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Abstract: The underlying risk factors associated with the duration and termination of biological,
sociological, economic, or political processes often exhibit spatial clustering. However, existing
nonspatial survival models, including those that account for “immune” and “at-risk” subpopulations,
assume that these baseline risks are spatially independent, leading to inaccurate inferences in split-
population survival settings. In this paper, we develop a Bayesian spatial split-population survival
model that addresses these methodological challenges by accounting for spatial autocorrelation
among units in terms of their probability of becoming immune and their survival rates. Monte
Carlo experiments demonstrate that, unlike nonspatial models, this spatial model provides accurate
parameter estimates in the presence of spatial autocorrelation. Applying our spatial model to data
from published studies on authoritarian reversals and civil war recurrence reveals that accounting
for spatial autocorrelation in split-population models leads to new empirical insights, reflecting the
need to theoretically and statistically account for space and non-failure inflation in applied research.

Keywords: Bayesian inference; estimation in survival analysis and censored data; spatial autocorrela-
tion; split-population models; Monte Carlo; democratic survival; civil wars
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1. Introduction

Originally used to study human survival rates following the onset of a disease or the
administration of medical treatment, parametric and semi-parametric tools for modeling
time-to-event data or “survival times” have been used to study innumerable biological,
industrial, psychological, social, and political phenomena. However, two common types of
heterogeneity in the data generation process (d.g.p.) of many time-to-event applications
violate the core assumptions of conventional survival models. The first is the presence of
non-failure cases resulting from “immunity” to a failure event or being “cured” from that
event due to some treatment. Cases that will never experience the event of interest violate
the assumption that all right-censored observations eventually experience the failure event
even if the failure is not observed. The frequent need to relax this assumption in applied
settings has given rise to a class of split-population (SP) survival models that first estimate
the probability of being immune or at risk of experiencing the event and subsequently
estimate the time until that event occurs, conditional upon not being immune to the event.
In other words, SP survival models do not assume that every observation will eventually
experience the event. “Instead, the model splits the population into two groups—one that
will experience the event and one that will not” [1] (p. 148). The probability of a case being
immune to the event is estimated in the first (split) stage as a binary process modeled with
a specified set of covariates, then the survival stage is modeled with a specified baseline
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function representing the time until those cases at risk of experiencing the event actually
do so, again conditional upon covariates.

These tools have been useful for modeling a wide range of phenomena, including
oncological studies of the survival of breast cancer patients [2] and melanoma relapse [3],
the occurrence of interstate war [4], susceptibility to and mortality from parasitic infection
among river salmon [5], and criminal recidivism [6]. SP survival models themselves have
been extended to incorporate independent and identically distributed (i.i.d.) frailties [7], to
account for random right-censoring [8], to address misclassified failures [9], and to account
for “triadic duration” independence [10]; however, existing formulations often ignore the
effects of spatial clustering among units, at least in the first stage [11].

The spatial clustering of common unobserved characteristics among units that may
affect their baseline risk of experiencing a failure event violates a second core assumption
of conventional survival models, namely, that units are conditionally independent. Such
spatial autocorrelation differs from spatial dependence in that it cannot be accounted for
with i.i.d. frailty terms or spatial lags [12,13]. Spatially weighted frailties have been appro-
priately incorporated into conventional survival models via Bayesian estimation [12,14–16].
However, existing spatial survival models cannot accommodate any heterogenous mixture
of immune and at-risk populations, nor have they included “covariates and spatial random
effects as regressors in the cure rate portion of the model, instead of just the log-relative
risk portion” [11] (p. 274).

In this article, we develop a parametric Bayesian spatial split-population (SP) survival
model that can incorporate time-varying covariates. Rather than adopting the frequentist
maximum likelihood estimation approach to finding parameter values, Bayesian estimation
more flexibly utilizes Bayes’ Rule to estimate parameters based on iterated updates to
pre-specified priors that define baseline expectations about the probability distribution of
the phenomenon of interest. This method is particularly useful for estimating parameters
in a split-population model, which can place high demands on the observed data.

