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Abstract: Analyzing electroencephalography (EEG) signals with machine learning approaches has
become an attractive research domain for linking the brain to the outside world to establish commu-
nication in the name of the Brain-Computer Interface (BCI). Many researchers have been working on
developing successful motor imagery (MI)-based BCI systems. However, they still face challenges
in producing better performance with them because of the irrelevant features and high computa-
tional complexity. Selecting discriminative and relevant features to overcome the existing issues is
crucial. In our proposed work, different feature selection algorithms have been studied to reduce
the dimension of multiband feature space to improve MI task classification performance. In the
procedure, we first decomposed the MI-based EEG signal into four sets of the narrowband signal.
Then a common spatial pattern (CSP) approach was employed for each narrowband to extract and
combine effective features, producing a high-dimensional feature vector. Three feature selection
approaches, named correlation-based feature selection (CFS), minimum redundancy and maximum
relevance (mRMR), and multi-subspace randomization and collaboration-based unsupervised feature
selection (SRCFS), were used in this study to select the relevant and effective features for improving
classification accuracy. Among them, the SRCFS feature selection approach demonstrated outstand-
ing performance for MI classification compared to other schemes. The SRCFS is based on the multiple
k-nearest neighbour graphs method for learning feature weight based on the Laplacian score and
then discarding the irrelevant features based on the weight value, reducing the feature dimension.
Finally, the selected features are fed into the support vector machines (SVM), linear discriminative
analysis (LDA), and multi-layer perceptron (MLP) for classification. The proposed model is evaluated
with two benchmark datasets, namely BCI Competition III dataset IVA and dataset IIIB, which are
publicly available and mainly used to recognize the MI tasks. The LDA classifier with the SRCFS
feature selection algorithm exhibits better performance. It proves the superiority of our proposed
study compared to the other state-of-the-art BCI-based MI task classification systems.

Keywords: BCI; automatic feature selection; CFS; mRMR; SRCFS; CSP; MI classification; SVM; LDA;
MLP

MSC: 68T10

1. Introduction

Brain-Computer Interface (BCI) is a promising technology mainly used to help the
neuromuscular disorders of paralyzed patients and in motor rehabilitation centres. It also
established a linking channel and control capabilities to transform messages between the
electronic devices and the brain [1–3]. In recent decades, BCI-related systems have gained
exponential importance due to the numerous applications in different sectors, specifically in
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the neuro-engineering and neuroscience fields. It has encouraged to use of neuroplasticity in
brain stroke patients. In addition, it has made a huge contribution to people with disabilities
to help them communicate with other people using emotion [4,5], event-related potential
detection [6], and sleep detection [7]. Furthermore, it can collaborate with other individuals
with disabilities to articulate their needs, ideas, and thoughts and assist in operating their
assistive devices, such as wheelchairs. It also aids in the execution of daily tasks without
physical movement by detecting emotions. BCI applications span from communication and
rehabilitation to entertainment. Recently, researchers have integrated BCI with artificial
intelligence (AI) and created adaptable BCI systems that enable the control of various
robotic equipment through brain activity. For example, brain-controlled home automation,
robotic arms, and prosthetic arms [3–5,8]. The main reason for using a robotic or prosthetic
arm is that brain activity and thinking commands cannot pass through the muscle and
peripheral nerves. At the same time, we collect the signal through the electroencephalogram
(EEG) sensor and translate it into a digital command to control the assistive devices for
locked-in people.

There are various ways to measure and capture brain activity in a non-alive approach:
EEG, magnetoencephalogram (MEG), and functional magnetic response imaging (fMRI)
are most of them. Among them, the BCI system with EEG signal is the most cost-effective
and can be implemented with minimal clinical risk because the non-invasive approach
does not require any operation; however, it needs some electrodes on the scalp [9–11].
Here, the person needs to imagine a specific muscle movement or limb movement without
any patient action (motor action). That imagination makes a great oscillatory action with
rhythmic tremors which is known as different kinds of event-related function ERD or
ERS, which can be recognized with a machine learning algorithm [12,13]. The main
goal of the BCI-based application is to identify actual human activity during the MI task
aiming to translate human thinking to the corresponding digital command, which can be
controlled by different kinds of machines. To implement the goal, researchers have been
working to extract effective features and search the compatible machine learning algorithm
for classification.

Various feature extraction methods have been applied to the EEG signal for motor
imagery (MI) task classification; among them, common spatial pattern (CSP) is one of
the most used feature extraction algorithms [14]. The main concept of the CSP method
is to employ the optimal spatial filter on the training EEG datasets, which produces the
weight matrix for each electrode and measures the electrode information’s significance.
Later, researchers replaced the spatial pattern of the CSP with common patterns such
as frequency domain, time domain, or combined time-frequency domain to produce the
effective features for the MI-based EEG signals [15]. The primary issue with these methods
is that they employ Common Spatial Pattern (CSP) on a broad frequency range, such as
1–30 Hz. Due to the intricate nature of the EEG signal, narrow-band signals perform better
than full-band frequencies. Researchers have proposed that the EEG signal is composed
of various types of rhythms and bands, such as delta, theta, alpha, beta, gamma, and mu.
Among these, alpha, beta, and gamma exhibit significant rhythmic properties of the EEG
signals [16–18]. Luo et al. first applied a subband-based feature extraction technique with
the CSP to include the narrow-band rhythmic properties in the system [19]. The primary
issue with this study is that it has increased the computational complexity exponentially due
to the multiband increase in the number of signals, which is virtually n times. Additionally,
initially, researchers collected the imagination data with a minimum number of electrodes,
which could be 1, 2, or 3. However, recently researchers have collected signals with many
electrodes, creating a challenging situation for implementing a portable, inexpensive, and
fast BCI system for daily activities. Furthermore, this large amount of electrode information
produces redundant and noisy data, which adds significant computational complexity [20].
So the feature selection procedure is inevitable for the EEG-based MI classification task;
however, no one used the following work [16–19].
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As we said, the multiband processed features have been extracted from the individual
band and combined to produce the final features; thus, it derived a very higher dimension [21]
and it affected the classification algorithm by reducing the performance [22]. Various kinds of
supervised and unsupervised feature selection algorithms are available in data science and
other machine learning-related research domains [23]. Molla et al. employed a supervised-
based feature selection algorithm, neighbourhood component analysis (NCA). They extracted
spatial features by using the CSP and then combined the four band features, resulting in a
large dimension of features. Finally, they used NCA to select the potential number of features
that are less than or equal to 50% of the original feature. The main drawback of their concept
is that they selected the feature based on the weighted value and less than or equal to 50%,
which may result in difficulties in producing high performance because of the inefficiency of
the feature.

To overcome the problems mentioned above, we proposed CFS, mRMR, and SRCFS
feature selection approaches along with the SVM, LDA, and MLP classifiers where the
LDA and SRCFS-based MI tasks classification system outperforms using EEG signals. The
main idea of the SRCFS method is to divide the features into multi-subspace and produce
a Laplacian score, which is considered a weight value for each channel using the multi k
nearest neighbour technique. Based on the Laplacian score, we selected features from 50%
of the original number of features here. We have also implemented the traditional feature
selection methods such as f-test, random forest, and logistic lasso and it is proved that our
proposed system is far better than the traditional methods.

2. Related Works

There are numerous studies that have been conducted to develop MI classification
systems based on the EEG signal. In the year 1875, the first EEG signal was collected by
Richard Caton from the animal brain, and later, in 1929, the EEG signal was collected from
the human brain first by Hans Berger [24]. Recently, steady-state visual-evoked potential
(SSVEP)-based BCI has been developed to assist paralyzed patients by recognizing SSVEP-
based commands [25]. EEG mainly records the biological electrical activity of the human
brain using many electrodes that are essential for many human-oriented applications to
make life easier, especially for people with complete paralysis or extreme disability [26].

