
Citation: Ayadi, B.; Ghachem, K.;

Al-Khaled, K.; Khan, S.U.; Kriaa, K.;

Maatki, C.; Zahi, N.; Kolsi, L.

Three-Dimensional Unsteady Mixed

Convection Flow of Non-Newtonian

Nanofluid with Consideration of

Retardation Time Effects. Mathematics

2023, 11, 1892. https://doi.org/

10.3390/math11081892

Academic Editor: Arsen Palestini

Received: 8 March 2023

Revised: 12 April 2023

Accepted: 15 April 2023

Published: 17 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Three-Dimensional Unsteady Mixed Convection Flow
of Non-Newtonian Nanofluid with Consideration
of Retardation Time Effects
Badreddine Ayadi 1,2, Kaouther Ghachem 3 , Kamel Al-Khaled 4 , Sami Ullah Khan 5, Karim Kriaa 6,7,
Chemseddine Maatki 8,9 , Nesrine Zahi 10 and Lioua Kolsi 1,*

1 Department of Mechanical Engineering, College of Engineering, University of Ha’il,
Ha’il City 81451, Saudi Arabia

2 Laboratory of Applied Fluid Mechanics, Environment and Process Engineering “LR11ES57”, National School
of Engineers of Sfax (ENIS), University of Sfax, Soukra Road Km 3.5, Sfax 3038, Tunisia

3 Department of Industrial Engineering and Systems, College of Engineering, Princess Nourah bint
Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

4 Department of Mathematics & Statistics, Jordan University of Science and Technology, P.O. Box 3030,
Irbid 22110, Jordan

5 Department of Mathematics, Namal University, Mianwali 42250, Pakistan
6 Department of Chemical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic

University (IMSIU), Riyadh 11432, Saudi Arabia
7 Department of Chemical Engineering, National School of Engineers of Gabes, University of Gabes,

Gabes 6029, Tunisia
8 Department of Mechanical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic

University (IMSIU), Riyadh 11432, Saudi Arabia
9 Laboratory of Metrology and Energy Systems, Energy Engineering Department, National Engineering School,

University of Monastir, Monastir 5000, Tunisia
10 Applied College, Huraymila, Imam Mohammad Ibn Saud Islamic University (IMSIU),

Riyadh 11432, Saudi Arabia
* Correspondence: lioua_enim@yahoo.fr

Abstract: The advances in nanotechnology led to the development of new kinds of engineered
fluids called nanofluids. Nanofluids have several industrial and engineering applications, such
as solar energy systems, heat conduction processes, nuclear systems, chemical processes, etc. The
motivation of the present work is to analyze and explore the thermal and dynamic behaviors of
a non-Newtonian fluid flow under time retardation effects. The flow is unsteady and caused by
a bidirectional, periodically moving surface. In addition to the convective heat transfer and fluid
flow, the radiation and chemical reactions have also been considered. The governing equations are
established based on the modified Cattaneo–Christov heat flux formulation. It was found that the
bidirectional velocities oscillate periodically, and that the magnitude of the oscillation increases with
the retardation time. Higher temperatures occur when the porosity parameter is increased, and lower
concentrations are encountered for higher values of the concentration relaxation parameter. The
current results can be applied in thermal systems, heat transfer enhancement, chemical synthesis,
solar systems, power generation, medical applications, the automotive industry, process industries,
refrigeration, etc.

Keywords: heat transfer; bidirectional flow; porous medium; nanofluids; accelerating surface;
chemical reaction; Oldroyd-B nanofluid