Similar to a conventional split-population survival model, our approach consists of a
split-stage equation that estimates the probability of a unit being immune from a failure
event and a second-stage equation that estimates the survival probability conditioned upon
the subject being at risk of failure. In our spatial frailty model, however, each of the two
equations may include spatially autocorrelated frailties with a joint distribution that is inter-
pretable in a spatial context. This allows analysts to eschew the assumption that the frailties
themselves are i.i.d. The hierarchical model leverages the flexibility of Bayesian estimation
using a Markov Chain Monte Carlo (MCMC) sampling algorithm whereby the frailties
of “neighboring” units and any spatial autocorrelations among them are incorporated
into each equation via a conditionally autoregressive (CAR) prior. MCMC algorithms are
tools for estimating analytically complex probability densities by randomly and repeatedly
drawing samples from a distribution (Monte Carlo) such that each sample depends on the
prior one but not those before it (Markov Chain). Thus, unlike regular SP survival models,
the Bayesian spatial SP survival model can account for spatial autocorrelation in a unit’s
propensity for being at risk of experiencing an event as well as the time it takes for that
event to occur.

After presenting the Bayesian spatial SP survival model and describing the slice-
sampling algorithm used for estimation in a Bayesian framework, we illustrate its properties
through a series of Monte Carlo experiments. The results reveal that (i) the Bayesian spatial
SP model reliably retrieves its true parameter values regardless of the size of the immune
fraction or degree of spatial autocorrelation and that (ii) nonspatial models produce biased
parameter estimates if the true d.g.p. includes spatial clustering. We then apply the spatial
SP survival model to replication data from two prominent studies in political science. The
first is a previous application of a nonspatial split-population survival model used to study
whether democratic countries consolidate, survive, or revert to a dictatorship [17]. The
second is a conventional survival analysis of whether civil wars are more or less likely to
recur after terminating [18]. We discuss theoretical reasons to expect spatial clustering in
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each of these contexts, then demonstrate empirically that spatial clustering does indeed
exist in the replication data. Then, we show that applying our Bayesian spatial SP survival
model to these data significantly alters the previously reported results. In light of the
evidence of spatial autocorrelation in each application, the new results from our spatial
model indicate that faulty inferences can result from ignoring spatial heterogeneity when
modeling survival processes.

2. (Spatial) Split-Population Survival Model
2.1. Model Development

Supposing that i = {1, 2, . . . , N} are the units in the survival data, we define f (t) as
the probability density function and F(t) as the cumulative distribution function. Thus,
S(t) = 1− F(t) is the survival distribution and h(t) = f (t)

S(t) is the hazard rate. The general
likelihood of the conventional survival model is proportional to

L =
N

∏
i=1

[ f (ti)]
C̃i [S(ti)]

1−C̃i , (1)

where C̃i = 1 are the units that fail and C̃i = 0) are the units that do not fail, and as such
are “right-censored.” Two subpopulations can potentially exist in the survival data that
researchers use for empirical analysis: an “at-risk” fraction of cases that can fail, and an
“immune” fraction of cases that will not fail, implying that units in this fraction do not
experience the event of interest [19–21]. These two subpopulations are accounted for in
split-population survival models (with or without unit-specific frailties) by estimating the
probability of a given unit being in the immune fraction and the influence of covariates on
the at-risk fraction’s hazard rate [19,22,23].

The split-population survival model for a duration t that splits the sample in the
manner described above is constructed as follows. First, we define αi = Pr(Yi = 1) as the
probability of units entering the immune fraction, which can be estimated via logit:

αi =
exp(Ziγ + Vi)

1 + exp(Ziγ + Vi)
(2)

where Zi are p2-dimensional covariates, γ is the corresponding parameter vector in Rp2 ,
and Vi ∼ N(0, σ2) are the nonspatial unit-specific frailties (random effects), which are
assumed to be independent and identically distributed (i.i.d.). The nonspatial i.i.d. unit-
specific frailties Vi in the model’s split-stage accounts for unobserved heterogeneity on αi
while being independent of other random effects. In the split-population model’s survival
stage, however, Wi ∼ N(0, σ2) denotes the nonspatial i.i.d. unit-specific frailties. As such,
these nonspatial frailties capture unobserved factors that potentially influence the units’
distinct risks of experiencing the event of interest. Hence, the proportional hazards of the
split-population survival model with nonspatial unit-specific i.i.d. frailties are

h(ti|Xiβ, Wi) = h0(ti)ωi exp(Xiβ) = h0(ti) exp(Xiβ + Wi), (3)

where h0(ti) is the baseline hazard (which can be Weibull, log-logistic, or log-normal
distributed), log ωi = Wi, Xi represents the p1-dimensional covariates, and β is the corre-
sponding parameter vector in Rp1 . As discussed below, while we use the Weibull distribu-
tion in the presented Monte Carlo experiments and applications, the experiments perform
similarly when using either of the other two parametric distributions.