To classify the EEG-based classification, Pfurtscheller et al. first applied LDA with adap-
tive autoregressive (AAR) for classifying left- and right-hand MI-EEG [27]. Many researchers
have employed the common spatial pattern (CSP) as an optimal spatial filter to extract a
weighted score of each electrode based on a significant score that proves the importance of
each electrode [17,18]. The main drawback of these methods is that they consider only a
broader range of frequencies in EEG signals, but a narrow signal is more effective compared to
a broader signal. Usually, researchers divide the broader EEG signal into different subbands,
namely mu, beta, alpha, beta, and gamma rhythm [28]. Pfurtscheller et al. showed that
narrowband frequency, specifically the mu and beta rhythms, contain essential information
for voluntary movement, and these two rhythms should be considered when implement-
ing the EEG-based MI task classification [16,29]. There are many methodologies that have
been proposed for considering each narrow band rhythm such as subband CSP, discrimi-
nant filter bank with CSP [30,31], sparse filter-band CSP, and filter bank CSP [21]. However,
combining multiband features into a feature yields a large feature vector size, increasing the
computational complexity and reducing the system’s performance.

To solve the problem, it is inevitable to reduce feature dimension and size to improve
performance. Both supervised, and unsupervised algorithms are mainly used to select the
effective feature from the large feature dimension [22]. All features in the feature vector
might not be relevant and important for the MI task classification, which can be considered
a garble for the classification algorithm and degrades the method’s performance [32].
Molla et al. divided the EEG signal into multiple sub-bands and then extracted features
from each subband, producing large feature dimensions. Lastly, they employed Graph
Eigen Decomposition (GED) to reduce the dimensionality of the feature vector to improve
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the performance and achieved 99.39% accuracy for epileptic seizer detection [33]. Siuly
et al. proposed a Logistic Regression with a cross-correlation technique for classifying
the EEG-based MI tasks [34]. In the procedure, they first extracted features with the CSP
and then reduced the feature dimension with the hybrid unsupervised feature selection
technique. Ali et al. proposed a CSP approach to extract the feature and then rank that
feature with the mutual information score. Finally, they applied LDA to classify the MI task
and achieved good performance [35]. Kevrich et al. applied empirical mode decomposition,
wavelet packet decomposition, and discrete wavelet transforms to generate the narrowband
of the EEG signal from a broader frequency [36]. They converted the feature vector into
a group of features to justify the performance of the specific set of features. Finally, they
claimed that the multiscale principal component analysis (PCA) feature achieved better
performance accuracy, which was produced by the highest averaging technique.

Siuly et al. employed an updated CC-LR algorithm to improve the MI tasks classifi-
cation accuracy where they focused on the specific electrode features and evaluated their
method with the BCI III dataset [37]. Song et al. applied a supervised feature selection algo-
rithm that included regression and classification as a unified framework [38]. Goldberger
et al. employed a supervised-based neighbourhood component analysis (NCA) feature
selection algorithm [39].

Chen et al. proposed a feature selection approach called conditional covariance
minimization (CCM) which employs kernel-based measures of independence to find a
subset of covariates that is maximally predictive of the response. They carried out numerous
experiments using synthetic and real-world data and found that it outperforms other state-
of-the-art approaches including Minimum Redundancy Maximum Relevance (mRMR),
Backward Elimination Hilbert-Schmidt Independence Criterion (BAHSIC), and Mutual
Information (MI) [40]. Constantinopoulos et al. presented a Bayesian method for mixture
model training that addresses the feature selection and the model selection problems at
the same time. This approach combines a mixture model formulation considering the
saliency of the features and a Bayesian approach to mixture learning that can automatically
determine the number of components and the saliency of features. Authors proved that
this algorithm outperforms the MML-based approaches [41]. A deep learning-based
method—Graph Convolutional Network Feature Selector (GRACES) has been implemented
to select important features for the high-dimensional and low-sample size (HDLSS) data
in [42]. Chen et al. demonstrated empirical evidence that GRACES can achieve a superb
and stable performance on both synthetic and real-world HDLSS datasets by utilizing
GCN along with different overfitting-reducing strategies including multiple dropouts, the
introduction of Gaussian noises, and F-correction.

Molla et al. employed a CSP feature extraction approach and then used a nearest-
neighbour-based discriminative features selection method to select the potential feature and
discard the garble feature to improve MI classification using multichannel EEG signal [43].
Finally, they applied a machine learning algorithm SVM and evaluated their method with
the BCI Competition III dataset IIIB, and IVA obtained superior performance compared
to the recently developed algorithms. Based on their algorithm, they selected 50% of the
feature from the extracted feature. To overcome the lacking, we proposed an unsupervised-
based sequential feature selection algorithm, which is able to achieve higher accuracy than
the existing performance available in the literature.

3. Dataset Description

To evaluate our model, we used two benchmark datasets for MI classification. These
are BCI Competition III Dataset IVA, and BCI Competition III Dataset IIIB are described in
Sections 3.1 and 3.2 consequently.

3.1. BCI Competition III Dataset IVA

In this study, we consider conducting experiments using publicly available MI data,
which is available online with a detailed description that can be found at [44]. This recorded
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signal was collected from 5 healthy people, namely aa, al, av, aw, and ay where 118 EEG
electrodes were used to record the signal. Each person performed four tasks which are
considered here MI tasks, namely right foot, right hand, left hand, and limb. In this
study, we have considered only binary classifications, which are left and right classes.
The electrodes are placed on the scalp of the subject by following the instruction of the
international 10–20 system. The subject is in a relaxed mode during the signal recording,
and the subject is asked to imagine specific motor imagery tasks: left and right-hand
movements. Each trial is recorded in intervals of 1.25 s to 2.25 s. The recorded signals
were filtered with a filter, namely a bandpass filter in the frequency range from 0.05 Hz
to 200 Hz, and digitized at 1000 Hz with 16-bit precision. After that, the filtered signal
is downsampled at 100 Hz and used in the experiment for the duration of 0.5 s to 3 s in
each cue.

3.2. BCI Competition III Dataset IIIB

Another dataset we used here to evaluate our model, BCI competition III dataset IIIB
is recorded from the three subjects, namely O3, S4, and X11. This dataset was recorded
with the three electrodes which are placed on the subject scalp based on the international
10–20 system. A trial signal consists of a seven-second duration recorded signal. Different
trials are collected from the different subjects, such as 320 trials collected from the O3
subjects, and 1080 trials collected from S4 and X11, respectively. This recorded signal was
sampled with a ratio of 125 Hz then it was filtered with a notch filter in the range of 0.5 to
30 Hz [45]. Since the experiment was conducted in the virtual reality (VR) paradigm for
the O3 subject, we have discarded this subject for performance evaluation of our proposed
method (see the Figure 1).

Figure 1. The timing sequence of BCI experiments when only the MI section from each dataset
is used.

4. Proposed Method

The working flow architecture of the proposed method is given below in Figure 2,
where we included the key contributions of this research and the implementation sequence
of the study.

Step-1 Preprocessing of multichannel EEG signal
Step-2 Decompose each trial of EEG signal into subbands through filter bank analysis
Step-3 Extract the spatial from each subband by applying CSP
Step-4 Combine the features obtained from the individual subband to derive a feature

vector
Step-5 Potential features are selected with feature selection algorithms named CFS, mRMR,

and SRCFS, which are used as the final reduced feature vector for the classifier
Step-6 SVM, LDA and MLP classifiers are employed for the reduced features to distinguish

the activities of MI EEG signals
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Figure 2. Working flow architecture of the proposed study.

4.1. Preprocessing

We applied a bandpass filter to remove noise from the raw EEG signal because raw
EEG usually consists of different kinds of artefacts like eye blinking, sudden sound, muscle
movement, body movement, environmental noises, etc. Furthermore, some narrowband
EEG signal components are more sensitive to specific MI tasks. As a result, it is not
surprising that using sub-bands rather than the entire EEG bandwidth results in more
accurate MI task classification. According to a related study, the majority of brain activity
associated with MI tasks occurs between 7 Hz and 36 Hz [46,47]. This study divides the
broader 8–35 Hz frequency band EEG signal into multiple narrowband signals to calculate
the exact feature information of the EEG signal. We have mainly decomposed the signal
into four equivalent narrowband signals, namely Mu-band (8–13 Hz), low-beta (13–22 Hz),
high-beta (22–35 Hz), and full-band (8–35 Hz) for our experimental purposes [43].

