-
les the challenge of assigning the current task to a specific subspace and acquiring the
corresponding modulation function for each respective subspace. The task-covariant repre-
sentation meta-learning algorithm incorporates capsule representation to embody a subset
of the task feature or the entire task feature. Additionally, the dynamic routing algorithm is
leveraged to capture the covariant relationships among tasks. By learning distinct mod-
ulation functions for each distribution within a multi-distribution task, the modulation
functions are able to be dynamically selected based on the specific distributions encoun-
tered during the task. Logically, our method can effectively handle the real task distribution,
and numerous experiments showed that the proposed new meta-learning algorithm can
achieve accurate results comparable to those of state-of-the-art algorithms and effectively
improve model training performance. It is expected that the ideas and structure of the
task-covariant representation meta-learning method would make a valuable contribution
to future research in meta-learning. To fulfill the research demands in the domain of future
image enhancement, it is crucial to bridge technological and disciplinary boundaries and
integrate knowledge from various interdisciplinary fields, including machine learning,
computer vision, and sensor technology, in order to consistently advance the growth of
image enhancement algorithms and their corresponding applications. Therefore, in future
work, we aim to explore the use of capsule networks and meta-learning in a weakly [53]
supervised manner to achieve image enhancement based on human visual perception.
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Appendix A. Commonly Used Notations

Table A1. Commonly used notations.

Notation Description

DS
i

The support set of the i-th task, containing samples and labels used for
training the model.

DQ
i

The query set of the i-th task, containing samples and labels for testing
the model.

xs
i A sample from the support set of the i-th task.

ys
i The label of a sample from the support set of the i-th task.

xq
i A sample from the query set of the i-th task.

yq
i The label of a sample from the query set of the i-th task.

θ0
The initial parameter of the base predictive model f , which is the goal
of meta-learning.

{τi}N
i=1 A set of N meta-learning tasks used for training the model.

θi The model parameter for the i-th task.

α The learning rate of the inner optimization strategy.

∇θL
(

DS
i ; θ
) The gradient with respect to θ, representing the gradient of the model

trained on the support set DS
i with respect to the current parameter.

θi Parameters of the task-specific base learner.

L Loss function.

β Step size or learning rate for outer optimization loop.

R A set of real numbers.
1

KS
n

Fraction equal to the reciprocal of the number of samples in a support set.

∑ The summation of all terms within the brackets.

j The index used for iterating over all samples in a support set.

F(·) The feature extraction function.

xj The input sample.

i The index used for iterating over all tasks.

cn
i The class feature representation for i-th task.

KS
n

The number of samples of the corresponding class in the support set
of each task.
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Table A1. Cont.

Notation Description

L2 norm Euclidean distance between two points.

µ1 and µ2
The weight coefficients that control the ratio of autoencoder
loss and capsule network reconstruction loss in the loss function.

Φ The set of learnable parameters in the model, including the weights and
biases of the neural network.

{Ti | i ∈ [1, I]} The set of I tasks sampled from the meta-task distribution.

Dtr
i and Dts

i The training set and testing set of the i-th task.

cn
i A feature vector representing task i.

Tn
i

An autoencoder recurrent neural network used to extract task-specific
low-dimensional feature vectors for task i.

Lq
The loss function used to ensure consistency in task-specific
initialization.

Lcapsule
The loss function for computing task-specific capsule network
reconstruction.

θ0i The function parameters used for task-specific initialization in task i.

5L
(

fθ , Dtr
i
) The task-specific gradient computation used to update task-specific

initialization.

5θ
The meta-learning update gradient computation used to update the
learnable parameters of the model.

‖ · ‖2 Represents the Euclidean norm or 2-norm.

NS
k Indicates the number of support set categories or clusters.

tcapsule The output of the capsule network.

Tn
i
∗ The decoding output of the capsule network.

‖ · ‖2 The Euclidean norm or 2-norm.

vcapsule The vector form of the output of capsule network.

M The modulation function.

W and b The weights and biases of a fully connected layer.

Lmeta The meta-learning loss.
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