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Abstract: We study how noise generates complex oscillatory regimes in the nonlinear thermochemical
kinetics. In this study, the basic mathematical Zeldovich–Semenov model is used as a deterministic
skeleton. We investigate the stochastic version of this model that takes into account multiplicative
random fluctuations of temperature. In our study, we use direct numerical simulation of stochastic
solutions with the subsequent statistical analysis of probability densities and Lyapunov exponents. In
the parametric zone of Canard cycles, qualitative effects caused by random noise are identified and
investigated. Stochastic P-bifurcations corresponding to noise-induced splitting of Canard oscillations
are parametrically described. It is shown that such P-bifurcations are associated with splitting of
both amplitudes and frequencies. Studying stochastic D-bifurcations, we localized the rather narrow
parameter zone where transitions from order to chaos occur.

Keywords: thermochemical oscillations; Canard cycles; stochastic bifurcations; stochastic splitting; chaos

MSC: 37H10; 37H20

1. Introduction

Complex oscillatory regimes are observed in many dynamical systems, both natural
and engineering [1–8]. Particular attention is paid to the investigation of oscillatory pro-
cesses, the analysis of the mechanisms of their occurrence, and the study of their properties
in thermochemical kinetics [9–14]. Mathematical models of thermochemistry are charac-
terized by strong nonlinearity, which gives rise to a wide variety of oscillatory regimes.
Significant progress has been made in the study of these regimes due to the application
of mathematical methods of the bifurcations theory [1,15,16]. At present, in the study of
nonlinear oscillations, along with the classical analytical apparatus, computer modeling
and numerical methods are actively used.

In various nonlinear dynamical models, a phenomenon of Canard cycles was recently
discovered and now actively studied (see, e.g., [17–23]). Canard cycles are a special kind
of self-oscillations which are characterized by the sharp growth of the amplitude under
the very small variation of parameters. The present paper aims to study the phenomenon
of Canard explosion in thermochemical kinetics. We use the basic Zeldovich–Semenov
dynamical model [12] that describes an interaction of the concentration of the reagent and
temperature in the reactor. This slow–fast dynamical system models oscillatory regimes
in thermochemical kinetics well. In Section 2, we provide a parametric description of the
equilibrium and oscillatory regimes of this model. In the parameter zone of Canard cycles,
abrupt changes of amplitude and frequency characteristics are discussed.

A key novel subject of this paper is the study of influence of inevitable random
disturbances on thermochemical Canard-type oscillations. It should be noted that the
constructive role of noise in systems with Canard cycles has attracted the attention of
researchers from different fields of science [24–27]. The special sensitivity of the Canard
cycles places high demands on the quality of mathematical modeling and numerical
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methods. In Section 3, we describe a stochastic version of the model, taking into account
parametric random disturbances of the temperature. It is shown that even small random
disturbances can result in qualitative changes of Canard oscillations. Here, P- and D-
bifurcations are investigated. The novelty of this work lies in the study of the phenomenon
of stochastic splitting of amplitudes and frequencies for Canard cycles as well as noise-
induced transitions from order to chaos in the parameter zone of the Canard explosion.

2. Canard Cycles in the Deterministic System

We consider a conceptual mathematical model of the thermochemical process, which
in the deterministic case is defined by the system of two differential equations:

ẋ = ϕ(x, y)− x
D

δẏ = ϕ(x, y)− y
S

(1)

with the strongly nonlinear interaction function ϕ(x, y) = (1 − x) exp
(

y
1+βy

)
. This slow–

fast system describes dynamics of the slow variable x (concentration) and fast variable y
(temperature). Kinetic parameters δ, β, D, and S are positive.

The dynamical model (1) exhibits both equilibrium and oscillatory regimes. Coordi-
nates of equilibria of system (1) can be found from the following equations:

Sx = (D + βSx) ln
x

D(1 − x)
, y =

Sx
D

.

In this paper, we consider D as a bifurcation parameter. The set of other parameters is
given in Table 1, following [12].

Table 1. Set of parameters of the model (1).