4.2. Feature Extraction

In this study, to extract the effective features from the narrowband signals, we have
employed a well-known feature extraction method in multichannel EEG-based BCI the
CSP [14,48,49]. The main concept of the algorithm is to minimize the variance among the
intra-class features and maximize the variance among the inter-class. In addition, the CSP
method finally projects the high-dimensional data into a low dimension, which is known
as spatial feature subspace, by using a projection matrix. We have used the CSP algorithm
as a spatial filter for making high-variance features between the right-hand and right-foot
classes, resulting in peak variances between those classes. Let Ec1

i and Ec2
i be EEG signal of

ith trial, c1 and c2 represent the class 1 and class 2. The projection matrix WCSP is computed
by first calculating the normalized spatial covariance matrix for both classes as follows in
Equations (1) and (2).

CL =
Ec1 Ec1

′

trace(Ec1 Ec1
′)

(1)

CR =
Ec2 Ec2

′

trace(Ec2 Ec2
′)

(2)
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where E′ is the transpose of E. The averaged normalized covariances C̄L and C̄R are then
computed by averaging all segments within each class. Equation (3) denotes the total
composite spatial covariance.

Cc = C̄L + C̄R (3)

The following is the factorization of this covariance matrix into its eigenvalues and
eigenvectors.

Cc = UcλcU′c (4)

Here, the eigenvector matrix and diagonal eigenvalue matrix are denoted by Uc and
λc, respectively, which are organized in descending order. Following the above formula,
we can calculate the whitening transformation using the following Equation (5).

P =

√
λ−1

c U′c (5)

where whitening transformation is denoted by P. The covariance matrices of the two
classes are transformed by Equation (5). The projection matrix WCSP is defined by

WCSP = P′B = [w1, w2, . . . , w(ch−1)wch] ∈ R(ch×ch) (6)

where ch is the channel and B is an orthonormal matrix.
A matrix WCSP = [w1, w2, . . . , w2m] ∈ R(2×k), including the spatial filters, represents k

largest and smallest eigenvalues formed by the eigenvectors by solving the Equation (6).
The final feature can be written as f = [ f1, f2, . . . , f2k].

f j = log(var(W ′CSPE), j = 1, 2, . . . , 2k (7)

Here, variance is represented by var(.), and log transformation is used for normalizing
the elements of f j.

4.3. Feature Selection

Since EEG signals are complex and collected using multiple electrodes, they often
contain irrelevant information. Discarding such information is one of the most crucial
steps in BCI. Features have a direct impact on how well a BCI system performs, and
recent studies have focused on improving currently used methods or creating new ones.
The extracted multiband feature dimensions are large and contain less effective features,
which is not helpful for classification and increases computational complexity, resulting
in reduced performance. In fact, machine learning algorithm performance is typically
diminished by specific features. Feature selection techniques are divided into two groups:
filter approaches and wrapper approaches [37]. Feature selection techniques can be divided
into two groups: filter approaches and wrapper approaches. Filter approaches rely on
predetermined criteria and are independent of the learning criteria. They create subsets
that are assessed using a search algorithm. Wrapper approaches, on the other hand, require
the use of a learning algorithm, and the performance of the selected feature subsets is
evaluated using this algorithm.

In this study, we investigated three feature selection approaches: CFS, mRMR, and
SRCFS. These methods have been recently developed and successfully applied in MI
classification. We found that SRCFS outperformed the other two methods in terms of
classification accuracy. In addition, the HSIC Lasso [50] and three conventional feature
selection schemes named f-test, random forests, and logistic lasso have been investigated
to evaluate the performance of our proposed system.
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4.3.1. Correlation-Based Feature Selection (CFS)

The working idea of the CFS algorithm is to calculate a subset of the feature by
following the initial hypothesis, which is mainly correlated with the output classes not
correlated with themselves [22]. The usefulness of the features in class prediction and
their connection with other features serve as the validation criteria. The subset calculation
process of this algorithm can be written as the following formula,

CFSs =
f (r̄tq)√

f + f ( f − 1)r̄qq

(8)

Here, the mean of correlation among the inter-class and the mean of correlation among
the intra-class are denoted by r̄tq and r̄qq, respectively. In addition, the heuristic merit of
each subset is denoted by f . The denominator measures the degree of redundancy among
the features that make up the feature subset, and the numerator measures how predictive
the feature subset is. The technique thus detects aspects that are superfluous or redundant.
The search algorithm we utilized included backward exclusion and forward selection, and
it was called Best First.

4.3.2. Minimum Redundancy and Maximum Relevance (mRMR)

A heuristic resembling CFS is used by the lowest redundancy and maximum relevance
algorithm. The metric employed in this instance to verify the significance of the features
is mutual information, which leads to a ranking of the features based on how well they
cooperate with other features and the class. The most pertinent feature shares the least
mutual information with the other features and the most with the class. This is achieved by
increasing the value of the following expression,

FmRMR =

1
n f

∑ I(c, f )
1

n2
f

∑ I( f1, f2)
. (9)

Here, the number of features, the mutual information between two classes, and the
mutual information between two features are denoted by n f , ∑ I(c, f ), and ∑ I( f1, f2),
respectively. After the ranking phase, this approach creates a subset with a varying number
of features and orders it with the ranking score [51]. The machine learning algorithms
finally validate these feature groups based on the ranking score.

4.3.3. Multi-Subspace Randomization and Collaboration-Based Unsupervised Feature
Selection (SRCFS)

The SRCFS is a powerful framework for unsupervised feature selection in huge
datasets where this algorithm conceals the original high-dimensional feature in several
sub-groups [38,52]. Primarily, this algorithm creates a huge number of random subgroup
features and after scoring each subspace it concatenated all the subgroups into a single
feature vector based on the score of each group. Suppose, the feature partition variable is
denoted with F(i) for the ith basic feature partition, and random subspace for jth position
can be denoted with F(i,j) of the F(i) partition. We can express the feature partition formula
according to the following Equation (10). Then F(i) can be represented as follows,

F(i) =
{

F(i,1), F(i,2), . . . , F(i,z)
}

. (10)

Here, F(i), and F(i,1) denote the feature partition and subspace in the partition, re-
spectively. The quantity of random subspaces in F is given by z where an ideal condition
would be for all subspaces to have the same size because the three must be equal to all
random subspaces. Individual feature partition is created repeatedly, which can form
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a composed feature which is known as a final feature F and can be expressed with the
following Equation (11).

F =
{

F(1), F(2), . . . , F(g)
}

. (11)

The total number of basic partitions and ith basic partition are denoted with g and F(i),
respectively. In each partition, there is an unknown number of subspaces which can be
denoted with g.z, but the number of subspaces in each partition must be equal. It actually
calculates g number of Laplacian scores where every partition must produce an individual
score, which produced a final Laplacian score vector. The average Laplacian score can be
calculated using the following formula which is the average of the Laplacian score for the
basic partition F.

Lz( f ) =
1
g

g

∑
i=1

Ls(F) (12)

Here, Lz( f ) ∈ R represents the full Laplacian score vector that be obtained by concate-
nating the Laplacian score vectors for all of its z random subspaces. To reflect the structure
information of all g.z numbers of random subspaces, we build g.z numbers of KNN graphs.
The combining information of the KNN Graph and the local preserving power of each
subspace can lastly be used to compute the main score which is used to rank the feature
and selected potential features called Laplacian scores of the features in each subspace.