MSC: 76r05; 76r10

1. Introduction

Several studies on nanofluid applications have recently been presented. Leading to
more compact systems and higher performances, nanofluids have become widely used
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in heat transfer systems, the production and enhancement of energy resources, the ex-
trusion process, the nuclear industry, and many other applications. When nanoparticles
are suspended in a base fluid, the suspension becomes characterized by enhanced ther-
mophysical properties. Nanoparticles are particles with dimensions in the nanometer
range, typically between 1 and 100 nanometers in size. The size of nanoparticles can vary
depending on their composition, shape, and method of synthesis. In general, nanoparticles
smaller than 10 nanometers tend to have unique physical and chemical properties due
to their high surface-area-to-volume ratio, while those larger than 100 nanometers start
to exhibit bulk-like behavior. These nanoparticles are uniformly distributed in the base
liquid to enhance the thermal impact of the base materials. Such predictions were first
experimentally confirmed by Choi [1]. Buongiorno [2] presented a detailed description
of nanofluid convective heat transfer with a focus on the thermophoretic and Brownian
motion effects. Hayat et al. [3] investigated the hydrothermal behavior of a nanofluid flow
under the effect of an external magnetic field. Sui et al. [4] studied the Cattaneo–Christov
double diffusive convection of a Maxwell nanofluid past a stretching sheet. Hsiao [5]
presented a numerical study on the micropolar nanofluid flow by considering the MHD
and viscous dissipation effects. Turkyilmazoglu [6] considered free and circular jet cooling
using nanofluids. Ahmed et al. [7] presented a study on the stagnation point of nanofluid
flow past a rotating disk under the effect of a heat source. Turkyilmazoglu [8] used the
Buongiorno model to study the nanofluid flow in an asymmetric channel. Tlili et al. [9]
studied the bioconvective non-Newtonian nanofluid flow past a stretching cylinder by
considering the effect of the activation energy. Abbasi et al. [10] studied the effect of
using a hybrid nanofluid on the flow over a curved channel. Kiranakumar et al. [11] pre-
sented a comprehensive review of the electrical properties of graphene oxide nanoparticles.
Waqas et al. [12] studied the effect of applying an exponential heat flux on the bio-
convection of a non-Newtonian nanofluid past a moving surface. Chu et al. [13] used
the Keller box method to study the radiative heat transfer of various kinds of hybrid
nanofluids. Habib et al. [14] investigated the combined EHD, MHD, and activation en-
ergy effects on the bioconvective, time-dependent nanofluid flow caused by an extending
sheet. Xia et al. [15] studied the entropy generation caused by the natural bioconversion of
Eyring–Powell nanofluids. Waqas et al. [16] studied the bioconvective micropolar nanofluid
flow under the impacts of a magnetic field, radiation, and the Joule effect. Liu et al. [17]
performed a molecular dynamics study on the effect of using CuO nanoparticles on the
phase-change process of a PCM. Mekheimer et al. [18] studied numerically the nanoparticle
drug injection in blood to detect diseased organs.

The characteristics of non-Newtonian materials are very important in industrial frame-
works and engineering processes. For example, non-Newtonian polymers have several
applications in manufacturing processes and chemical industries. Based on their fluid
behavior, non-Newtonian liquids are classified into diverse categories. The Maxwell model
describes non-Newtonian viscous flow on a long timescale. However, retardation time
features are novel rheological consequences that are observed in some non-Newtonian
liquids. Such characteristics are identified with the help of the Oldroyd-B fluid model.
Kumar et al. [19] presented a study on the rheological behavior of Oldroyd-B fluid with
consideration of viscous dissipation and the Joule and radiation effects. Sajid et al. [20]
numerically investigated the mixed convection of Oldroyd-B liquid under the effects of
viscous dissipation and an external magnetic field. Irfan et al. [21] tested the effect of con-
sidering a variable thermal conductivity on the double diffusive convection of Oldroyd-B
nanofluid. Bai et al. [22] presented a numerical study on the transient Oldroyd-B double
diffusive flow. Roy and Pop [23] conducted an investigation on the mixed convection of
Oldroyd-B nanofluid past a shrinking surface. Mabood et al. [24] predicted the effect of
radiation and chemical reactions on the rheological behavior of Oldroyd-B nanofluid.

The main objective of the current study is to observe the thermal and hydrodynamic
behaviors of Oldroyd-B nanofluid flow caused by a bidirectionally oscillating porous
surface. To perform this study, the unsteady mathematical model governing the coupled
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heat and mass transfer phenomena is developed using the Cattaneo–Christov thermal
flux model, and HAM is used to find the semi-analytical solution. The effects of chemical
reactions and radiation on the flow and heat and mass transfer are presented in terms of
their velocity, temperature, and concentration profiles.

2. Problem Formulation

The Oldroyd-B nanofluid flow over a bidirectional, periodically oscillating porous
surface is considered in the current study. The three-dimensional flow is caused by a
moving surface with time-dependent velocity. The bidirectional surface is maintained at
horizontal and vertical velocities expressed as u = uw = ax sin ωt and v = vw = by sin ωt,
respectively. Here, ω and b are the angular frequencies and stretching rate, respectively.
Following the cartesian coordinates, x and y are being continued in the surface direction
while the z axis is toward the normal direction. For oscillatory phenomena, it has been
assumed that the magnitude of oscillation is small in such a manner that the flow regime
is kept laminar [25–27]. The heat and concentration equations are established via the
modified heat and mass flux theories. In addition, the chemical reaction effect is considered
in the concentration equation. Based on the above-mentioned assumptions, the governing
equations are expressed as follows [25–27]:

∂v
∂y

+
∂u
∂x

+
∂w
∂z

= 0, (1)
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The boundary conditions are [25–27]:

u = uw = ax sin ωt, w = 0, C = Cw, v = vw = by sin ωt, T = Tw, z = 0, (6)

u→ 0, C → C∞, T → T∞, v→ 0, as z→ ∞. (7)

The used dimensionless variables are [25,27]:
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The dimensionless boundary conditions are as follows:

g(0, τ) = 0, f (0, τ) = 0, fξ(0, τ) = sin τ, gξ(0, τ) = γ sin τ, θ(0, τ) = 1

φ(0, τ) = 1, gξ(∞, τ) = 0, fξ(∞, τ) = 0, θ(∞, τ) = 0, φ(∞, τ) = 0.