δ = 0.02 β = 0.05 S = 0.7

For this set of parameters, the bifurcation diagram of system (1) is shown in Figure 1
versus parameter D. As D passes the Andronov–Hopf bifurcation [28] point D∗ = 0.09256,
the equilibrium loses its stability, and the stable limit cycle is born. In Figure 1, extreme val-
ues of x- and y-coordinates of the corresponding cycles are plotted; the unstable equilibrium
is shown with dashed lines.
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Figure 1. Bifurcation diagram of system (1): extreme values of x- and y-coordinates of the correspond-
ing stable equilibria and cycles (green, solid) and unstable equilibria (black, dashed).

Here, one specific feature should be underlined. As the parameter D in the zone
D > D∗ increases, the amplitude of self-oscillations, both x and y, grows. However, the
growth rate is highly nonuniform: there exists a D-zone where the amplitude sharply
jumps. This narrow D-zone is classified as the zone of the Canard explosion [27].
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Peculiarities of oscillations in this zone are illustrated in Figure 2. In Figure 2a, three
limit cycles are shown. Here, one can see how with small variation in D values from 0.094 to
0.1, the size of the limit cycle changes significantly. Along with geometrical transformations
of cycles, the frequency of oscillations also changes. In Figure 2b, it is seen that in the
D-zone of the Canard explosion, the period of cycles sharply increases. In Figure 2c–e,
by time series, it is shown how the type of oscillations is transformed from quasi-harmonic
to relaxation with sharp spikes.
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Figure 2. Self-oscillations in the parameter zone of the Canard explosion: (a) stable limit cycles;
(b) period T(D) of oscillations; (c–e) time series for different values of the parameter D. In time series,
x-coordinates are shown in red and y-coordinates are plotted by blue.

In Section 3, we consider a stochastic version of model (1) and qualitative noise-
induced transformations of the system dynamics.

3. Noise-Induced Phenomena in the Stochastic Model

Let us consider the impact of random disturbances in model (1). In this paper, we focus
on the effects caused by multiplicative fluctuations εyξ(t) in the temperature of the reactor:

ẋ = ϕ(x, y)− x
D

δẏ = ϕ(x, y)− y
S
+ εyξ(t).

(2)

In this stochastic model, ξ(t) is the uncorrelated standard white Gaussian noise with param-
eters Eξ(t) = 0, Eξ(t)ξ(τ) = δ(t − τ), and ε is the noise intensity. In stochastic modeling
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of the solutions of system (2), we will use the standard Euler–Maruyama scheme [29] with
the time step 10−6.

Consider how stochastic disturbances impact the Canard cycle with D = 0.097. In
Figure 3, the phase trajectories and time series of the solutions of system (2), starting at the
deterministic limit cycle, are shown for three values of noise intensity.
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Figure 3. Phase trajectories and time series of system (2) with D = 0.097 for (a) ε = 5 × 10−5,
(b) ε = 1 × 10−3, and (c) ε = 1 × 10−2.

For weak noise with ε = 5 × 10−5, random trajectories (green) slightly deviate from
the orbit (red) of the deterministic cycle (see Figure 3a, left). It should be noted that the
dispersion of random trajectories along the deterministic cycle is highly nonuniform: the
dispersion in the “diagonal” part is significant compared with the other part, where the
random trajectories practically coincide with the deterministic orbit.

With the increase in ε, the dispersion of random trajectories in the “diagonal” part
significantly increases, and the stochastic splitting of the bundle occurs (see Figure 3b for
ε = 1 × 10−3). In the corresponding time series, a mixed-mode oscillatory regime appears:
small-amplitude oscillations alternate with the large-amplitude spikes. With a further
increase in noise (see Figure 3c for ε = 1× 10−2), the splitting becomes more evident, and in
this bi-modal oscillatory regime, the portion of large-amplitude spikes grows.

These results of the numerical simulation of the stochastic solutions presented here
have an important physical meaning. Indeed, it can be clearly seen how, for certain
conditions, real physicochemical processes occurring in a reactor can suddenly, under the
influence of even small random perturbations, significantly change the dynamic character,
with unexpected temperature and concentration outbreaks.