Suppose that we need to incorporate time-varying covariates in our split population.
Let t0 be the unique “entry time” and let t be the “exit time” for each period. Suppose
that j is the beginning of the time period. Then, each unit i’s elapsed time from inception
until (i) j can be denoted as t0ij and (ii) the end of period j is tij. In this case, C̃ij = 0
implies that the observation can be censored, while C̃ij = 1 indicates that the observation
has failed at tij. The probability of survival until period j is now Si(t0) = 1− F(t0), where
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F(t0) =
∫ t0

0 f (t0). In this case, both subpopulations contribute to the log-likelihood of the
split-population survival model with nonspatial i.i.d. frailties as follows: S(t0) = 1− F(t0)
(where F(t0) =

∫ t0
0 f (u)du) is the probability of survival until j. Thus, the log-likelihood of

the split-population survival model with nonspatial i.i.d. frailties is proportional to

lnL =
N

∑
i=1

{
C̃ijln

[
(1− αij)

f (tij|Xijβ, Wi)

S(t0ij|Xijβ, Wi)

]
+ (1− C̃ij)ln

[
αi + (1− αi)

S(tij|Xijβ, Wi)

S(t0ij|Xijβ, Wi)

]}
(4)

where αij =
exp(Zijγ +Vi)

1+exp(Zijγ +Vi)
is the split-stage equation; the model’s survival stage estimates

the effect of covariates Xij on the probability of survival conditional on each unit being
at-risk along with the baseline hazard. Here, Vi and Wi are the nonspatial i.i.d. unit-specific
frailties in the cure model’s split and survival stages, respectively. If Vi = Wi = 0, then
Equation (4) reduces to the log-likelihood of the nonspatial “pooled” split-population sur-
vival model (without unit-specific frailties) with time-varying covariates [22,24]. Suppose,
however, that unobserved unit-specific heterogeneity influences the units’ survival time or
probability of entering the immune fraction (or both). Unobserved heterogeneity of this
sort is addressed by incorporating the i.i.d. split-stage and survival-stage frailty terms (Vi
and Wi) into the split-population survival model. In a Bayesian framework, the following
exchangeable normal prior is employed to assess these frailties in each stage of the model:

Wi ∼ N(0, 1/τ) and Vi ∼ N(0, 1/τ) (5)

where τ is the precision parameter and each unit is specified as exchangeable to generate
the prior [11,12,25].

If researchers believe that the effect of each unit-specific frailty on the unit’s risk-
propensity or probability entering the immune fraction is independent of neighboring units’
frailty effects, then the nonspatial split-population survival model should be estimated
with i.i.d. unit-specific frailties. It is possible, however, for the frailties to exhibit spatial
heterogeneity, meaning that each unit’s propensity to be in the immune fraction as well as
its survival time is influenced by unobserved factors among its neighboring units. Spatial
weights can be assigned to the unit-specific frailties in the split-population survival’s split
and survival stage to model this spatial autocorrelation. These spatially weighted frailties
can then be incorporated via the conditionally autoregressive (CAR) approach previously
developed in [26].

In the Bayesian split-population survival model, the CAR prior accounts for spatial
autocorrelation in the frailties by allowing these frailities to be autocorrelated across, e.g.,
geographically adjacent units, where “adjacency” can be defined by the researcher based
on the context. More specifically, spatial data are often represented by a lattice, in which
the spatial surface is divided into a grid of units that, depending on the empirical context,
can be counties, districts, countries, or other areal units. The spatially weighted frailties are
then incorporated via the CAR prior by defining the relevant spatial relationship among
all geographically adjacent units in an adjacency matrix A, where each element is denoted
as aii′ .

