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Abstract: Facial-image-based age estimation is being increasingly used in various fields. Examples
include statistical marketing analysis based on age-specific product preferences, medical applications
such as beauty products and telemedicine, and age-based suspect tracking in intelligent surveillance
camera systems. Masks are increasingly worn for hygiene, personal privacy concerns, and fashion.
In particular, the acquisition of mask-occluded facial images has become more frequent due to
the COVID-19 pandemic. These images cause a loss of important features and information for
age estimation, which reduces the accuracy of age estimation. Existing de-occlusion studies have
investigated masquerade masks that do not completely occlude the eyes, nose, and mouth; however,
no studies have investigated the de-occlusion of masks that completely occlude the nose and mouth
and its use for age estimation, which is the goal of this study. Accordingly, this study proposes a
novel low-complexity attention-generative adversarial network (LCA-GAN) for facial age estimation
that combines an attention architecture and conditional generative adversarial network (conditional
GAN) to de-occlude mask-occluded human facial images. The open databases MORPH and PAL
were used to conduct experiments. According to the results, the mean absolution error (MAE) of age
estimation with the de-occluded facial images reconstructed using the proposed LCA-GAN is 6.64
and 6.12 years, respectively. Thus, the proposed method yielded higher age estimation accuracy than
when using occluded images or images reconstructed using the state-of-the-art method.

Keywords: facial age estimation; conditional GAN; mask-occluded facial images; LCA-GAN; MORPH
and PAL

MSC: 68T07; 68U10

1. Introduction

In general, age, gender, expression, and race can be derived from facial appearances [1].
Age estimation is being increasingly used in diverse fields, such as statistical marketing
analysis based on age-specific product preferences, medical fields such as the beauty in-
dustry and telemedicine, and age-based suspect tracking in intelligent surveillance camera
systems [2]. Despite continuous efforts in research, including design of age estimation
algorithms and models, data collection, system performance tests, and valid evaluation pro-
tocols, improving the accuracy of age estimation remains a challenge [3]. Age estimation is
challenging because the human face is influenced by internal factors (size, wrinkles, shape,
texture, race, etc.) and external factors (health, dietary habits, culture, environment, etc.),
and these change over time through complex processes [4]. However, there are general
and common features that can explain human facial aging [5]. Age estimation is divided
into feature representation, extraction, and age learning stages. Though previous studies
used various handcrafted feature-based methods, they require accurate prior knowledge of
experts. However, there are no methods to verify the accuracy of the prior knowledge [6].
Unlike conventional methods, a convolutional neural network (CNN) can extract clear and
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robust facial features and learn the age on its own [7]. Generally, a CNN for age estimation
consists of a convolutional layer and a multi-layer perceptron (MLP). The convolutional
layer extracts and represents age information features from the facial images, and the
MLP estimates the age with the represented features. Then, the distance between the esti-
mated age and the age label is calculated by the loss function and then backpropagations
are performed. The whole process is performed automatically, and unlike conventional
methods that rely on prior knowledge, it can utilize information that cannot be extracted
with prior knowledge. It provides better age estimation performance than traditional
methods, and numerous researchers are actively conducting research on improving the
results and accuracy.

Despite the advances in age estimation research, there are several problems when age
estimation is applied practically. Facial images obtained in real unrestricted environments
frequently have problems that degrade image quality related to resolution, illumination,
noise, and occlusion. In particular, mask-occluded facial images have recently become
frequent following the COVID-19 pandemic. Masks are worn more frequently because
of hygiene, personal privacy concerns, and fashion. Mask-occluded facial images do not
contain important features and information for age estimation, which reduces the accuracy
of age estimation. Existing de-occlusion research has investigated masquerade masks
that do not completely occlude the eyes, nose, and mouth [8–11], but no studies have
investigated the de-occlusion of masks that completely occlude the nose and mouth, which
is the goal of this study. To this end, this study proposes a novel low-complexity attention-
generative adversarial network (LCA-GAN) for facial age estimation that combines an
attention architecture and conditional generative adversarial network (conditional GAN)
to de-occlude mask-occluded human facial images. Our innovation is for facial image
de-occlusion. The present study is new compared to previous studies in four ways:

• This is the first study of its kind on age estimation that considers the de-occlusion of
facial images where the nose and mouth are completely occluded by a mask;

• We propose a novel LCA-GAN for mask de-occlusion. LCA-GAN contains low-
complexity attention blocks (LCABs) that reduce computation and complexity by
combining down and upsampling with the attention module. LCAB comprises low-
complexity channel attention (LCCA) and low-complexity spatial attention (LCSA),
and it uses attention to assign weights based on the importance of features in channel
and spatial dimensions;

• To reconstruct the facial feature information lost by mask occlusion as much as possible
in de-occlusion, edge loss and content loss in LCA-GAN were used;

• The trained LCA-GAN and CNN for age estimation and experimental mask generated
facial images were published [12], enabling a fair comparison with the performance of
other researchers.

The structure of this paper is as follows. Section 2 analyzes existing age estimation
studies that have used facial images and de-occlusion methods. Section 3 explains the
overall experimental method and LCA-GAN, the de-occlusion network proposed in this
paper. Section 4 presents a comparison of the performance and age estimation results using
de-occluded images between existing de-occlusion methods and LCA-GAN based on the
MORPH and PAL databases. As a final section, Section 5 concludes the paper.

2. Related Works

Facial images contain biological information with diverse attributes, such as race,
gender, age, environment, and lifestyle. In [13], the distributions of these attributes and
their averages were analyzed, and a method was presented to evaluate the bias of appro-
priate algorithms and databases. It has influenced various studies using human facial
images [14–16]. However, it is difficult to investigate handcrafted feature-based age estima-
tion, which requires consideration of diverse factors. Consequently, most age estimation
studies have used CNNs since the emergence of deep learning. As shown in Table 1, age
estimation methods are generally classified into five categories [6]. Multi-class classifi-
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cation yields high age estimation performance when using limited resources and data
with a single model. Hybrid methods, which combine multiple methods, supplement the
shortcomings of combined models and yield high age estimation performance for large
quantities of data in environments with many available computing resources. To measure
the age estimation accuracy, researchers have used mean absolute error (MAE) [17], exact
accuracy [18], 1-off [19], and normal score (ε-error) [20], among which MAE is the most
commonly used.

Table 1. Classification and comparison of existing age estimation methods.

Categories Method Database MAE Exact 1-Off ε-Error

Classification of multi-class ages

DEX [21] IMDB-WIKI + LAP2015 3.22

N.A.
N.A.

0.26

Residual DEX [22] LAP2015 4.45

N.A.

Dimensionality reduction +
FFNNs [23] WIKI + AmI-Face + Adience 3.30

4C2FC [24] MORPH
N.A.

46.39

RoR [25] IMDB-WIKI + Adience 67.3 97.51

DEX [8]

MORPH 2.68

N.A. N.A.
FG-NET 3.09

CACD 6.52

IMDB-WIKI + LAP2015
N.A.

64.0

Adience N.A. 96.6 0.26

4C2FC + dropout [9] Adience N.A. 84.8 89.7 N.A.

Regression based on metrics

3NNR [26] Adience + MORPH + LAP2015 N.A.

N.A. N.A.

0.37

OR-CNN [27] AFAD
MORPH

3.34
3.27

N.A.