4.4. Classification Using LDA, SVM and MLP

In this study, we used three well-known and mature machine learning-based classifi-
cation algorithms, namely LDA, SVM, and MLP, to classify the left-hand and right-hand
human motor imagery EEG signal. The goal is to find out and evaluate which one can
be produced the best outcomes. LDA, also known as the Fisher linear discriminant, is
a simple and well-known technique for categorizing BCI data. A linear binary classifier
maps a p-dimensional input vector x to a hyperplane that divides the input space into
two half spaces, each of which denotes a class (+1 or −1). The SVM is a relatively new
classification method developed by Vapnik. It has a strong mathematical base in statistical
learning theory and has demonstrated great performance in a variety of practical issues,
particularly in BCI. To translate a higher-dimension row of training data, it uses a nonlinear
map. Within this new dimension, it looks for the linear optimal dividing hyperplane (also
known as a “choice border” separating the tuples of one class from another). A proper
nonlinear mapping can always be used to split data from two classes into a suitably large
dimension via a hyperplane. Support vectors are used by the SVM to find this hyper-
plane (“essential” training tuples) and margins (identified by the support vectors). SVM
classifier with radial basis function (RBF) kernel is used to assess the proposed technique.
A detailed description of these two methods can be found in [53,54]. MLP is a popular
machine learning algorithm and a powerful tool for classifying brain activities. The inputs
to the MLP are typically features extracted from EEG or other neuroimaging data. These
features are then passed through multiple layers of interconnected nodes, with each node
performing mathematical calculations on the input data. The output layer of the MLP
represents the predicted class label for the input data. During training, the MLP’s weights
are changed to minimize the difference between the expected and actual output using
techniques such as backpropagation. Their performance, however, is heavily influenced by
the quality and significance of the input data, as well as the size and complexity of the MLP
architecture [55,56]. The size of the hidden layers used in our experiment is ten.

5. Results and Discussion

To evaluate the model, we used here two well-known publicly available EEG-based
MI task datasets. For each of the trials of the dataset, we decomposed into four narrowband
signals to extract the exact information contained in the signal. The CSP approach is used
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to extract features from each narrow band and combine each feature to produce a final
feature vector which generates a high-dimensional feature vector. The discriminative
features are chosen using the CFS, mRMR, and SRCFS-based techniques. As a result, the
collected features are utilized to train three classifiers, SVM, LDA, and MLP, separately.
Then test data are used to assess the performance of the classifiers. Each 2.5 second trial for
every person is taken out of the EEG data. Each frequency band is subjected to the CSP
in order to extract the spatial information. From each subband, four pairs of spatial filters
producing eight features are chosen from dataset BCI III-IVA and two pairs of spatial filters
are chosen from BCI III-IIIB. For each trial, 32 (4 × 8) and 8 (4 × 2) dimensional feature
vectors are created by combining the CSP features collected from each of the four bands
from dataset BCI III-IVA and BCI III-IIIB, respectively. The high-dimensional feature space
is then subjected to the CFS, mRMR, and SRCFS-based feature selection techniques. They
give each feature a weight based on the label of the training data. The features are ranked
based on the weights established by each of the feature selection approaches. The number
of top-ranked features is chosen for classification.

5.1. Experimental Setting

We evaluated the proposed model with 5-fold cross-validation formula where we
took the individual subject dataset feature and randomly divided the feature into five
folded. After that, we randomly trained the model with four folded and tested the model
with the rest one-fold features and preserved the accuracy for the first fold feature. We
repeatedly preserved the accuracy five times and finally, we average the performance
score and produced the final average performance score. We computed the accuracy (%)
matrix using the following formula, which is also known as a best performance calculation
procedure.

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
× 100 (13)

where, Tp, Tn, Fp, and Fn represents true positive, true negative, false positive, and false
negative, respectively. The accuracy values from the several experiments conducted mainly
show the effectiveness of the proposed approach. Two different feature selection methods
CFS, and mRMR have been employed and the result was compared with the SRCFS-
based feature selection method. To evaluate the classifier performance, SVM and MLP are
employed along with LDA. We have also calculated some statistical performance metrics
like AUROC, F1 scores, and computational time of different subjects on two datasets to
ensure the robustness and effectiveness of the proposed approach.

5.2. Performance Result with BCI Competition III Dataset IVA

Figure 3 demonstrates the performance comparison of different feature selection
methods where SVM, LDA, and MLP are used, respectively. These figures proved that the
SRCFS feature selection method’s performance is better in most cases than others.

Figure 4 demonstrates that SRCFS with LDA outperforms the other for dataset BCI
III-IVA. The result also showed that the feature selection technique has certain benefits
in terms of enhancing classification performance. Without feature selection, the mean
accuracy (across all subjects) is substantially lower than the other approaches that use
feature selection methods. The method without feature selection uses extra features that
are irrelevant and lowers the classifier’s performance as a result.

Figure 5 compares the accuracy of the proposed method with different combinations
of feature selection and classifier as a function of the number of selected features. It has
been found that utilizing 16 well-chosen features from dataset BCI III-IVA enables the
classification of objects with the highest degree of accuracy.
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Figure 3. The motor imagery (MI) classification performance comparison among CFS, mRMR, SRCFS
feature selection methods and without feature selection. The left, middle, and right subplots represent
the accuracies of different subjects for the BCI III-IVA dataset, where SVM, LDA, and MLP classifier
has been used, respectively.

Figure 4. The motor imagery classification performance comparison between LDA, SVM, and MLP
classifier using SRCFS feature selection method and without feature selection. The figure represents
the accuracies of different subjects for the BCI III-IVA dataset.

Figure 5. The motor imagery classification performance comparison using CFS, mRMR, and SRCFS
feature selection methods with SVM, LDA, and MLP classifiers for different numbers of selected
features. The left, middle, and right subplots represent the accuracies of the BCI III-IVA dataset for
different numbers of features (50% to 100%) selected by the feature selection algorithm where SVM,
LDA and MLP classifiers have been used.
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5.3. Performance Result with BCI Competition III Dataset IIIB

Figure 6 demonstrates the performance comparison of different feature selection
methods with SVM, LDA, and MLP classifiers, respectively. These figures show that the
SRCFS feature selection method’s performance is stable. This dataset has been used to
verify the extensive generalizability property of our proposed method.

Figure 6. The motor imagery (MI) classification performance comparison among CFS, mRMR, SRCFS
feature selection methods and without feature selection. The left, middle, and right subplots represent
the accuracies of different subjects for the BCI III-III B dataset, where SVM, LDA and MLP classifier
has been used, respectively.

Figure 7 demonstrates that without feature selection and SRCFS-based feature selection
have similar accuracy for the dataset BCI III-III B. Due to the fewer number of channels,
the dataset BCI-IIIB produced two pairs of spatial filters resulting in eight features. For
low feature dimensions, SRCFS with LDA can not overcome the accuracy without feature
selection. However, selecting features reduces classification complexity.

Figure 7. The motor imagery classification performance comparison between SVM, LDA, and MLP
classifier using SRCFS feature selection method and without feature selection. The figure represents
the accuracies of different subjects for the BCI III-IIIB dataset.

Figure 8 compares the accuracy of the proposed method with different combinations
of feature selections and classifiers as a function of the number of selected features. It
has been found that utilizing four well-chosen features from dataset BCI-IIIB enables the
classification of objects with the highest degree of accuracy.
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Figure 8. The motor imagery classification performance comparison using CFS, mRMR, and SRCFS
feature selection methods with SVM, LDA, and MLP classifiers for different numbers of selected
features. The left, middle, and right subplots represent the accuracies of for BCI III-IIIB dataset for
different numbers of features (50% to 100%) selected by the feature selection algorithm where SVM,
LDA, and MLP classifiers have been used.

Moreover, different statistical performance evaluation metrics have been calculated
to validate the performance of our proposed method. Table 1 demonstrated the state-of-
the-art comparison of the proposed model where our study achieved superiority over
the competitive models. In addition,Tables 2–4 show the performance of the area under
the ROC, F1 score, and computational time, respectively, of different subjects on BCI
competition III dataset IVA. On the other hand, Table 5 shows the performance of AUROC,
F1 score, and computational time, respectively, of different subjects on BCI competition III
dataset IIIB. Here, the computational time is measured in seconds (s) and it represents the
time required for training and classification of a single fold required by the classifier in a
five-fold cross-validation technique. Moreover, some traditional feature selection methods
like f test, random forests, and logistic lasso have also been studied. But, the performance
of these methods is not further compared because of their high computational cost and low
MI recognition rate. In addition, they are rarely used for MI task classification in BCI.