Note that aii′ = 1 in A if units i and i′ are “neighbors”. If i and i′ are not neighbors,
then aii′ = 0. The assignment of spatial weights is incorporated into the CAR prior in order
to model spatially autocorrelated frailties between adjacent units. After doing this, the
frailties Vi and Wi are collected into the vectors V = {V1,. . . ,VN} and W = {W1,. . . ,WN},
respectively. This facilitates the use of separate CAR priors for V and W, which in turn
produces the following CAR model structure:

V|λ ∼ CAR(λ) and W|λ ∼ CAR(λ) (6)

where λ is the precision parameter [11,26]. The CAR(λ) prior for V and W has a joint
distribution, which is formally characterized in [14] and is described in our paper’s Supple-
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mentary Materials. The resulting conditional distributions of the spatial frailties for V and
W are

Vi|Vi′ 6=i ∼ N(Vi, 1/(λmi)), Wi|Wi′ 6=i ∼ N(Wi, 1/(λmi)), (7)

where: Wi = m−1
i ∑i′ adj i Wi′ ; Vi = m−1

i ∑i′ adj i Vi′ ; Wi and Vi are the averages of the
neighboring Wi′ 6=i and Vi′ 6=i, respectively, where i′ adj i denotes that i′ is adjacent to i given
the matrix A; and mi is the number of these adjacencies [25,27]. Using this CAR prior
approach, we can then define the log-likelihood of the spatial split-population survival

model by substituting V ={Vi} and W ={Wi} in Equation (4), where αij =
exp(Zijγ ,V)

1+exp(Zijγ ,V)

is the split-stage equation.
The log-likelihood of the pooled (“nonfrailty”), nonspatial i.i.d. frailty, and spatial

split-population survival models are compatible with any commonly employed parametric
survival distribution. For our empirical applications, we assume a Weibull distribution for
the baseline hazard, in which ρ denotes the shape parameter. The density, survival function,
and the hazard rate for the Weibull distribution are defined in our Supplementary Material.
We use the Geweke [28] convergence test and Heidelberger and Welch [29] stationarity
test in our empirical applications below to assess whether the obtained Markov chains
converge to their respective stationary distributions.

2.2. Markov Chain Monte Carlo Estimation

Following standard practice for Bayesian inference [30], we assign the Multivariate
Normal (MVN) prior to β = {β1, . . . , βp1} and γ = {γ1, . . . , γp2}, and the Gamma prior for
ρ with shape and scale parameters aρ and bρ for the Bayesian pooled (nonfrailty), nonspatial
(i.i.d.) frailty, and spatial split-population parametric (Weibull) survival models:

ρ ∼ Gamma(aρ, bρ), β ∼ MVNp1(µβ, Σβ), γ ∼ MVNp2(µγ, Σγ) (8)

Σβ ∼ IW(Sβ, νβ), Σγ ∼ IW(Sγ, νγ),

where aρ, bρ, Sβ, νβ, Sγ, and νγ are the hyperparameters in (8) and µβ and µγ are random
variables. Here, Σβ and Σγ are estimated in a Bayesian hierarchical framework using the
Inverse Wishart (IW) distribution when employing the MVN (weakly informative) prior.
For Bayesian MCMC estimation of the spatial split-population parametric (e.g., Weibull)
model, we additionally assign the hyperprior p(λ) to λ in light of the CAR prior approach.
Specifically, we assign the Gamma hyperprior λ ∼ Gamma(aλ, bλ) for λ [11,12]. We specify
the vague prior (aλ, bλ) = (0.001, 1/0.001) = (0.001, 1000), as for the case of for ρ. To
estimate the nonspatial frailty split-population survival model in this case, we assign the
normal prior for the model’s split and survival-stage frailties (Vi, Wi), and use the prior
described above for the model’s β, γ, and ρ parameters. To identify the nonspatial frailty
and spatial split-population model intercepts, we impose the constraint that the frailties
sum to zero, i.e., ∑i Vi = 0 and ∑i Wi = 0.