VGG + BridgeNet [28]
MORPH
FG-NET
LAP2015

2.38
2.56
2.98 0.26

Learning by the distribution of
deep label

DLDL-v2 [29]

LAP2015
LAP2016
MORPH

3.14
3.45
1.97

0.272

0.267

N.A.
Inception v4 [30] MORPH

FG-NET
1.32
2.19

Ranking

Ranking-CNN [31] MORPH 2.96

ODFL + OHRank [32]

MORPH
FG-NET
LAP2016
Adience

3.12
3.89
4.12
N.A.

N.A.

0.34

54.0 88.2 N.A.

ODL [33]
MORPH
FG-NET
LAP2016

2.92
3.71
3.95

N.A.

N.A.

N.A.

0.312

Hybrid methods

Kernel ELM + CNN [34] LAP2016 N.A. 0.37

MRCNN [35] MORPH 3.48 N.A.

GA-DFL [36]
MORPH
FG-NET
LAP2015

3.25
3.93
4.21

N.A.
N.A.
0.37

CNN + ELM [37] MORPH
Adience

3.44
N.A.

N.A.
52.3 N.A.

RAGN [10]
IMDB-WIKI + MORPH
IMDB-WIKI + Adience
IMDB-WIKI + LAP2016

2.61
N.A.
N.A.

N.A.
66.5
N.A.

N.A.

0.37

AgeNet + divide and rule [11]
FG-NET
MORPH

IMDB-WIKI

4.02
3.48
3.29

N.A. N.A.

MA-ShuffleNet v2 [38] MORPH
FG-NET

2.68
3.81

As listed in Table 1, age estimation studies have used images obtained in restricted
environments, such as the MORPH [39] and FG-NET [40] databases, and those from unre-
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stricted environments such as IMDB-WIKI [41], Adience [42], LAP2015 [43], LAP2016 [44],
and CACD [45]. MORPH is a database of human facial mugshot images with resolutions
ranging from 640 × 480 to 1024 × 768 pixels. It contains various attributes, such as gen-
der, age, and race, and is acquired in a restricted environment such as image resolution,
illumination, and pose. FG-NET is a database of human facial images with gender and
age information. The database collected facial images that satisfy specific conditions such
as image resolution and pose from pictures of people with confirmed ages. In this case,
the facial images that satisfy the conditions are similar to the facial images acquired in a
restricted environment. On the other hand, the databases in unrestricted environment are
collected from the internet, magazines, films, etc. These unrestricted databases contain
facial images in natural poses, various image resolutions and illumination changes, and
occlusions with various objects. Age estimation research using images from restricted
environments has yielded relatively low age estimation accuracy for occluded images.
Despite the difficulty of age estimation due to occlusion, previous age estimation studies
have not considered the de-occlusion of facial images occluded by a mask that completely
covers the nose and mouth. In addition, all datasets in Table 1 have a very small number
of masked face images. Therefore, for our experiments, we generated a large number of
masked face images from the MORPH and PAL databases. Table 2 presents a comparison
of studies that do and do not consider face occlusion with the proposed method.

Table 2. Comparison of the strengths and weaknesses of existing research and proposed methods in
age estimation based on consideration of face occlusion.

Categories Age Learning
Technique Method Strength Weakness

Age estimation without
considering face

occlusion

Handcrafted
feature-based

Guo et al. [46]

Age estimation robust
to restricted
environment

They did not consider
face-occluded images

for age estimation

Chen et al. [47]

Deep feature-based

Inception v4 [30]

MA-ShuffleNet v2 [38]

Age estimation with
considering face

occlusion

DEX [8]

Age estimation robust
to occluded

facial images

They trained
simultaneously with

occlusion and
non-occlusion images,
which made network
convergence difficult

AgeNet + divide and
rule [11]

RAGN [10]

4C2FC + dropout [9]

Proposed method
Additional procedures

are required to train
LCA-GAN

A study [30] proposed recurrent age estimation (RAE), which combines inception-
v4 [48] and long short-term memory networks (LSTM) [49]. It extracts features from
facial images using inception-v4 and learns individual aging patterns with LSTM. To
solve the problem of training overfitting, researchers have proposed label distribution
learning (LDL), which uses the ambiguity between the label age and predict age. A
study [38] proposed mixed attention-ShuffleNet-v2 (MA-SFV2), which combines mixed
attention and ShuffleNet-v2 [50]. Classification, regression, and distribution methods were
simultaneously applied to learning to transform the output layer of the base model. In [10],
CNN2ELM, an ensemble model combining CNN and extreme learning machine (ELM),
was proposed for leaning age. It achieved decent results in ChaLearn 2016 [51], a human
age estimation competition. In [8], a deep expectation of apparent age (DEX) system
was proposed, which uses the softmax expected value refinement of the VGG-16-based
network [21]. More specifically, they defined the regression problem of age learning as a
classification problem and performed age estimation by multiplying the age label and the
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class probability distribution, which is the last softmax output of VGG-16. A study [11]
proposed the divide-and-rule architecture and AgeNet, a model based on the method of
GoogleNet [52]. AgeNet is a feature extractor and divide-and-rule approach to age learning
as an ordinal regression problem. As such, research on age estimation includes studies
using restricted environment images [30,39,47,48], studies using unrestricted environment
images [9,11], and studies using images of both environments [9,21,38]. This age estimation
research includes many studies that excluded occlusion in restricted environments or
ignored occlusion in unrestricted environments, so de-occlusion was not considered.

However, face occlusion frequently occurs in the real world and is challenging to solve
through camera hardware. Most existing de-occlusion methods reconstruct synthesized im-
ages because of the lack of databases with non-occluded and occluded image pairs [53–56].
In [53], a two-stage occlusion-aware GAN was proposed, trained with 44 images occluded
by sunglasses, hats, scarves, and phones with a random shape, location, and size in a face
database, but it did not use facial mask images. This method removes occluded areas with
the existing Pix2pix-based [57] GAN architecture and de-occludes the image only using
information from non-occluded areas. However, this is an unrealistic occlusion condition,
and while de-occlusion is successful for most objects, it fails for glasses and sunglasses.
Previous research proposed a method to solve the face recognition problem associated
with block occlusion of facial images by two robust feature-based representations, which
were designed to fit the errors to a distribution described by a tailored loss function and
the reduced rank structure of the errors relative to the image size [58]. The work in [59]
proposed MRGAN, a GAN-based two-level network that removed the areas occluded
by medical masks and reconstructed the removed areas. Stage one detected masks, and
stage two performed de-occlusion. This method is based on a complex network and is
computationally intensive. This experiment achieved good de-occlusion results but did
not reconstruct color and detail information well in the occluded area. The work in [60]
proposed a two-stage GAN-based method for de-occlusion of small objects in facial image
such as microphones. Steps one and two were trained similarly to a conventional GAN,
but the de-occluded image from step one was used as an input to step two to generate a
robust de-occluded image. The de-occlusion results showed that the texture and detail
were de-occluded well, but the outline of the occluded object remained.