Furthermore, we have tested another feature selection technique named HSIC Lasso
for 07 (seven) different kernels with LDA classifier using BCI competition III dataset IVA
and IIIB. Since the LDA classifier performed best for our proposed method and other
studied methods, we have considered this classifier for testing HSIC Lasso feature selection
method in terms of AUROC, F1 score, computational time, and accuracy performance
metrics. From our experimental results, it is shown that the performance of the HSIC Lasso
with the best kernel ADMM is almost similar to mRMR for BCI Competition III dataset
IVA, the accuracy of both HSIC Lasso and mRMR is 88.93 % and the performance of the
mRMR is better than HSIC Lasso for BCI Competition III dataset IIIB, the accuracy of
the mRMR and HSIC Lasso are 75.17% and 69.91%, respectively, in this case. Since the
overall performance of HSIC Lasso is almost similar on BCI Competition III dataset IVA
and slightly lower on BCI Competition III dataset IIIB compared to the proposed and other
studied feature selection methods, the performance of this method is not further compared
with others.

5.4. State of the Art Comparison with Previous Methods

Table 1 compares and contrasts the suggested method’s classification accuracy results
with those of recently developed algorithms. The proposed method’s overall average
classification accuracy is 90.05%. The performance of the proposed method is compared
with the methods CSP-R-MF [57], R-MDRM [58], MKELM [59], and so on. It is observed
that the average classification accuracy of the proposed method outperforms the other
recently developed algorithm, as shown in Table 1. Table 1 demonstrated that for subjects
aa, aw, and ay, the proposed method achieved the best performance.
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Table 1. Performance comparison in terms of classification accuracy on BCI competition III dataset
IVA of the proposed method with state-of-the-art works. The highest accuracy is marked in boldface.

Studies Methods
Subjects

Mean ± SD
aa al av aw ay

Belwafi et al. [32] WOLA-CSP 66.07 96.07 52.14 71.43 50.00 67.29

Dai et al. [38] TKCSP 68.10 93.88 68.47 88.40 74.93 79.17

She et al. [39] H-ELM 63.39 98.39 64.08 85.67 85.16 79.33

Park et al.[60] SSS-CSP 74.11 100 67.78 90.07 89.29 84.46

Jian et al. [57] CSP-R-MF 81.43 92.41 70.00 83.57 85.00 82.48

Selim et al. [61] AM-BA-SVM 86.61 100 66.84 90.63 80.95 85.00

Singh et al. [58] SR-MDRM 79.46 100 73.46 89.28 88.49 86.13

Zhang et al. [59] MKELM 83.30 98.50 71.40 91.30 93.30 87.50

Singh et al. [62] R-MDRM 81.25 100 76.53 87.05 91.26 87.21

Proposed Method SRCFS + LDA 88.03 97.98 74.17 94.76 95.31 90.05 ± 9.60

Table 2. Performance of different studied methods in terms of area under the receiver operating
characteristic curve (AUROC) on BCI competition III dataset IVA for each of the five subjects, the
best result is marked in boldface.

AUROCFeature Selection Methods
and Classifiers aa al av aw ay

CFS + SVM 0.9306 0.9922 0.8297 0.9836 0.9826

mRMR + SVM 0.9205 0.9936 0.7916 0.9921 0.9796

SRCFS + SVM 0.9242 0.9881 0.7513 0.9717 0.9823

CFS + LDA 0.9030 0.9911 0.7743 0.9914 0.9821

mRMR + LDA 0.9363 0.9968 0.7530 0.9929 0.9838

SRCFS + LDA 0.9356 0.9918 0.8072 0.9905 0.9861

CFS + MLP 0.9135 0.9944 0.8115 0.9802 0.9731

mRMR + MLP 0.9192 0.9892 0.7664 0.9795 0.9621

SRCFS + MLP 0.9263 0.9972 0.8137 0.9864 0.9844

Table 3. Performance of different studied methods in terms of F1 score on BCI competition III dataset
IVA for each of the five subjects, the best result is marked in boldface.

F1 ScoreFeature Selection Methods
and Classifiers aa al av aw ay

CFS + SVM 0.8593 0.9638 0.7287 0.9534 0.9534

mRMR + SVM 0.8364 0.9712 0.7015 0.9606 0.9568

SRCFS + SVM 0.8571 0.9562 0.6512 0.9187 0.9391

CFS + LDA 0.8470 0.9825 0.7000 0.9568 0.9373

mRMR + LDA 0.8582 0.9788 0.7254 0.9677 0.9373

SRCFS + LDA 0.8633 0.9789 0.7317 0.9496 0.9489

CFS + MLP 0.8443 0.9753 0.7092 0.9386 0.9353

mRMR + MLP 0.8520 0.9788 0.6886 0.9603 0.9304

SRCFS + MLP 0.8592 0.9787 0.7285 0.9458 0.9500
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From Tables 1–4, it is clearly depicted that the SRCFS and LDA-based MI tasks clas-
sification system is robust and effective in terms of the performance metrics: accuracy,
AUROC, F1 score, and computational time for BCI competition III dataset IVA. On the other
hand, Table 5 shows that the computational time of the SRCFS and LDA-based system is
low compared to others for the BCI competition III dataset IIIB dataset. It is also observed
that the MLP classifier is more computationally costly than the others. From the above
discussion, we can conclude that the SRCFS feature selection method with LDA classifier is
undoubtedly a robust and effective system for MI tasks classification using EEG signal.

Table 4. Performance of different studied methods in terms of computational time on BCI competition
III dataset IVA for each of the five subjects, the best result is marked in boldface.

Computational Time (s)Feature Selection Methods
and Classifiers aa al av aw ay

CFS + SVM 0.1804 0.0133 0.0085 0.0082 0.0090

mRMR + SVM 0.1582 0.0137 0.0091 0.0087 0.0089

SRCFS + SVM 0.1573 0.0154 0.0087 0.0088 0.0087

CFS + LDA 0.1857 0.0133 0.0074 0.0101 0.0096

mRMR + LDA 0.1683 0.0127 0.0080 0.0082 0.0077

SRCFS + LDA 0.1642 0.0134 0.0079 0.0075 0.0073

CFS + MLP 0.7557 0.1970 0.1480 0.1629 0.2056

mRMR + MLP 0.8339 0.3850 0.1699 0.1936 0.2653

SRCFS + MLP 0.7235 0.2497 0.1937 0.2041 0.2471

Table 5. Performance of different studied methods in terms of AUROC, F1 score, and computational
time (Com. Time) on BCI competition III dataset IIIB for each of the two subjects, the best result is
marked in boldface.