Note that the parameter value D = 0.097 is located in the center of the D-zone of the
Canard explosion, where the Canard cycle is extremely sensitive to noise. This is confirmed
by Figure 4, where stochastic trajectories (green) and deterministic cycles (red) are shown
for ε = 1 × 10−3 and two neighbor values of D: for D = 0.094 (Figure 4a) and D = 0.1
(Figure 4b). As can be seen, here, the noise with ε = 1 × 10−3 does not cause the stochastic
splitting as for D = 0.097 (compare with Figure 3b).
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Figure 4. Deterministic limit cycles (red) and random trajectories (green) of stochastic system (2),
with ε = 0.001 for (a) D = 0.094, (b) D = 0.1.

Let us consider the reasons for the above-described nonuniformity of the dispersion
of random trajectories around the Canard cycle. Of course, the Canard cycle, as a whole,
is stable. However, separate fragments of the Canard cycle orbits can be locally highly
unstable. In Figure 5, we show the deterministic phase trajectories (black) near the lower
part of the Canard cycle (red) of system (1) with D = 0.097. Here, the nullcline ẋ = 0 is
shown in green, and the nullcline ẏ = 0 is plotted by blue. The unstable equilibrium (empty
circle) is the intersection point of these nullclines.
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Figure 5. Local instability of the Canard cycle of system (1) with D = 0.097: deterministic phase
trajectories (black) near the lower part of the Canard cycle (red), nullcline ẋ = 0 (green), nullcline
ẏ = 0 (blue), and the unstable equilibrium (empty circle).

As can be seen, in the lower part, trajectories move away from the cycle, so this
part of the Canard cycle is highly unstable. In the presence of noise, trajectories with
even very small deviation from the deterministic cycle in this instability zone scatter in
different directions. This results in a sharp increase of their dispersion and splitting of the
stochastic bundle.

In more details, the phenomenon of the noise-induced splitting can be studied with
the help of statistics. In Figure 6, for stochastic solutions of system (2) with D = 0.097,
we show the probability density functions ρ(x) of random distributions of x-coordinates
of intersection points with the line L : 0.7(x − x̄) + 33(y − ȳ) = 0 for x < x̄. Here,
x̄ = 0.93858, ȳ = 6.77328 are coordinates of the unstable equilibrium.
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Figure 6. Stochastic splitting of the cycle in system (2) with D = 0.097: transformations of the
probability density function ρ(x).

For weak noise with ε = 5 × 10−5, the plot (red) of the function ρ(x) has a narrow
high peak corresponding to the unimodal probabilistic distribution in the “diagonal” part
of the stochastic bundle. With an increase in noise, the function ρ(x) becomes bimodal.
For ε = 1 × 10−3, one can see two well-separated peaks (blue), justifying the splitting of
stochastic oscillations. The left peak characterizes a distribution of large-amplitude oscilla-
tions, and the right peak corresponds to small-amplitude oscillations. Such a qualitative
transformation of the probability density ρ(x) form from one peak into two peaks can be
interpreted as a so-called stochastic phenomenological bifurcation, i.e., a P-bifurcation [30].
With a further increase in the noise intensity, the distance between the peaks increases,
and the right peak, corresponding to the low-amplitude oscillations, begins to dominate in
the overall distribution (see the green curve in Figure 6 for ε = 0.01).

It is interesting to compare a response to the random forcing for the quasi-harmonic
regime with D = 0.094 (see Figure 2c) and Canard relaxation cycle (see Figure 2d) with
D = 0.097. As shown above, noise with intensity ε = 0.001 crucially changes the dynamics
of the system with D = 0.097 (see Figure 3b), while the stochastically forced cycle for
D = 0.094 preserves the unimodal form (see Figure 4a). In order to change the system
dynamics for D = 0.094 qualitatively, it is necessary to apply stronger noise. Such noise-
induced transformations are illustrated in Figure 7 by phase trajectories and probability
density function ρ(x). In Figure 7a, one can see how noise of intensity ε = 0.01 causes
excitement of large-amplitude stochastic oscillations: green random trajectories are located
far from the orbit of the unforced deterministic cycle (red).
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Figure 7. Noise-induced excitement in system (2) with D = 0.094: (a) phase trajectories of the
deterministic (red) and stochastic (green) system; (b) probability density function ρ(x) for different
values of noise intensity.
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Details of changes in the form of probabilistic distributions ρ(x) of amplitudes of
generated stochastic oscillations are presented in Figure 7b. For ε = 0.001, the function
ρ(x) (red) is unimodal, while for larger noise, a new additional local maximum appears
(see green for ε = 0.01 and blue for ε = 0.05). This maximum reflects large-amplitude
oscillations induced by noise. With increasing noise, the probability of such oscillations
grows. Note that unlike in the case of D = 0.097, where noise moves the right peak of ρ(x)
(see Figure 6), for D = 0.094, this peak corresponding to small-amplitude oscillations does
not change its location (see Figure 7b).