Moreover, previous study [54] presented a two-stage method; in stage one, the oc-
cluded area is detected with an encoder–decoder structure and converted to a mask image
as a pre-processing method, and in stage two, the occluded area is transformed through two
conditional GAN [61] architectures. For supervised learning, face images were collected
from the CelebA database, and the collected images were synthesized with the collected
mask images occluding the eyes using Photoshop CC 2080 [54]. This method requires
additional binary mask images to be trained, and the de-occlusion results fail on complex
and detailed mask images. Another study [55] proposed Swap-R&R that compensates for
the lack of paired databases. This method shows very robust de-occlusion performance
with facial images occluded by glasses, sunglasses, makeup, and headsets, but it requires
an additional 3D face reconstruction network in training and testing, and the network com-
putation is very large [55]. In [56], they reconstructed identity-preserved and de-occluded
facial images by CNN, which was supervised with identity labels. By using the additional
channel for occlusion detection, a mask for occlusion is computed as a pre-processing
method and combined with the reconstructed face. This experiment collected frontal face
images between −45 and 45 degrees from the CASIA-WebFace database. The collected face
images are used to synthesize multiple objects for supervised learning. There are more
than 100 templates for occluding objects such as masks, glasses, and hands [56], and among
them, objects such as glasses and masks require accurate position information. Objects
that require such location information are synthesized directly using an image program,
while other objects are synthesized randomly. However, they only deal with grayscale
facial images and produce results including artifacts. Though de-occlusion research has
been conducted on masquerade masks that do not completely occlude the eyes, nose, and
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mouth [54], no studies have investigated de-occlusion-based age estimation of masks that
completely occlude the nose and mouth, which is the goal of this study. To solve the
aforementioned problems, this study proposes LCA-GAN-based facial mask de-occlusion
and an age estimation method using this technique.

3. Proposed Methods
3.1. Overview of Suggested Method

Figure 1 illustrates the entire procedure of robust age estimation for mask-occluded
facial images proposed in this study.
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Figure 1. The entire procedure of our LCA-GAN-based de-occlusion and age estimation.

Stages one and two entail pre-processing. First, the positions of the face and eyes are
detected, and based on the detected positions, we execute the compensation of in-plane rota-
tion, and the face region of interest (ROI) is re-defined. Following pre-processing, the mask-
occluded image is de-occluded using the proposed LCA-GAN. The CNN-based age estima-
tion method is then adopted to predict the age of the person in the de-occluded image.

3.2. Pre-Processing

As shown in Figure 2, the input images are processed. For pre-processing, this study
used the dlib facial feature tracker [62], which extracted features with histogram of oriented
gradients (HOG) and trained a linear classifier on the extracted information. It does not
use any parameters or thresholds except for the upsample_num_time option, which is
used for iterating the detection while scaling the input image, and we used the default
value of one in our experiment. It was used on original face images of different sizes to
detect face landmarks and the face box region. First, the dlib facial feature tracker for facial
feature points [62] is used to locate the positions of the eyes, as shown in Figure 2b. Using
Equation (1) based on the positions of both detected eyes, in-plane rotation compensation
is performed, as shown in Figure 2c. In-plane rotation compensation is performed based
on the center position between both eyes (green dot between the eyebrows in Figure 2b).

θ = tan−1
(

Ry − Ly

Rx − Lx

)
(1)
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(Rx, Ry) and (Lx, Ly) represent the x- and y-axis positions of the centers of the detected
right and left eyes, respectively. In the in-plane rotation compensated image, the face region
is found using the dlib facial feature tracker, as shown in Figure 2c, and this face region
becomes the face ROI, as shown in Figure 2d. To use the face ROI as an input for LCA-GAN,
it is resized to 256 × 256 × 3 by bilinear interpolation.
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3.3. De-Occlusion of Masked Facial Image by LCA-GAN

General image quality problems that distort image information include low resolution,
blur, low illumination, noise, etc. However, regarding the occlusion problem, the occluding
object reduces image information. Hence, unlike image quality problems where information
can be directly extracted from the distorted area, for the occlusion problem, it is more
difficult to directly extract information from the occluded area. Consequently, it is difficult
to learn the mapping from occluded to de-occluded images using a CNN. To solve this
problem, this study proposes LCA-GAN based on adversarial learning. Figure 3 shows the
architecture of LCA-GAN. The generator is based on U-net [63]; by using LCAB, which
combines up and downsampling with channel and spatial attention, it reduces complexity
and computation. For the discriminator, a patch discriminator is used to output with a
size of 30 × 30 × 1. It obtains probabilities for each of the 30 × 30 patches and determines
whether each of the 900 local patch areas is a real or fake image. Finally, it averages all
900 probabilities to finally determine if the entire global image is real or fake.

3.3.1. Generator

Figure 3a shows the generator for de-occlusion in this study, which uses the U-net [63]
architecture comprising an encoder–decoder and skip connection. In the encoder–decoder
used for U-net’s continuous down and upsampling, the encoder extracts features, and the
decoder learns the mapping for image patches corresponding to the extracted features.
Additionally, it concatenates high-stage encoder block features with low-stage decoder
block features to compensate for lost high-level information and to balance high- and
low-level information. However, this architecture is inefficient for the occlusion problem,
where it is difficult to directly extract information from the occluded area. To solve this
problem, this study proposes LCAB, which combines an attention mechanism [64] with
down and upsampling. LCAB is composed of LCCA and LCSA; attention is used to assign
weights according to the importance of features in the channel and spatial dimensions. The
next subsection describes LCAB architecture in detail. When de-occluding the occluded
area, the generator uses edge loss to create a detailed and sharp image as well as content
loss to maintain the information of the non-occluded area and the texture in the target
image. In this de-occlusion process, L1 loss function was used for identity loss to maintain
the information of the original image. Table 3 presents the overall architecture of the
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generator. As shown in Table 3, an image of 256 × 256 × 3 including the mask-occluded
area is inputted to the generator of LCA-GAN, and a feature map of 256 × 256 × 64 is
obtained via Convolution layer 1 and Spatial Attention. Then, by passing through LCAB
1~5 (including LCCA and LCSA), the feature map of 8 × 8 × 512 is obtained as the final
output of encoder. This feature map is again passing through the decoder of LCAB 6~10
(including LCCA, Concatenation, and LCSA except for LCAB 10 including only LCCA
and LCSA) and the upsampled feature map of 256 × 256 × 64 is obtained. Then, this
feature map is passing through Convolution layer 2 and Tanh activation layer, and the final
generated (mask-de-occluded) image of 256 × 256 × 3 is obtained as the output of decoder.
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3.3.2. The Structure of LCAB

The attention mechanism abstracts the importance between the modalities of the rep-
resented features to incorporate high-level information. Representative attention methods
used in images include spatial attention and channel attention [64]. Channel and spatial
attention determine which features are important in the channel and spatial dimensions,
respectively, and assign corresponding weights. In this study, channel and spatial attention
were used to detect and de-occlude mask-occluded areas. Moreover, we proposed LCAB,
which combines down and upsampling with the attention process to reduce the complexity
and computation that increases due to attention and continuous processes after down or
upsampling. LCAB comprises LCCA and LCSA, the structures of which are illustrated in
Figures 4 and 5.