Evaluation Metrics

AUROC F1 Score Com. Time (s)
Feature Selection

Methods and
Classifiers S4 X11 S4 X11 S4 X11

CFS + SVM 0.8379 0.7567 0.7430 0.6640 0.2093 0.0149

mRMR + SVM 0.7670 0.7488 0.6863 0.6402 0.1819 0.0143

SRCFS + SVM 0.7916 0.7236 0.7188 0.6439 0.1866 0.0147

CFS + LDA 0.7811 0.7638 0.6965 0.6992 0.2040 0.0115

mRMR + LDA 0.7384 0.7481 0.6704 0.6732 0.1860 0.0115

SRCFS + LDA 0.8054 0.7552 0.7431 0.6922 0.1675 0.0108

CFS + MLP 0.8216 0.7482 0.7395 0.6614 0.8545 0.1718

mRMR + MLP 0.7276 0.7298 0.6756 0.6654 0.7804 0.1800

SRCFS + MLP 0.7509 0.7119 0.6922 0.6504 0.8262 0.1709

6. Conclusions

Supervised and Unsupervised feature selection methods are investigated in this paper
to classify motor imagery-based EEG signals. The experiment is evaluated using two
publicly available BCI Competition III Dataset IVA and BCI Competition III Dataset IIIB.
The multichannel EEG signal is decomposed into four subbands. Features are extracted
from each subband. Then the extracted features are combined to make a high-dimensional
feature vector. Not all features are important for classification. The irrelevant feature
may degrade the performance of the system. The performance of the classification is
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improved by properly removing redundant and irrelevant characteristics from the feature
vector, which increases the feature vector’s discriminative power. With the given class
label, the unsupervised feature selection outperforms the supervised feature selection,
as demonstrated in Table 1. The key benefit of using an unsupervised feature selection
method is that each sample of a feature vector does not need to have its labels provided. It
chooses features by taking the relationship between feature dimensions into account. It is
clear that when the feature selection method has been applied, the accuracy is increased.
The combination of features also plays a vital role. As shown in Table 1, the proposed
combination of full band and subband signals and the use of the feature selection strategy
improve the MI classification accuracy. It can be expanded to include multiclass MI
classification issues in the BCI paradigm and we will study more feature selection methods
and classifiers in future work.
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Abbreviations

BCI Brain-Computer Interface
EEG Electroencephalography
MEG Magnetoencephalogram
fMRI Functional Magnetic Response Imaging
MI Motor Imagery
SSVEP Steady-State Visual-Evoked Potential
SVM support vector machines
MLP Multi-layer Perceptron
LDA Linear Discriminant Analysis
AAR Adaptive Autoregressive
CSP Common Spatial Pattern
NCA Neighbourhood Component Analysis
PCA Principal Component Analysis
CSP Common Spatial Pattern
CFS Correlation-Based Feature Selection
mRMR Minimum Redundancy and Maximum Relevance

SRCFS
Multi-Subspace Randomization and Collaboration-Based
Unsupervised Feature Selection

GCN Graph Convolutional Network
GRACES Graph Convolutional Network Feature Selector
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ERD Event-Related Desynchronization
ERS Event-Related Synchronization
GED Graph Eigen Decomposition
HSIC Hilbert-Schmidt Independence Criterion
Lasso Least Absolute Shrinkage and Selection Operator
BAHSIC Backward Elimination Hilbert-Schmidt Independence Criterion
CCM Conditional Covariance Minimization
MML Meta Machine Learning
VR Virtual Reality
HDLSS High-Dimensional and Low-Sample Size

References
1. Molla, M.K.I.; Saha, S.K.; Yasmin, S.; Islam, M.R.; Shin, J. Trial regeneration with subband signals for motor imagery classification

in BCI paradigm. IEEE Access 2021, 9, 7632–7642. [CrossRef]
2. Yang, L.; Song, Y.; Ma, K.; Xie, L. Motor imagery EEG decoding method based on a discriminative feature learning strategy. IEEE

Trans. Neural Syst. Rehabil. Eng. 2021, 29, 368–379. [CrossRef] [PubMed]
3. Stegman, P.; Crawford, C.S.; Andujar, M.; Nijholt, A.; Gilbert, J.E. Brain-Computer Interface Software: A Review and Discussion.

IEEE Trans. Hum.-Mach. Syst. 2020, 50, 101–115. [CrossRef]
4. Miah, A.S.M.; Shin, J.; Islam, M.M.; Molla, M.K.I.; Abdullah. Natural Human Emotion Recognition Based on Various Mixed

Reality (MR) Games and Electroencephalography (EEG) Signals. In Proceedings of the 2022 IEEE 5th Eurasian Conference on
Educational Innovation (ECEI) IEEE, Taipei, Taiwan, 10–12 February 2022; pp. 408–411.

5. Miah, A.S.M.; Shin, J.; Hasan, M.A.M.; Molla, M.K.I.; Okuyama, Y.; Tomioka, Y. Movie Oriented Positive Negative Emotion
Classification from EEG Signal using Wavelet transformation and Machine learning Approaches. In Proceedings of the 2022 IEEE
15th International Symposium on Embedded Multicore/Many-Core Systems-on-Chip (MCSoC) IEEE, Penang, Malaysia, 19–22
December 2022; pp. 26–31.

6. Miah, A.S.M.; Mouly, M.A.; Debnath, C.; Shin, J.; Bari, S.S. Event-Related Potential Classification based on EEG data using
xDWAN with MDM and KNN. In Proceedings of the Computing Science, Communication and Security: Second International
Conference, COMS2 2021, Gujarat, India, 6–7 February 2021; Revised Selected Papers; Springer: Berlin/Heidelberg, Germany,
2021; pp. 112–126.

7. Zobaed, T.; Ahmed, S.R.A.; Miah, A.S.M.; Binta, S.M.; Ahmed, M.R.A.; Rashid, M. Real time sleep onset detection from single
channel EEG signal using block sample entropy. IOP Conf. Ser. Mater. Sci. Eng. 2020, 928, 032021. [CrossRef]

8. Wang, Y.; Nakanishi, M.; Zhang, D. EEG-based brain-computer interfaces. In Neural Interface: Frontiers and Applications; Springer:
Singapore, 2019; pp. 41–65.

9. Sun, B.; Zhang, H.; Wu, Z.; Zhang, Y.; Li, T. Adaptive spatiotemporal graph convolutional networks for motor imagery
classification. IEEE Signal Process. Lett. 2021, 28, 219–223. [CrossRef]

10. Georgiadis, K.; Adamos, D.A.; Nikolopoulos, S.; Laskaris, N.; Kompatsiaris, I. A graph-theoretic sensor-selection scheme for
covariance-based Motor Imagery (MI) decoding. In Proceedings of the 2020 28th European Signal Processing Conference
(EUSIPCO) IEEE, Amsterdam, The Netherlands, 18–21 January 2021; pp. 1234–1238.

11. Akter, M.S.; Islam, M.R.; Tanaka, T.; Iimura, Y.; Mitsuhashi, T.; Sugano, H.; Wang, D.; Molla, M.K.I. Statistical features in
high-frequency bands of interictal iEEG work efficiently in identifying the seizure onset zone in patients with focal epilepsy.
Entropy 2020, 22, 1415. [CrossRef] [PubMed]

12. Nuyujukian, P.; Fan, J.M.; Kao, J.C.; Ryu, S.I.; Shenoy, K.V. A high-performance keyboard neural prosthesis enabled by task
optimization. IEEE Trans. Biomed. Eng. 2014, 62, 21–29. [CrossRef] [PubMed]

13. Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, F. A review of classification algorithms for
EEG-based brain–computer interfaces: A 10 year update. J. Neural Eng. 2018, 15, 031005. [CrossRef]

14. Miah, A.S.M.; Islam, M.R.; Molla, M.K.I. EEG classification for MI-BCI using CSP with averaging covariance matrices: An
experimental study. In Proceedings of the 2019 International Conference on Computer, Communication, Chemical, Materials and
Electronic Engineering (IC4ME2) IEEE, Rajshahi, Bangladesh, 11–12 July 2019; pp. 1–5.