Along with the noise transformations of the amplitudes of the cycles, their frequency
characteristics also change qualitatively. Let τi be the time intervals between successive
intersections of random trajectories with the line L. In the absence of noise, τi ≡ T, where T
is a period of the deterministic cycle. In the presence of noise, τi are random variables which
can be characterized by the probability density function ρ(τ). In Figure 8a, plots of ρ(τ)
are shown for three values of the noise intensity. For weak noise ε = 0.0001, the function
ρ(τ) has one peak localized near the period T of the unforced cycle. For larger noise, this
unimodal form transforms into a bimodal one: the single peak above T splits into two peaks
(see the green curve for ε = 0.0003). After a further increase of noise, distance between
two peaks increases, and the weight of the right peak corresponding to large-amplitude
oscillations grows (see the blue curve for ε = 0.003). An analogous stochastic P-bifurcation
is also observed for D = 0.094, but for larger noises.
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40

(b) 0 0.1 0.2

0

20

40

Figure 8. Noise-induced frequency splitting: transformations of the probability density function ρ(τ)

for (a) D = 0.097 and (b) D = 0.094.

Let us consider now how noise changes internal dynamic characteristics of stochastic
flows in system (2). For quantitative analysis of these changes, we will use the largest
Lyapunov exponent Λ. If Λ < 0, trajectories in the flow converge, and the system dynamics
are regular. If Λ > 0, the trajectories mostly diverge, and the system dynamics are
characterized as chaotic.

In Figure 9, we present the results of our analysis of the largest Lyapunov exponents,
independent of the parameter D and noise intensity ε. As can be seen in Figure 9a, for
D = 0.0965 and D = 0.097 from the parameter zone of the Canard explosion, under increas-
ing ε, the largest Lyapunov exponent becomes positive. Thus, there is a threshold value of
the noise intensity at which the system dynamics become chaotic. Mathematically, such a
qualitative transformation is interpreted as stochastic D-bifurcation [30]. In Figure 9a, one
can see that the Canard cycle with D = 0.097 is much more sensitive to noise: the transition
to chaos occurs for smaller value of ε.

More details of this effect of the noise-induced transition to chaos can be extracted from
the parametric diagram in Figure 9b, where values of Λ(D, ε) are shown by color. As can
be seen, the rather narrow chaotic zone is located in the center of the Canard explosion.
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Figure 9. Largest Lyapunov exponent Λ for the stochastic system (2): (a) versus parameter ε for
different D; (b) colored (D, ε)-diagram.

Thus, extremely sensitive Canard cycles in the presence of random perturbations
give rise to new oscillatory regimes in thermochemical kinetics with qualitative effects of
splitting and transitions to chaos.

4. Conclusions

This paper was devoted to the problem of analyzing the underlying mechanisms of
the generation of complex oscillatory regimes in the nonlinear thermochemical kinetics.
In our study, we used the conceptual mathematical Zeldovich–Semenov model, which
describes the dynamics of the concentration and temperature in the reactor. A parameter
zone of Canard cycles was identified and studied. It was shown that these cycles are highly
sensitive to even small variations of parameters, both deterministic and stochastic. In this
paper, we studied an impact of parametric stochastic disturbances in the temperature of
the reactor. Stochastic P- and D-bifurcations of Canard cycles were found and investigated.
For the model under consideration, P-bifurcations reflect the phenomenon of noise-induced
splitting of unimodal oscillations into bimodal ones. It was shown that, as a result of such
a P-bifurcation, both amplitudes and frequencies of stochastic oscillations split under in-
creasing noise. The stochastic D-bifurcations, analyzed by the largest Lyapunov exponents,
are connected with the transition from order to chaos in the rather narrow parameter zone
of the Canard explosion.
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