Channel attention has two convolutional layers, average pooling, three multi-layered
perceptrons (MLPs), a sigmoid layer, multiplication with convolutional layer features, and
addition with input features passed through skip-connection. The importance of channel
dimension features is arranged using the two-stage convolution layer to re-represent the
input-represented features. The features are then compressed by global average pooling in
the spatial space, and MLP is used to calculate the importance of modalities between the
features in the channel space. Here, the first and third layers of MLP are equal to the channel
dimension size of the input features, and the second layer is 1/4 the channel dimension
size of the input features. Using sigmoid activation, attention is constructed from the
importance of these arranged features. Following the convolutional layer, it is multiplied
with the features and then added to the input features with high-level information. This
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study proposes LCCA, which combines down and upsampling with channel attention.
In the two-stage convolutional layer, the first stage uses a 4 × 4 size filter to scale the
spatial space by 2 in upsampling and by 1/2 in downsampling. The second stage uses
a 3 × 3 size filter to maintain the size of the spatial space. Moreover, the deformation of
high-level information is minimized using bilinear interpolation, and the skip-connection
of the input features is passed.

Table 3. Generator architecture in LCA-GAN.

Layer Size of Feature Concatenation

Input image 256 × 256 × 3 -

Encoder

Convolution layer 1 256 × 256 × 64 -

Spatial attention 256 × 256 × 64 -

LCAB 1 LCCA
LCSA

128 × 128 × 64
128 × 128 × 128 -

LCAB 2 LCCA
LCSA

64 × 64 × 128
64 × 64 × 256 -

LCAB 3 LCCA
LCSA

32 × 32 × 256
32 × 32 × 512 -

LCAB 4 LCCA
LCSA

16 × 16 × 512
16 × 16 × 512 -

LCAB 5 LCCA
LCSA

8 × 8 × 512
8 × 8 × 512 -

Decoder

LCAB 6
LCCA

Concatenation
LCSA

16 × 16 × 512
16 × 16 × 1024
16 × 16 × 512

LCAB4

LCAB 7
LCCA

Concatenation
LCSA

32 × 32 × 512
32 × 32 × 1024
32 × 32 × 512

LCAB3

LCAB 8
LCCA

Concatenation
LCSA

64 × 64 × 512
64 × 64 × 768
64 × 64 × 256

LCAB2

LCAB 9
LCCA

Concatenation
LCSA

128 × 128 × 256
128 × 128 × 384
128 × 128 × 128

LCAB1

LCAB 10 LCCA
LCSA

256 × 256 × 128
256 × 256 × 64 -

Convolution layer 2
Tanh activation layer 256 × 256 × 3 -

Generated image 256 × 256 × 3

As shown in Figure 5, spatial attention is composed of two convolutional layers, global
average pooling, a convolutional layer, a sigmoid layer, multiplication with convolutional
layer features, and addition with input features passed through skip-connection. The
importance of spatial dimension features is arranged using the two-stage convolution
layer to re-represent the input-represented features. The features are then compressed by
global average pooling in the channel space, and the importance of modalities between the
features in the spatial space is calculated through the convolutional layer. Using sigmoid
activation, attention is created from the importance of these arranged features. Following
the convolutional layer, it is multiplied with the features and then added to the input
features with high-level information. This study proposes LCSA, which combines down
and upsampling with spatial attention. The two-stage convolutional layer maintains the
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spatial space using a 3 × 3 size filter but adjusts the channel dimension to the desired size.
After global average pooling, the convolutional layers use a 7 × 7 size filter to calculate the
importance of modalities between features in the spatial space and then represent them as
probability values using the sigmoid activation layer. Additionally, the size of the channel
space of the input features is adjusted using bilinear interpolation, the deformation of high-
level information is minimized, and the information is passed. Through LCCA and LCAS,
channel and spatial attention preserve the original goal of representing the importance
of the represented features from the perspectives of “what” and “where”, combining the
down and upsampling processes. Moreover, they reduce computation and complexity
caused by the use of continuous down and upsampling and attention mechanisms, and
they are effective for the de-occlusion process.
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3.3.3. Discriminator

LCA-GAN uses a patch discriminator. It receives a fixed input image and a random
target image and output image, and then it concatenates them. Convolution is then
performed, and each grid of extracted features has a receptive field according to the
computational structure. In this study, individual grids of 1 × 1 × 1 units of the final
output, which has a size of 30 × 30 × 1, have a receptive field of 70 × 70, use individual
grids to determine the local area, and then distinguish the global area with the average of
all grids. In this process, identity loss and content loss are used to maintain the continuity
of information in the input image. Table 4 lists the detailed structure of the discriminator.

Table 4. Discriminator architecture in LCA-GAN. CL and BN mean convolution layer and batch
normalization, respectively.

Layer Size of Feature

Input image 256 × 256 × 3

Target or de-occluded image 256 × 256 × 3

Concatenate 256 × 256 × 6

CL 1
Convolution

BN
ReLU

128 × 128 × 64

CL 2
Convolution

BN
ReLU

64 × 64 × 128

CL 3
Convolution

BN
ReLU

32 × 32 × 256

CL 4

Zero padding
Convolution

BN
Leaky ReLU

34 × 34 × 256
31 × 31 × 512

CL 5

Zero padding
Convolution

Sigmoid
Average pooling

33 × 33 × 512
30 × 30 × 1

1 × 1 × 1

Output Real or fake

LCA-GAN proposed in this study performs learning using pairs of images comprising
the mask-occluded image (input image) and original un-occluded image (target image).
Conditional GAN [57] learns the mapping using the loss function in Equation (2), which
receives an input image I In and generates an output image IOut that is similar to the target
image ITarget.

LGAN(G, D) = EI In ,ITarget

[
logD

(
I In, ITarget

)]
+EI In

[
log(1− D

(
I In, G

(
I In
))

)
]

(2)

This adversarial learning method generates smooth pixel-wise images [65]. In this
study, the generator used content loss to maintain the texture of the original face when
de-occluding the mask-occluded area. For this purpose, the L2 loss function of Equation (3)
is applied to the VGG-16 (pre-trained with ImageNet) to measure the dissimilarity of IOut

and ITarget.

Lcont = EIOut ,ITarget

[(
ITarget − IOut

)2
]

(3)

The proposed LCA-GAN preserves the area other than the mask-occluded area in
the mask-occluded image and performs de-occlusion. The discriminator concatenates
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pairs of I In and IOut or I In and ITarget, which enables learning to reinforce high-frequency
information in the mask-occluded area of ITarget. This is accomplished by applying the
edge loss function in Equation (4) to generate a detailed de-occluded image. ∆ denotes the
Laplasian operation, and ε is 10−3.

LEdge = EIOut ,ITarget

[√(
∆ITarget − ∆IOut

)2
+ ε2

]
(4)

Rather than learning the data distribution of ITarget, adversarial learning sometimes
strongly tends toward receiving the discriminator’s determination of the real image. To
prevent this and preserve the identity of the image, we added identity loss, which uses the
L1 loss function, as shown in Equation (5).

LIden = EIOut ,ITarget

[∣∣∣∣∣∣ITarget − IOut
∣∣∣∣∣∣] (5)

Finally, our final loss function is in Equation (6). Using the training data, 1.5, 2, and 2
were determined as the optimal values of λ1, λ2, and λ3, respectively, to obtain the best age
estimation accuracy.