 (13)

The dimensionless parameters β1, β2 (Deborah numbers), Nb (Brownian motion),
Le (Lewis number), Kr (chemical reaction), γ (stretching ratio constant), Kr (reaction con-
stant), δT (thermal relaxation constant), δc (concentration relaxation constant), S (ratio of
frequency to stretching rate), Pr (Prandtl number), and Nt (thermophoresis) are defined as:

Le = αm
DB

, Kr = k∗
a , β1 = λ1a, β2 = λ2a, Pr = ν

αm
, S = ω

a , Nb = σ∗DB(Cw−C∞)
ν ,

R = 16σsT3
∞

3kk∗ , δc = δ2a, γ = b
a Nt = σ∗DT(Tw−T∞)

νT∞
, Ha = ν

akp
, δT = δ1a.

 (14)

The local Sherwood and Nusselt numbers are expressed by the following relations [27]:

(Rex)
−1/2Nux = −(1 + R)θξ(0, τ), Shx(Rex)

−1/2 = −φξ(0, τ). (15)

where Rex is the local Reynolds number.

3. Homotopy Analytical Method

The resolutions of the formulated model are performed analytically with the imple-
mentation of the homotopy analysis scheme. The motivations for using the homotopy
analysis method are justified, as this scheme provides high accuracy and little error. It
should also be mentioned that the HAM method does not have any limitations related to
the fixation of any small or large parameters [28–30]. The initial guesses for performing
simulations are:

f0(ξ, τ) =
(
1− e−ξ

)
sin τ, g0(ξ, τ) = γ

(
1− e−ξ

)
sin τ,

θ0(ξ, τ) = e−ξ , φ0(ξ, τ) = e−ξ .

 (16)

The use of the linear operators (Υ):

Υ f =
∂3

∂ξ3 − ∂
∂ξ , Υg = ∂3

∂ξ3 − ∂
∂ξ , Υθ = ∂2

∂ξ2 − 1, Υφ = ∂2

∂ξ2 − 1. (17)

gives the following equations:

l f
[
κ1 + κ2eξ + κ3e−ξ

]
= 0, lg

[
κ4 + κ5eξ + κ6e−ξ

]
= 0,

lθ
[
κ7eξ + κ8e−ξ

]
= 0, lφ

[
κ9eξ + κ10e−ξ

]
= 0.

 (18)

4. Convergence of HAM

The convergence regime is estimated with the proper values of auxiliary factors
h f , hθ , hg and hφ. The feasible region for ensuring the solution validity is highlighted with
plotted h-curves. Figure 1 is presented to predict this convergence region. The convergence
regime is defined by −1.4 ≤ h f ≤ 0.2, −1.4 ≤ hθ ≤ −0.2, −1.3 ≤ hg ≤ −0.1 and
−1.3 ≤ hφ ≤ −0.35.