15. Higashi, H.; Tanaka, T. Common spatio-time-frequency patterns for motor imagery-based brain machine interfaces. Comput.
Intell. Neurosci. 2013, 2013, 8. [CrossRef]

16. McFarland, D.J.; Miner, L.A.; Vaughan, T.M.; Wolpaw, J.R. Mu and beta rhythm topographies during motor imagery and actual
movements. Brain Topogr. 2000, 12, 177–186. [CrossRef]

17. Dornhege, G.; Blankertz, B.; Curio, G.; Muller, K.R. Boosting bit rates in noninvasive EEG single-trial classifications by feature
combination and multiclass paradigms. IEEE Trans. Biomed. Eng. 2004, 51, 993–1002. [CrossRef] [PubMed]

18. Ramoser, H.; Muller-Gerking, J.; Pfurtscheller, G. Optimal spatial filtering of single trial EEG during imagined hand movement.
IEEE Trans. Rehabil. Eng. 2000, 8, 441–446. [CrossRef] [PubMed]

19. Luo, J.; Wang, J.; Xu, R.; Xu, K. Class discrepancy-guided sub-band filter-based common spatial pattern for motor imagery
classification. J. Neurosci. Methods 2019, 323, 98–107. [CrossRef] [PubMed]

http://doi.org/10.1109/ACCESS.2021.3049191
http://dx.doi.org/10.1109/TNSRE.2021.3051958
http://www.ncbi.nlm.nih.gov/pubmed/33460382
http://dx.doi.org/10.1109/THMS.2020.2968411
http://dx.doi.org/10.1088/1757-899X/928/3/032021
http://dx.doi.org/10.1109/LSP.2021.3049683
http://dx.doi.org/10.3390/e22121415
http://www.ncbi.nlm.nih.gov/pubmed/33334058
http://dx.doi.org/10.1109/TBME.2014.2354697
http://www.ncbi.nlm.nih.gov/pubmed/25203982
http://dx.doi.org/10.1088/1741-2552/aab2f2
http://dx.doi.org/10.1155/2013/537218
http://dx.doi.org/10.1023/A:1023437823106
http://dx.doi.org/10.1109/TBME.2004.827088
http://www.ncbi.nlm.nih.gov/pubmed/15188870
http://dx.doi.org/10.1109/86.895946
http://www.ncbi.nlm.nih.gov/pubmed/11204034
http://dx.doi.org/10.1016/j.jneumeth.2019.05.011
http://www.ncbi.nlm.nih.gov/pubmed/31141703


Mathematics 2023, 11, 1921 18 of 19

20. Udhaya Kumar, S.; Hannah Inbarani, H. PSO-based feature selection and neighborhood rough set-based classification for BCI
multiclass motor imagery task. Neural Comput. Appl. 2017, 28, 3239–3258. [CrossRef]

21. Dy, J.G.; Brodley, C.E. Feature selection for unsupervised learning. J. Mach. Learn. Res. 2004, 5, 845–889.
22. Song, L.; Smola, A.; Gretton, A.; Borgwardt, K.M.; Bedo, J. Supervised feature selection via dependence estimation. In Proceedings

of the 24th International Conference on Machine Learning, Corvalis, OR, USA, 20–24 June 2007; pp. 823–830.
23. Goldberger, J.; Hinton, G.E.; Roweis, S.; Salakhutdinov, R.R. Neighbourhood components analysis. In Advances in Neural

Information Processing Systems 17; NeurIPS: San Diego, CA, USA, 2004.
24. Zifkin, B.G.; Avanzini, G. Clinical neurophysiology with special reference to the electroencephalogram. Epilepsia 2009, 50, 30–38.

[CrossRef]
25. Mahmood, S.; Shin, J.; Farhana, I.; Islam, M.R.; Molla, M.K.I. Frequency Recognition of Short-Time SSVEP Signal Using

CORRCA-Based Spatio-Spectral Feature Fusion Framework. IEEE Access 2021, 9, 167744–167755. [CrossRef]
26. Wolpaw, J.R.; Birbaumer, N.; Heetderks, W.J.; McFarland, D.J.; Peckham, P.H.; Schalk, G.; Donchin, E.; Quatrano, L.A.; Robinson,

C.J.; Vaughan, T.M.; et al. Brain-computer interface technology: A review of the first international meeting. IEEE Trans. Rehabil.
Eng. 2000, 8, 164–173. [CrossRef]

27. Pfurtscheller, G.; Neuper, C.; Schlogl, A.; Lugger, K. Separability of EEG signals recorded during right and left motor imagery
using adaptive autoregressive parameters. IEEE Trans. Rehabil. Eng. 1998, 6, 316–325. [CrossRef]

28. Joy, M.M.H.; Hasan, M.; Miah, A.S.M.; Ahmed, A.; Tohfa, S.A.; Bhuaiyan, M.F.I.; Zannat, A.; Rashid, M.M. Multiclass MI-Task
Classification Using Logistic Regression and Filter Bank Common Spatial Patterns. In Proceedings of the Computing Science,
Communication and Security, Gujarat, India, 26–27 March 2020; pp. 160–170.

29. Pfurtscheller, G.; Da Silva, F.L. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin.
Neurophysiol. 1999, 110, 1842–1857. [CrossRef]

30. Pfurtscheller, G.; Pregenzer, M.; Neuper, C. Visualization of sensorimotor areas involved in preparation for hand movement based
on classification of µ and central β rhythms in single EEG trials in man. Neurosci. Lett. 1994, 181, 43–46. [CrossRef] [PubMed]

31. Ang, K.K.; Chin, Z.Y.; Zhang, H.; Guan, C. Filter bank common spatial pattern (FBCSP) in brain-computer interface. In
Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational
Intelligence) IEEE, Padua, Italy, 18–23 July 2008; pp. 2390–2397.

32. Belwafi, K.; Romain, O.; Gannouni, S.; Ghaffari, F.; Djemal, R.; Ouni, B. An embedded implementation based on adaptive filter
bank for brain–computer interface systems. J. Neurosci. Methods 2018, 305, 1–16. [CrossRef] [PubMed]

33. Molla, M.K.I.; Hassan, K.M.; Islam, M.R.; Tanaka, T. Graph eigen decomposition-based feature-selection method for epileptic
seizure detection using electroencephalography. Sensors 2020, 20, 4639. [CrossRef] [PubMed]

34. Siuly; Li, Y.; Wen, P. Identification of motor imagery tasks through CC–LR algorithm in brain computer interface. Int. J. Bioinform.
Res. Appl. 2013, 9, 156–172. [CrossRef]

35. Ali, S.; Ferdous, J.; Hamid, E.; Molla, K.I. A novel features selection approach with common spatial pattern for EEG based
brain–computer interface implementation. IETE J. Res. 2022, 68, 1757–1771. [CrossRef]

36. Kevric, J.; Subasi, A. Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system.
Biomed. Signal Process. Control 2017, 31, 398–406. [CrossRef]

37. Chaudhary, S.; Taran, S.; Bajaj, V.; Siuly, S. A flexible analytic wavelet transform based approach for motor-imagery tasks
classification in BCI applications. Comput. Methods Programs Biomed. 2020, 187, 105325. [CrossRef]

38. Dai, M.; Zheng, D.; Liu, S.; Zhang, P. Transfer kernel common spatial patterns for motor imagery brain-computer interface
classification. Comput. Math. Methods Med. 2018, 2018, 9871603. [CrossRef]

39. She, Q.; Chen, K.; Ma, Y.; Nguyen, T.; Zhang, Y. Sparse representation-based extreme learning machine for motor imagery EEG
classification. Comput. Intell. Neurosci. 2018, 2018, 9593682. [CrossRef]

40. Chen, J.; Stern, M.; Wainwright, M.J.; Jordan, M.I. Kernel feature selection via conditional covariance minimization. In Advances
in Neural Information Processing Systems 30; NeurIPS: San Diego, CA, USA, 2017.

41. Constantinopoulos, C.; Titsias, M.K.; Likas, A. Bayesian feature and model selection for Gaussian mixture models. IEEE Trans.
Pattern Anal. Mach. Intell. 2006, 28, 1013–1018. [CrossRef]

42. Chen, C.; Weiss, S.T.; Liu, Y.Y. Graph Convolutional Network-based Feature Selection for High-dimensional and Low-sample
Size Data. arXiv 2022, arXiv:2211.14144.

43. Molla, M.K.I.; Al Shiam, A.; Islam, M.R.; Tanaka, T. Discriminative feature selection-based motor imagery classification using
EEG signal. IEEE Access 2020, 8, 98255–98265. [CrossRef]

44. Blankertz, B.; Muller, K.R.; Curio, G.; Vaughan, TM.; Schalk, G.; Wolpaw, JR.; Schlogl, A.; Neuper, C.; Pfurtscheller, G.;
Hinterberger, T.; Schroder, M. The BCI competition 2003: Progress and perspectives in detection and discrimination of EEG single
trials IEEE Trans. Biomed. Eng. 2004, 51, 1044–1051. [CrossRef] [PubMed]

45. Galán, F.; Oliva, F.; Guàrdia, J., III. BCI Competition III. Dataset V: Algorithm Description. 2005. Available online: http:
//www.bbci.de/competition/iii/results/martigny/FerranGalan_desc.pdf (accessed on 13 October 2018).