LLCA = argmin
G

max
D
LGAN(G, D) + λ1Lcont + λ2LEdge + λ3LIden (6)

3.4. Age Estimator

The DEX model [8] was used to predict the age of de-occluded facial images with LCA-
GAN, which exhibited good results in the Looking at People (LAP) 2015 [66] competition
and previous research results on age estimation accuracy [67]. DEX is an age estimation
model based on VGG-16 [68], an existing classification network. For age estimation, VGG16
pre-trained on ImageNet was additionally pre-trained using the IMDB and WIKI databases.
Since human aging typically involves sequential changes over time, the similarity between
adjacent classes in DEX is high, so the probability of the trained model is considered to
have a normal distribution. Therefore, rather than estimating the class label showing the
highest probability score as age, the age was predicted as the product of the class label and
probability value, as shown in Equation (7).

Estimated age(I) = ∑ n
1 li pi (7)

where I denotes the input facial image, n indicates the number of classes, li denotes the
ith class label, and pi corresponds to the ith output probability value. The detailed age
estimation methods of DEX are illustrated in Figure 6.
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DEX [8] is a VGG-16-based network with a convolution layer, which consists of a
convolution filter, batch normalization, an ReLU activation function, two MLP layers
with 4096 nodes, and an output MLP layer equal to the size of the age class labels. The
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convolutional layers extract features with age information and represent the features for age
learning. MLP layers learn age from the represented features. The last MLP layer outputs
a probability value through a softmax activation function. Finally, to improve the age
estimation performance, DEX applies the age estimation method described in Equation (7).
In this experiment, we used the L2 loss function in DEX to emphasize the relation of close
age classes, thus making the age estimation method using Equation (7) more robust.

4. Experimental Results
4.1. Data and Environment for Experiments

As shown in Figure 7, this study used MORPH [39] and PAL [69] as the databases
to de-occlude mask-occluded facial images. Given the lack of open databases of mask-
occluded facial images obtained in real environments that include existing age information,
as shown in Figure 8, we generated mask-occluded facial images using mask images
without a background image directly acquired from MORPH and PAL, which are existing
human facial databases. Figure 8a shows the original facial image, and Figure 8b shows the
mask image with no background. Subsequently, in the facial image, the dlib facial feature
tracker [62] explained in Section 3.2 detects the eye area, as shown in Figure 8c. Using the
center position of the eyes, the method described in Section 3.2 is used to perform in-plane
rotation, as shown in Figure 8d; in this image, the dlib tracker for facial feature points finds
the position of the face landmark corresponding to the annotated point of the mask image.
Based on this position information, the annotated mask image is geometrically transformed
and warped, as shown in Figure 8e. As shown in Figure 8f, the transformed mask image is
then occluded on the aligned facial image, and the face ROI is detected again using the dlib
tracker. The ROI is re-defined with the detected face ROI, and the final face ROI image of
the mask-occluded image is created, as shown in Figure 8g.
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The experiments were performed with two-fold cross validation, and in each fold,
we used 5% of the training images as a validation set. To locate the face ROI, we used the
python library (version 3.5.2) [70] and OpenCV (version 4.2.0) [71]. The specification of the
desktop computer for our experiments is as follows: 3.5 GHz CPU (Intel® Core™ i7-3770K)
and 24 GB RAM, Windows Tensorflow (version 2.2.0) [72], and Nvidia graphics processing
unit (GPU) card (Nvidia GeForce GTX 1070 [73]).

4.2. Training of LCA-GAN for Masked Image De-Occlusion and CNN for Age Estimation

LCA-GAN proposed in this study performs learning using the mask-occluded facial
image as the input image and the original facial image without a mask as the target
image. During training, through online augmentation, the input images were resized
to 286 × 286 × 3 and then randomly cropped to 256 × 256 × 3. The adaptive moment
estimation (Adam) optimizer [74] was used during training, with a learning rate of 0.0002,
beta_1 of 0.5, and beta_2 of 0.999. Training was conducted for 100 epochs; Figure 9
shows the training and validation loss graphs of the generator and discriminator of LCA-
GAN. It is evident that the generator and discriminator converged, indicating that the
training data were sufficiently learned. For validation loss, the results of the generator
and discriminator converged, indicating that LCA-GAN was not overfitted to the training
data. In the case of GAN, mode collapse usually occurs when a generator tries to map an
input (training data set) to the same output (generator function). The discriminator and
generator should be learning together and interacting with each other, but one becomes too
well trained (learning imbalance), and mode collapse occurs [75]. As shown in Figure 9,
the discriminator becomes too well trained compared to the generator in our experiment,
which is usually the case for conventional GAN [75–77]. Therefore, although the mouth
areas are different in the input images, those in the generated output images are somewhat
similar, which represents a small level of mode collapse. However, other areas of face in
the generated output images were different according to our LCA-GAN, which confirms
that overfitting and mode collapse were not severe in our LCA-GAN.
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The slow convergence of the validation loss of the generator in Figure 9 was due to
the insufficient number of MORPH databases used. In addition, considering the age labels
ranging from 16 to 77 years old, various ethnicities, and unbalanced gender ratio in the
MORPH database, the distribution of the data is very complex and unbalanced. These
factors create a condition where the loss of validation data using only 5% of the training
data can lead to late convergence. In this case, the difficulty of learning generally increases,
and overfitting, underfitting, and divergence of losses are likely to occur. We described
our training and validation sets according to the distribution of our experimental database
in Table 5 of Section 4.2. As shown in Table 5, there exists a class imbalance in some age
ranges, races, and gender. To solve this problem, we increased the training and validation
data by data augmentation that included translation, cropping, and horizontal flipping
for classes whose numbers of images were much smaller than those of other classes (e.g.,
the images of ages from 56~65 and 66~77). From that, we could make all the images of
each class distributed equally by gender, age, and race for the training and validation. In
our experiment, the convergence of the validation loss was slightly delayed, as shown in
Figure 9, but the result was well learned without overfitting the training data.

The reason why the validation loss of the discriminator increased after 10 epochs
is as follows. The Adam optimizer used in this experiment has various advantages, but
it has the disadvantages of poor conditioning problems and slow initial learning speed
that depends on the size of the database, the value of the hyperparameter, and the loss
function used [74]. In Figure 9, the slightly slower convergence speed of the generator
loss is likely due to the initially slow learning speed of the Adam optimizer, while the
relatively fast convergence of the discriminator loss is due to the fact that it is relatively
easier to learn than the generator [76]. However, the brief increase in discriminator loss is a
result of the poor conditioning problem mentioned above. The first and second moments
used by the Adam optimizer are the mean of the sample mean and sample square of the
input data, respectively. In this experiment, mean squared error (MSE) is used as the
content loss function, which causes a poor conditioning problem in the second moment
during back-propagation. Several studies have proposed methods to solve this problem,
and in our paper, we applied L_2 regularization [78], used the largest possible batch size
in the experimental environment [79], used a learning rate of 0.0002, which is smaller
than the 0.001 usually used for the Adam optimizer [80], and applied a weight decay
every 10 epochs [78]. Therefore, the discriminator loss in Figure 9 increases slightly after
10 epochs, decreases again after 50 epochs, and gradually converges, which can be seen as
a good response to the problem of the Adam optimizer in our experiment.