The joint posterior distribution of the Bayesian spatial split-population Weibull model
with time-varying covariates is

π(β, γ, ρ, W, V, λ, Σβ, Σγ|C, X, Z, t, t0, γ) ∝ L(β, γ, ρ, W, V|C, X, Z, t, t0)

π(W|λ)π(V|λ)π(β|µβ, Σβ)π(γ|µγ, Σγ)π(ρ)π(λ)π(Σβ)π(Σγ), (9)

where the likelihood L(β, γ, ρ, W, V|C, X, Z, t, t0) is from Equation (4) with frailties Vi col-
lected into V = {V1, . . . , VN} and Wi into W = {W1,. . . ,WN}; here, C represents the vector
of censored observations. The density, survival function, and hazard rate for this likelihood
are defined in the Supplementary Materials for the Weibull case; π(W|λ) and π(V|λ)
are defined via their respective conditional distributions in Equation (9), π(β|µβ, Σβ),
π(γ|µγ, Σγ), π(ρ), π(Σβ), and π(Σγ) are defined in Equation (8), and π(λ) is the Gamma
hyperprior for the spatial split-population parametric survival models. From (9), we can
formally state the joint posterior distribution of the time-varying nonspatial frailty split-
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population parametric (Weibull) model by incorporating the frailties Vi and Wi defined in
Equation (6) instead of W, V, and their respective CAR priors. The conditional posterior
distributions for β, γ, and ρ in the pooled (nonfrailty) parametric model with time-varying
covariates are

P(β |C, X, Z, t, t0, γ,ρ) ∝ P(C, X, Z, t, t0, β, γ,ρ)× P(β |Σβ),

P(γ |C, X, Z, t, t0, β ,ρ) ∝ P(C, X, Z, t, t0, β, γ,ρ)× P(γ |Σγ), (10)

P(ρ |C, X, Z, t, t0, β , γ) ∝ P(C, X, Z, t, t0, β, γ,ρ)× P(ρ |aρ, bρ),

where P(C, X, Z, t, t0, β, γ,ρ) is the likelihood obtained from Equation (4) after excluding the
frailty terms and P(β |Σβ), P(γ |Σγ), and P(ρ |aρ, bρ) are the priors defined in Equation (8).

The pooled (nonfrailty), nonspatial (i.i.d.) frailty, and spatial split-population survival
model using the Weibull distribution can be estimated using an MCMC algorithm for
Bayesian inference. To begin with, because closed form distributions for the posterior
distributions of β, γ, ρ, λ, W and V are not available for the spatial split-population survival
model, our MCMC method’s update scheme in this case incorporates Gibbs Sampling
(for estimating λ), the Metropolis–Hastings algorithm (for W and V given λ), and slice-
sampling [31] for updating β, γ, ρ. We use Gibbs sampling for λ, as it is easier to sample
from the conditional distribution (which is known) in this case and because the joint
distribution is not known explicitly. We employ the Metropolis–Hastings algorithm for
W and V given λ because it is difficult to sample from the conditional distribution for
W and V. Finally, we use slice-sampling for updating β, γ and ρ, as it requires little
tuning because the slice width adapts quickly to the distribution and sampler performance.
Furthermore, considering that slice-sampling draws from the posterior samples from
any prior distribution as long as these distributions have a reasonable value range of
parameters, this sampling algorithm provides researchers with flexibility in the choice
of prior distribution. This permits the use of informative, weakly informative, or non-
informative priors.

The MCMC algorithm described above proceeds as follows:

1. Choose a starting point β0, γ0, ρ0, λ0 and corresponding W0 = {W1, . . . , WN} and
V0 = {V1, . . . , VN}, then set k = 0.

2. Update Σβ ∼ π(Σβ|β), Σγ ∼ π(Σγ|γ), λ ∼ π(λ|W, V) using Gibbs sampling. The
closed form of the full conditional distributions for π(Σβ|β), π(Σγ|γ), π(λ|W, V) are
derived and defined in the Supplementary Materials.

3. Update β ∼ π(β|C, X, Z, t, W, V, γ, ρ, ¯β, Σβ), γ ∼ π(γ|C, X, Z, t, W, V, β, ρ, ¯γ, Σγ),
and ρ ∼ π(ρ|C, X, Z, t, W, V, β, γ, aρ, bρ) using the slice sampler with stepout and
shrinkage (Neal, 2003); see the Supplementary Materials for details on performing the
slice sampling operation in this step.