This section is dedicated to exploring the effects of the governing parameters on
the flow, temperature, and concentration fields. The formulated mathematical problem
is associated with the theoretical flow assumptions instead of any experimental data.
Therefore, physical analysis is performed for ranges of governing parameters as follows:
0 ≤ Ha ≤ 0.3, 0 ≤ β2 ≤ 1.4, 0.1 ≤ δT ≤ 1.2, 0.1 ≤ Pr ≤ 1.2, 0.1 ≤ Nb ≤ 1.2, 0.1 ≤ Rd ≤ 1.2,
and 0.2 ≤ δC ≤ 0.8, 0.0 ≤ Kr ≤ 0.5. Figure 2a,b illustrate the velocity component profiles
fξ and gξ for various values of the porosity parameter Ha. A declining behavior in both
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velocity components is observed when Ha is increased. Physically, this reduction is due
to the reduced permeability of the porous media. Figure 3a,b present the effects of the
retardation time factor β2 on fξ and gξ . Both velocity components have larger values for
higher values of β2. This increase is due to the intensification of the flow caused by the
retardation time. In fact, the retardation time is associated with the rest position attained
by fluid particles. Figure 4a,b show the effect of the retardation parameter β2 on fξ and gξ .
The increase in β2, leads to an increase in velocity. In both graphs, a phase shift of smaller
magnitude is noticed.
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The results illustrated in Figure 5a report the effects of δT on the behavior of the
temperature profile θ. Lower temperatures are encountered when the thermal relaxation
factor δT is increased. This decrease leads to a lower heat transfer rate. Figure 5b illustrates
the temperature profile θ for various Prandtl number Pr values. The Prandtl number is
inversely proportional to the thermal diffusivity. Thus, the increase in Pr values, leads
to a reduction in temperature. In Figure 5c, the effect of increasing the Brownian motion
constant Nb on the temperature field is presented. Higher temperatures occur for larger
values of Nb. Physically, Brownian motion is based on the random movement of heated
particles, some of which collide with each other. This collision enhances thermal transport.
The effect of the radiation parameter Rd on the temperature θ profile is exposed in Figure 5d.
The increase in Rd leads to higher temperature values. This is due to the enhancement of
heat transfer by the combined effects of convective and radiative heat transfers. Figure 6a–e
illustrate the changes in concentration profile φ caused by the variation in the porosity
parameter Ha, the Lewis number Le, the concentration relaxation parameter δC, the reaction
parameter Kr, and the Brownian parameter Nb. As presented in Figure 6a, due to the
change in the porosity parameter, an increase in the concentration is exhibited. Physically,
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such observations are due to the permeability of the porous space. From Figure 6b, it is
concluded that the increase in Le reduces the concentration value φ. The results presented
in Figure 6c–e demonstrate that the increases in δC, Kr, and Nb lead to lower values of
concentration. Table 1 presents the effect of the governing parameters on the Nusselt
number. It is noticed that the increase in Pr leads to an enhancement of the heat transfer
rate, while the opposite occurs for Nb and Nt. Similarly, Table 2 shows the effects of the
governing parameters on the Sherwood number. An important enhancement of the mass
transfer is noticed for higher values of Le and Nb.
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Table 1. Evaluation of Nusselt number at various governing parameters.

Pr Le Nb Nt
Nux

(Re~
x
)1/2

0.2 0.1 0.3 0.3 0.51425

0.4 0.56789

0.8 0.60670

0.3 0.4 0.62317

0.6 0.64209

0.8 0.66324

0.2 0.48359

0.4 0.4556

0.6 0.427857

0.2 0.48053

0.6 0.46475

0.8 0.428857

Table 2. Evaluation of Sherwood number at various governing parameters.

Le Nb Nt
Sh~

x

(Re~
x
)1/2

0.2 0.3 0.754231

0.6 0.83544

0.8 0.93567

0.3 0.2 0.64567

0.6 0.72675

0.8 0.74534

0.2 0.63556

0.4 0.58324

0.6 0.53677

5. Conclusions

The heat and mass transfer characteristics of Oldroyd-B nanofluid are analyzed in
consideration of chemical reactions and thermal radiation effects. The flow is generated by
the bidirectional periodic oscillating surface. The HAM computations are performed for
solution assessment. The main findings can be summarized as follows:

v A reduction in the flow intensity due to the increase in the porosity parameter
is noticed.

v No phase shift of the oscillating velocity is encountered for all the considered parameters.
v An augmentation of the velocity magnitude occurs when the oscillation frequency

ratio is increased.
v The retardation parameter causes an increase in velocity.
v The increase in the thermal relaxation factor causes a reduction in temperature.
v The porosity parameters enhance the thermal and concentration profiles.
v An augmentation of the heat transfer occurs when the radiative parameter is increasing.
v Lower concentrations are encountered for higher values of the Prandtl and Lewis numbers.
v The local Nusselt number increases with the Lewis and Prandtl numbers.
v The current analysis can be extended by modifying the model, evaluating the entropy

generation, performing a sensitivity analysis, considering hybrid nanofluids, using an
artificial neural network, etc.
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Nomenclature

(u, v, w) velocity components
ω frequency
t time
λ1 relaxation time
λ2 retardation time
DB Brownian diffusion
v kinematic viscosity
Kr chemical reaction rate
DT thermal expression coefficient
αm thermal diffusivity
δ1 thermal relaxation coefficient
δ2 concentration relaxation coefficient
σs Stefan–Boltzmann constant
k∗ mean absorption coefficient
β2 retardation time
Nb Brownian motion
Le Lewis number
Kr chemical reaction
γ stretching ratio constant
Kr reaction constant
δT thermal relaxation constant
δc concentration relaxation constant
S ratio of frequency to stretching rate
Pr Prandtl number
Nt thermophoresis
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