Subsequently, the images de-occluded using LCA-GAN were learned by DEX [8],
an age estimation CNN model. The same random cropping outlined above was applied
through online augmentation, and learning was conducted for 200 epochs using the Adam
optimizer, with a learning rate of 0.0002, beta_1 of 0.5, and beta_2 of 0.999 [74]. Figure 10
illustrates the training loss and accuracy graphs of DEX as well as the validation loss
and accuracy graphs of DEX. The convergence of the training loss and accuracy graphs
demonstrates that the DEX age estimator was sufficiently trained on the de-occluded
training data generated by LCA-GAN. Moreover, the convergence of the validation loss
and accuracy graphs demonstrates that the DEX age estimator was not overfitted to the
de-occluded training data generated by LCA-GAN.
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Table 5. Distribution of our experimental database for two-fold cross validation.

Gender Age White Black Hispanic Asian Other Total

Training

Male

16~25 952 5834 401 44 4 7235

26~35 864 4184 231 13 5 5296

36~45 1090 4300 92 3 4 5490

46~55 579 1973 24 4 7 2588

56~65 90 268 2 0 0 360

66~77 7 16 0 0 0 23

Total 3582 16,574 750 63 20 20,990

Female

16~25 283 710 20 5 0 1017

26~35 367 761 19 0 2 1149

36~45 395 818 6 0 5 1224

46~55 106 275 0 0 1 383

56~65 18 25 0 0 1 45

66~77 1 1 0 0 0 2

Total 1169 2591 46 6 9 3820

Validation

Male

16~25 212 1296 89 10 1 1608

26~35 192 930 51 3 1 1177

36~45 242 956 20 1 1 1220

46~55 129 439 5 1 2 575

56~65 20 60 0 0 0 80

66~77 2 4 0 0 0 5

Total 796 3683 167 14 4 4665

Female

16~25 63 158 4 1 0 226

26~35 82 169 4 0 1 255

36~45 88 182 1 0 1 272

46~55 24 61 0 0 0 85

56~65 4 6 0 0 0 10

66~77 0 0 0 0 0 1

Total 260 576 10 1 2 849

Total
Male 7961 36,832 1667 141 44 46,645

Female 2598 5757 102 13 19 8489

4.3. Testing with MORPH Database
4.3.1. Comparisons of the Quality of Images Generated by Proposed Method
and State-of-the-Art Methods

To compare the performance of the de-occlusion model for mask-occluded facial
images in this experiment with other models, the structural similarity index measure
(SSIM) [81] and peak signal-to-noise ratio (PSNR) [82] were used to measure the similarity
between the original image and the generated de-occluded image. SSIM is expressed in
Equation (9), and PSNR is expressed in Equation (10). Larger values of both SSIM and
PSNR indicate better performance of the de-occlusion model.
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MSE =
1

WH

W−1

∑
i=0

H−1

∑
j=0

[Io(i, j)− Id(i, j)]2 (8)

SSIM =
(2µdµo + C1)(2σdo + C2)

(µd
2 + µo2 + C1)(σd

2 + σo2 + C2)
(9)

PSNR = 10log10

(
2552

MSE

)
(10)

Io represents the original image, and Id represents the mask de-occluded image. More-
over, W and H denote the width and height of the image, respectively. µo and σo indicate
the mean and standard deviation of the pixel values of the original image, respectively. µd
and σd indicate the mean and standard deviation of the pixel values of a mask de-occluded
image, respectively, and µdo denotes the two images’ covariance. C1 and C2 correspond to
the positive constant offsets.

As presented in Table 6, Pix2pix [57] and MPRNet [83] yielded the best performance
for SSIM and PSNR according to the de-occlusion results, while the proposed LCA-GAN ex-
hibit the fourth and third highest performance for SSIM and PSNR, respectively. Neverthe-
less, SSIM and PSNR are values that represent the image quality according to de-occlusion;
the primary goal of this study is to improve age estimation accuracy (not image quality)
through de-occlusion. As presented in Sections 4.3.2 and 4.4.2, the proposed LCA-GAN
yielded the highest age estimation accuracy.

Table 6. Comparative SSIM and PSNR of original image and de-occluded images.

LCA-GAN AFD-StackGAN
[54] CFR-GAN [55] MPRNet

[83]
CycleGAN

[84]
Pix2pix

[57]

SSIM 0.6962 0.6769 0.7107 0.7031 0.5630 0.7225

PSNR
(unit: dB) 19.0302 16.3121 18.3067 19.6427 19.3321 18.8731
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4.3.2. Comparisons of Age Estimation Accuracy
Ablation Studies

As shown in Equation (11), we used the mean absolute error (MAE), the most fre-
quently applied metric [85,86], to evaluate age estimation accuracy. A lower MAE value
shows better performance of age estimation.

MAE =
1
n ∑ n

i=1|pi − yi| (11)

In the above equation, n denotes the number of images, pi denotes the predicted
age, and yi denotes the ground-truth age. For the first ablation study, we compared
the age estimation accuracy of the de-occluded images depending on the application of
LCCA and LCSA, which form LCAB, and edge and content losses in the proposed LCA-
GAN. According to the results in Table 7, the proposed LCA-GAN yields the highest age
estimation performance in the generated de-occluded images when using LCCA, LCSA,
and edge and content losses, respectively.

Table 7. Ablation study with or without LCSA, LCCA, and Edge and Content losses in our LCA-GAN
(unit: years).

LCSA LCCA Edge Loss + Content Loss MAE

× × × 7.72

# × × 7.11

× # × 7.09

× × # 7.83

# # × 6.82

# # # 6.64

We performed an experiment to conduct an additional ablation study, as shown in
Table 8. We compare the age estimation accuracy when applying various backbone models
as the LCA-GAN generator. The last row in Table 8 is the method that subtracts the original
image and masked image, concatenates the input image with the image where only the
occluded area remains, and uses this input image in Pix2pix learning. Evidently, the best
age estimation performance was achieved when using the Pix2pix backbone generator in
LCA-GAN. In addition, we performed additional comparisons of the accuracy of the state-
of-the-art age estimation method in Table 8. As shown in Table 8, the MAEs with original
non-occluded and mask-occluded face images by the state-of-the-art age estimation method
were 5.80 years (baseline 1) and 10.45 years (baseline 2) years, respectively. Although the
MAE by our LCA-GAN is 6.64 years, it is much lower than that with mask-occluded
face images without our LCA-GAN (baseline 2), which confirms the effectiveness of our
proposed LCA-GAN.

Figure 11 shows examples of the generated images according to the ablation study in
Table 8. In Table 8, the age estimation performance of baseline 1 using non-occluded facial
images and baseline 2 using mask-occluded facial images (occluding nose and mouth) were
5.80 and 10.45, respectively, which is a difference of 4.65 years, indicating that the nose
and mouth have important information for age estimation. In addition, the areas in the
facial image that have important information for age estimation are shown, with significant
activation in the nose and mouth. Figure 11a,b show the masked images and original
images, and Figure 11c–f display the de-occluded images processed in the order in Table 9.
According to the results in Figure 11, the proposed LCA-GAN using only Pix2pix yielded
the best de-occlusion performance. The de-occlusion networks including Pix2pix and
CycleGAN used in Table 8 and Figure 11, except for U-net, are adversarial networks using
U-net as a generator. These adversarial learning-based de-occlusion methods generate
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robust and realistic de-occluded facial images by capturing complex patterns, but age
information is somewhat lost due to unnecessary deformation in non-occluded areas of
the eyes. On the other hand, CNN-based U-net is trained with a pixel-wise loss function
and has less deformation in the non-occluded facial area of the eyes, so it preserves age
information well. However, learning the mapping from input image to target image in the
mask-occluded area is difficult and generates blurred images. Consequently, adversarial
learning-based methods are weak at preserving information in non-occluded areas of the
eyes and are strong at de-occlusion, while U-net is strong at preserving information in
non-occluded areas of the eyes and is weak at de-occlusion. The areas with significant age
information are shown in the human face image. The areas with high activation are the
eyes, nose, and mouth, where the eyes are a non-occluded area and the nose and mouth are
occluded areas. As a result, U-net preserved the age information in the non-occluded area
of the eyes well, but the non-occluded areas were smaller than the whole face area, and the
consequent de-occlusion performance was lower than the other methods because it cannot
restore the age information.