46. Miah, A.S.M.; Ahmed, S.R.A.; Ahmed, M.R.; Bayat, O.; Duru, A.D.; Molla, M.K.I. Motor-Imagery BCI task classification
using riemannian geometry and averaging with mean absolute deviation. In Proceedings of the 2019 Scientific Meeting on
Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT) IEEE, Istanbul, Turkey, 24–26 April 2019; pp. 1–7.

http://dx.doi.org/10.1007/s00521-016-2236-5
http://dx.doi.org/10.1111/j.1528-1167.2009.02037.x
http://dx.doi.org/10.1109/ACCESS.2021.3136774
http://dx.doi.org/10.1109/TRE.2000.847807
http://dx.doi.org/10.1109/86.712230
http://dx.doi.org/10.1016/S1388-2457(99)00141-8
http://dx.doi.org/10.1016/0304-3940(94)90556-8
http://www.ncbi.nlm.nih.gov/pubmed/7898767
http://dx.doi.org/10.1016/j.jneumeth.2018.04.013
http://www.ncbi.nlm.nih.gov/pubmed/29738806
http://dx.doi.org/10.3390/s20164639
http://www.ncbi.nlm.nih.gov/pubmed/32824708
http://dx.doi.org/10.1504/IJBRA.2013.052447
http://dx.doi.org/10.1080/03772063.2019.1670106
http://dx.doi.org/10.1016/j.bspc.2016.09.007
http://dx.doi.org/10.1016/j.cmpb.2020.105325
http://dx.doi.org/10.1155/2018/9871603
http://dx.doi.org/10.1155/2018/9593682
http://dx.doi.org/10.1109/TPAMI.2006.111
http://dx.doi.org/10.1109/ACCESS.2020.2996685
http://dx.doi.org/10.1109/TBME.2004.826692
http://www.ncbi.nlm.nih.gov/pubmed/15188876
http://www. bbci.de/competition/iii/results/martigny/FerranGalan_desc.pdf
http://www. bbci.de/competition/iii/results/martigny/FerranGalan_desc.pdf


Mathematics 2023, 11, 1921 19 of 19

47. Miah, A.S.M.; Islam, M.R.; Molla, M.K.I. Motor imagery classification using subband tangent space mapping. In Proceedings
of the 2017 20th International Conference of Computer and Information Technology (ICCIT) IEEE, Dhaka, Bangladesh, 22–14
December 2017; pp. 1–5.

48. Gaur, P.; Gupta, H.; Chowdhury, A.; McCreadie, K.;Pachori, R.B. A Sliding Window Common Spatial Pattern for Enhancing
Motor Imagery Classification in EEG-BCI. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [CrossRef]

49. Saha, S.K.; Sarker, P.K.; Abdullah Al Shiam, M.; Rahoman, M. Motor Imagery EEG Signal Classification Using MWT-CSP for
Online BCI Implementation. Int. J. Comput. Sci. Inf. Secur. (IJCSIS) 2020, 18, 124–130.

50. Yamada, M.; Jitkrittum, W.; Sigal, L.; Xing, E.P.; Sugiyama, M. High-dimensional feature selection by feature-wise kernelized
lasso. Neural Comput. 2014, 26, 185–207. [CrossRef]

51. Zhao, Z.; Anand, R.; Wang, M. Maximum relevance and minimum redundancy feature selection methods for a marketing
machine learning platform. In Proceedings of the 2019 IEEE International Conference on Data Science and Advanced Analytics
(DSAA) IEEE, Washington, DC, USA, 5–8 October 2019; pp. 442–452.

52. Liu, T.; Jiang, H.; Chen, Q. Input features and parameters optimization improved the prediction accuracy of support vector
regression models based on colorimetric sensor data for detection of aflatoxin B1 in corn. Microchem. J. 2022, 178, 107407.
[CrossRef]

53. Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Their Appl. 1998,
13, 18–28. [CrossRef]

54. Izenman, A. Linear Discriminant Analysis. In Modern Multivariate Statistical Techniques; Springer: New York, NY, USA, 2013;
pp. 237–280.

55. Sánchez-Reolid, R.; García, A.S.; Vicente-Querol, M.A.; Fernández-Aguilar, L.; López, M.T.; Fernández-Caballero, A.; González, P.
Artificial neural networks to assess emotional states from brain-computer interface. Electronics 2018, 7, 384. [CrossRef]

56. He, Y.; Lu, Z.; Wang, J.; Ying, S.; Shi, J. A Self-Supervised Learning Based Channel Attention MLP-Mixer Network for Motor
Imagery Decoding. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 2406–2417. [CrossRef]

57. Feng, J.K.; Jin, J.; Daly, I.; Zhou, J.; Niu, Y.; Wang, X.; Cichocki, A. An optimized channel selection method based on multifrequency
CSP-rank for motor imagery-based BCI system. Comput. Intell. Neurosci. 2019, 2019, 8068357. [CrossRef] [PubMed]

58. Singh, A.; Lal, S.; Guesgen, H.W. Reduce calibration time in motor imagery using spatially regularized symmetric positives-
definite matrices based classification. Sensors 2019, 19, 379. [CrossRef] [PubMed]

59. Zhang, Y.; Wang, Y.; Zhou, G.; Jin, J.; Wang, B.; Wang, X.; Cichocki, A. Multi-kernel extreme learning machine for EEG classification
in brain-computer interfaces. Expert Syst. Appl. 2018, 96, 302–310. [CrossRef]

60. Park, Y.; Chung, W. BCI classification using locally generated CSP features. In Proceedings of the 2018 6th International
Conference on Brain-Computer Interface (BCI) IEEE, Gangwon, Republic of Korea, 15–17 January 2018; pp. 1–4.

61. Selim, S.; Tantawi, M.M.; Shedeed, H.A.; Badr, A. A csp\am-ba-svm approach for motor imagery bci system. IEEE Access 2018,
6, 49192–49208. [CrossRef]

62. Singh, A.; Lal, S.; Guesgen, H.W. Small sample motor imagery classification using regularized Riemannian features. IEEE Access
2019, 7, 46858–46869. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIM.2021.3051996
http://dx.doi.org/10.1162/NECO_a_00537
http://dx.doi.org/10.1016/j.microc.2022.107407
http://dx.doi.org/10.1109/5254.708428
http://dx.doi.org/10.3390/electronics7120384
http://dx.doi.org/10.1109/TNSRE.2022.3199363
http://dx.doi.org/10.1155/2019/8068357
http://www.ncbi.nlm.nih.gov/pubmed/31214255
http://dx.doi.org/10.3390/s19020379
http://www.ncbi.nlm.nih.gov/pubmed/30658523
http://dx.doi.org/10.1016/j.eswa.2017.12.015
http://dx.doi.org/10.1109/ACCESS.2018.2868178
http://dx.doi.org/10.1109/ACCESS.2019.2909058

	Introduction
	Related Works
	Dataset Description
	BCI Competition III Dataset IVA
	BCI Competition III Dataset IIIB

	Proposed Method
	Preprocessing
	Feature Extraction
	Feature Selection 
	Correlation-Based Feature Selection (CFS)
	Minimum Redundancy and Maximum Relevance (mRMR)
	Multi-Subspace Randomization and Collaboration-Based Unsupervised Feature Selection (SRCFS)

	Classification Using LDA, SVM and MLP 

	Results and Discussion
	Experimental Setting
	Performance Result with BCI Competition III Dataset IVA
	Performance Result with BCI Competition III Dataset IIIB
	State of the Art Comparison with Previous Methods

	Conclusions
	References