Table 8. Ablation study according to various backbone generators in LCA-GAN. Baselines 1 and 2
show the MAEs with original non-occluded and mask-occluded face images by DEX, respectively.
Baseline 2 shows the MAE with original non-occluded face images by DEX. (Pix2pix* indicates the
method that subtracts the original image and masked image, concatenates the input image with
the image where only the occluded area remains, and uses this input image in Pix2pix learning)
(unit: years).

Method MAE

Baseline 1 5.80

Baseline 2 10.45

U-net 7.70

Pix2pix
(LCA-GAN) 6.64

CycleGAN 7.15

Pix2pix* 6.91

Table 9. Comparative accuracies of age estimation by LCA-GAN and various de-occlusion methods
(MPRNet* is a two-stage model that reduces one stage using the input image with the smallest size in
MPRNet) (unit: years).

LCA-GAN AFD-StackGAN
[54]

CFR-GAN
[55]

MPRNet
[83]

MPRNet*
[83]

Pix2pix
[57]

CycleGAN
[84]

MAE 6.64 6.92 7.13 6.95 7.83 7.72 8.18
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Figure 11. Examples of de-occluded mask images. (a) Masked images and (b) original images. De-
occluded images are shown using (c) U-net structure, (d) CycleGAN structure, (e) Pix2pix structure 
(LCA-GAN), and (f) Pix2pix* (a method that subtracts the original image and masked image, con-
catenates the input image with the image where only the occluded area remains, and uses this input 
image in Pix2pix learning). 

  

Figure 11. Examples of de-occluded mask images. (a) Masked images and (b) original images.
De-occluded images are shown using (c) U-net structure, (d) CycleGAN structure, (e) Pix2pix struc-
ture (LCA-GAN), and (f) Pix2pix* (a method that subtracts the original image and masked image,
concatenates the input image with the image where only the occluded area remains, and uses this
input image in Pix2pix learning).
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Comparisons of Our LCA-GAN with Existing Methods

This subsection compares the proposed method with state-of-the-art methods. MPR-
Net is a three-stage model with an iterative structure that receives input images through
the multi-scale approach [83]. MPRNet* in Table 9 is a two-stage model that reduces one
stage using the input image with the smallest size in MPRNet. According to the experimen-
tal results listed in Table 9, LCA-GAN, the de-occlusion network proposed in this study,
yielded the best age estimation performance.

Figure 12 shows examples of mask de-occluded images obtained using the proposed
LCA-GAN and state-of-the-art methods. Figure 12a displays masked facial images created
by the method described in Section 4.1, and Figure 12b shows the original facial images.
De-occluded images are shown by (c) the proposed LCA-GAN, (d) AFD-Stack GAN,
(e) CFR-GAN, (f) MRPNet, (g) CycleGAN, and (h) Pix2pix. As shown in Figure 12, the
mask de-occluded image generated by LCA-GAN is the nearest to the original image.
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Figure 12. Examples of mask de-occluded images. (a) Masked images and (b) original images with-
out a mask. De-occluded images are shown by using (c) the proposed LCA-GAN, (d) AFD-Stack 
GAN, (e) CFR-GAN, (f) MRPNet, (g) CycleGAN, and (h) Pix2pix. 

  

Figure 12. Examples of mask de-occluded images. (a) Masked images and (b) original images without
a mask. De-occluded images are shown by using (c) the proposed LCA-GAN, (d) AFD-Stack GAN,
(e) CFR-GAN, (f) MRPNet, (g) CycleGAN, and (h) Pix2pix.
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4.4. Testing with PAL Database
4.4.1. Comparisons of the Quality of Images Generated by Proposed Method
and the State-of-the-Art Methods

We performed additional experiments using the open database PAL to confirm the gen-
erality of the proposed LCA-GAN performance. As presented in Table 10, CFR-GAN [55]
and AFD-StackGAN [54] exhibited the best performance for SSIM and PSNR, respectively,
while the proposed LCA-GAN yielded the third and fourth highest performance for SSIM
and PSNR, respectively. However, SSIM and PSNR are values that represent image quality
according to de-occlusion, but the primary goal of this study is to improve age estimation
accuracy (not image quality) through de-occlusion. According to a comparison of age
estimation accuracy in Table 11, the proposed LCA-GAN yielded the highest accuracy.

Table 10. Comparative SSIM and PSNR of original image and de-occluded images.

LCA-GAN AFD-StackGAN
[54] CFR-GAN [55] MPRNet

[83]
Pix2pix

[57]
CycleGAN

[84]

SSIM 0.7042 0.6983 0.7207 0.7002 0.7134 0.6892

PSNR 18.3302 19.4423 18.3043 18.9742 19.4211 17.9443

Table 11. Comparative accuracies of age estimation by LCA-GAN and various de-occlusion methods
(MPRNet* is a two-stage model that reduces one stage using the input image with the smallest size in
MPRNet) (unit: years).

LCA-GAN AFD-StackGAN
[54]

CFR-GAN
[55]

MPRNet
[83]

MPRNet*
[83]

Pix2pix
[57]

CycleGAN
[84]

MAE 6.12 6.94 6.52 8.21 8.70 7.12 9.02

4.4.2. Comparisons of Age Estimation Accuracy by Our LCA-GAN
and the Existing Methods

For the next experiment, we de-occluded images using LCA-GAN and compared
the age estimation accuracy using DEX. MPRNet* in Table 9 is a two-stage model that
reduces one stage using the input image with the smallest size in MPRNet. As shown in
Table 11, LCA-GAN, the de-occlusion network proposed in this study, yielded the best
age estimation performance. In addition, we performed additional experiments using
different age estimation methods after the same use of LCA-GAN. As shown in Table 12,
DEX showed the best accuracy among all the different age estimation methods.

Table 12. Comparative accuracies of different age estimation methods after the same use of LCA-GAN
(unit: years).

VGG-16
[68]

ResNet-50
[87]

ResNet-152
[87]

DEX
[8]

AgeNet
[11,88]

Inception with
Random Forest

[20]

MAE 6.20 7.22 6.32 6.12 6.19 6.42

Figure 13 illustrates examples of mask-de-occluded images obtained by the proposed
LCA-GAN and the state-of-the-art methods. As evidenced in Figure 13, the mask de-
occluded image generated by LCA-GAN is the closest to the original image.
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Figure 13. Examples of mask-de-occluded images. (a) Masked images and (b) original images with-
out a mask. De-occluded images are shown by (c) the proposed LCA-GAN, (d) AFD-Stack GAN, (e) 
CFR-GAN, (f) MRPNet, (g) CycleGAN, and (h) Pix2pix. 
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4.5. Processing Speed

In this subsection, we measured and compared the processing times of the proposed
LCA-GAN and state-of-the-art methods in the desktop environment described in Section 4.1
and a Jetson TX2 board [89], as shown in Figure 14. Table 13 lists the measured processing
times. LCA-GAN yielded a faster processing speed in the desktop environment and
embedded environment than all state-of-the-art methods, except Pix2pix [57]. Furthermore,
the processing speed did not greatly differ from Pix2pix [57]. This indicates that the
proposed LCA-GAN can be operated even in an embedded system environment with
limited computing resources. Table 14 compares the number of parameters, giga floating
point operations per second (GFLOPs), and memory usage between the proposed LCA-
GAN and state-of-the-art methods. LCA-GAN exhibited the smallest number of parameters,
second lowest GFLOPs, and third lowest memory usage compared to the state-of-the-art
methods. However, as indicated in Tables 9 and 11, the proposed LCA-GAN yielded the
best age estimation performance compared to the previous methods.

Table 13. Comparative average processing time of one image by LCA-GAN and state-of-the-art
methods (unit: ms).

Desktop Computer Jetson TX2 Board

LCA-GAN 11.94 177.52

AFD-Stack GAN [54] 23.03 342.8

CFR-GAN [55] 35.6 541.5

MPRNet [83] 21.12 318.02

MPRNet* [83] 14.04 212.24

Pix2pix [57] 11.2 171.5

Cycle GAN [84] 23.2 353.1



Mathematics 2023, 11, 1926 26 of 33

Mathematics 2023, 9, x 25 of 33 
 

 

(g) 

(h) 

Figure 13. Examples of mask-de-occluded images. (a) Masked images and (b) original images with-
out a mask. De-occluded images are shown by (c) the proposed LCA-GAN, (d) AFD-Stack GAN, (e) 
CFR-GAN, (f) MRPNet, (g) CycleGAN, and (h) Pix2pix. 

4.5. Processing Speed 
In this subsection, we measured and compared the processing times of the proposed 

LCA-GAN and state-of-the-art methods in the desktop environment described in Section 
4.1 and a Jetson TX2 board [89], as shown in Figure 14. Table 13 lists the measured pro-
cessing times. LCA-GAN yielded a faster processing speed in the desktop environment 
and embedded environment than all state-of-the-art methods, except Pix2pix [57]. Fur-
thermore, the processing speed did not greatly differ from Pix2pix [57]. This indicates that 
the proposed LCA-GAN can be operated even in an embedded system environment with 
limited computing resources. Table 14 compares the number of parameters, giga floating 
point operations per second (GFLOPs), and memory usage between the proposed LCA-
GAN and state-of-the-art methods. LCA-GAN exhibited the smallest number of parame-
ters, second lowest GFLOPs, and third lowest memory usage compared to the state-of-
the-art methods. However, as indicated in Tables 9 and 11, the proposed LCA-GAN 
yielded the best age estimation performance compared to the previous methods. 

 
Figure 14. Jetson TX2 board. Figure 14. Jetson TX2 board.

Table 14. Comparative model complexities of LCA-GAN and state-of-the-art methods.

Number of Parameters GFLOPs Memory Usage (GB)

LCA-GAN 57,118,684 1.4668 0.5913

AFD-Stack GAN [54] 102,325,149 2.6764 0.5961

CFR-GAN [55] 171,588,876 2.8730 1.0925

MPRNet [83] 102,725,856 9.1092 4.5598

MPRNet* [83] 68,114,344 6.0728 3.0399

Pix2pix [57] 57,196,292 0.972 0.2062

Cycle GAN [84] 114,392,584 1.944 0.4124

4.6. Discussion

In this subsection, we present the extraction and analysis of the attention map of
the attention module used in the LCA-GAN de-occlusion process (Figure 15) and the
gradient class activation map (Grad-CAM) [90] of DEX used for age estimation (Figure 16).
Figure 15 displays the (a) original facial images and (b) the mask-occluded facial images.
Figure 15c–e show the attention maps of LCAB 1, LCAB 3, and LCAB 5 of the Table 3
encoder, respectively, and Figure 15f–h show the attention maps of LCAB 6, LCAB 8, and
LCAB 10 of the Table 3 decoder, respectively. The attention maps show that in the proposed
LCA-GAN, as the encoder de-occlusion progresses, attention is activated from the entire
face area to the mask area. Subsequently, as the decoder de-occlusion progresses, high
activation is shown in the detailed areas of major facial elements, such as the eyes, nose,
mouth, and chin.

Subsequently, we examined the Grad-CAM images of DEX, the age estimation network
used in this experiment. Figure 16 shows (a) the original images, (b) the mask-occluded
images, and (c) the de-occluded images. In Figure 15d–g, the Grad-CAM images of DEX’s
4th, 8th, and 11th convolution layers and the last max pooling layers are overlapped with
the mask de-occluded images. As illustrated in Figure 16, as DEX learns to estimate the age
from mask de-occluded facial images, in Grad-CAM, which showed high activation for
high-frequency information in large areas of the image, elements such as the eyes, nose,
mouth, and the surrounding textures are activated with the deepening of layers.
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Figure 16. Grad-CAM images from DEX with LCA-GAN. (a) Original image, (b) mask-occluded
images, (c) de-occluded image, (d–g) overlapped Grad-CAM images extracted from the 4th, 8th, 11th
convolution layers as well as the last pooling layers of DEX, respectively.
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Figure 17 shows examples of de-occluded images that were incorrectly generated by
the proposed LCA-GAN. These incorrectly generated de-occluded images can be attributed
to several problems: first, the difference in convergence speed between the generator
and discriminator during adversarial learning; second, the use of a single generator; and
finally, the class imbalance according to gender and race in the learning images as well as
non-uniform lighting in the test images.
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Figure 17. Bad case images generated by LCA-GAN. (a) Original images and (b) de-occluded images
by LCA-GAN.

5. Conclusions

Mask-occluded images that occur in real environments cause a loss of information
required for age estimation, thereby degrading age estimation performance. This study
proposed a novel de-occlusion network LCA-GAN. Through experiments using MORPH
and PAL, open databases of human facial images, the proposed network achieved higher
age estimation performance than existing state-of-the-art de-occlusion networks. Further-
more, the proposed LCA-GAN contains 57,118,684 parameters, which is fewer than existing
methods. This indicates that it can be operated even in an embedded system with limited
computing resources. Moreover, from the attention maps in LCA-GAN and Grad-CAM
images of DEX for images de-occluded with LCA-GAN, LCA-GAN and DEX effectively
extracted features for de-occlusion and age estimation, respectively. However, as shown in
Figure 17, LCA-GAN occasionally incorrectly generated de-occluded images.

To solve this, it is necessary to research solutions for several problems: the difference
in convergence speed between the generator and discriminator during adversarial learning,
the use of a single generator, the class imbalance according to gender and race in the
learning images, and non-uniform lighting in the test images. Moreover, we will investigate
solutions for cases where mask occlusion simultaneously occurs with other factors, such as
low light and image blurring. Furthermore, we will research a shallower model to achieve
faster processing speeds in an embedded platform.
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