4. Update W ∼ π(W|C, X, Z, t, V, β, γ, ρ, λ) and V ∼ π(V|C, X, Z, t, W, β, γ, ρ, λ) via
Metropolis–Hastings.

5. Set k = k + 1, then return to Step 2 and repeat for K iterations.

The MCMC algorithm for estimation of the nonspatial frailty model is similar to
the steps delineated above, with the exception of the nonspatial i.i.d. frailties Vi and Wi
in this model being updated via Metropolis–Hastings with the proposal variance as the
conditional prior variance for these frailties. To estimate the pooled (nonfrailty) model, we
use the following MCMC algorithm, as closed forms for the posterior distributions of ρ, β,
and γ are not available:
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1. Choose the initial values of β, γ, and ρ, then set m = 0.
2. Update Σβ and Σγ via Metropolis–Hastings; see the Supplementary Material for the

closed form of the full conditional distributions for Σβ and Σγ.
3. Update β, γ, and ρ using the slice sampler with stepout and shrinkage, as described

in the Supplementary Materials.
4. Repeat Steps 2 and 3 until the chain converges.
5. After M iterations, summarize the parameter estimates using posterior samples.

3. Monte Carlo Simulations

We conducted three Monte Carlo (MC) experiments to compare the performance
of the nonspatial SP Weibull models with and without i.i.d. frailties to our spatial split-
population Weibull model. The design of our MC experiments and the results from these
experiments are presented in greater detail in the Supplementary Materials. We focus
on the Weibull case here, as the empirical applications below use the Weibull survival
distribution; however, our Monte Carlo simulation results hold for other parametric (e.g.,
log-logistic) distributions as well.

More specifically, our MC experiments simulate a split-population Weibull distributed
outcome variable that exhibits spatial autocorrelation across neighboring units in each
stage. For all experiments, we consider sample sizes of N = 100, 400, 1000, 1500, and 2000.
Note that N = 100 and N = 400 respectively correspond to a small and moderate sample
size, while N = 1000, 1500, and 2000 represent a relatively larger sample. For each model
in our MC experiments, we include one survival-stage covariate x1and two split-stage
covariates z1 and z2 = x1, as the same covariate may be included in both stages. We
incorporate information about the spatial relationship between units in our simulated data
via an adjacency matrix A. To generate A, we consider a hypothetical space with five areal
units (e.g., countries), with each unit having at least one adjacent “neighbor.” This spatial
relational information is then incorporated into the simulated data generation process,
which follows an SP Weibull distribution (see Supplementary Materials for details).

Next, recalling that the split-stage equation in the spatial split-population survival
model is provided by a binary response function that captures the effect of covariates Zi
and the associated parameter vector γ on the probability of units entering the immune
fraction (α), we have a case in which the more likely a greater share of units is to enter the
immune fraction, the higher the immune fraction level. Hence, for the MC experiments, we
set the true γ values that affect the immune fraction (via α)—calculated as the mean value
of the binary response function αi =

exp(Ziγ+Vi)
1+exp(Ziγ+Vi)

) for all i in our N-sample data—using
the pre-set true γ value and the randomly generated variables Zi (as well as the V spatial
frailties for the spatial d.g.p. This permits us to adjust the immune fraction level in a way
that is consistent with the model’s split-stage. Finally, for each experiment, we use 500
iterations in the MCMC, 100 burn-ins, and a thinning of 1, and assess the convergence of
the Markov chain via trace-plots and the Geweke convergence test.

Using these experimental conditions, we now turn to assessing our nonspatial and
spatial models of interest for three experiments. In the first MC experiment, we compare
the performance of our nonspatial and spatial split-population Weibull models when the
fraction of the immune subpopulation is fixed at 25% and the proportion of units that share
spatial frailties is held at 40%. The results from this MC experiment reveal that our spatial
split-population Weibull model outperforms both the nonspatial split-population Weibull
models in retrieving the true theoretical values of the split-stage (γ) and survival-stage (β)
covariates (Figure 1) along with the spatial frailties in both stages (Figure S1, Supplementary
Material) for small and moderate sample sizes as well as for the relatively larger sample
sizes listed above. Thus, the spatial split-population Weibull model should be favored over
the nonspatial split-population models even when a low number of observations have
spatially-dependent frailties in a split-population survival framework. The trace plots show
stability, and the models pass the Geweke convergence test.
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Figure 1. MC Experiment 1 β,γ densities for SP Weibull, NS Frailty Weibull, and Spatial SP Weibull
models for: (a) β̂0, N = 100, (b) β̂0, N = 400, (c) β̂0, N = 1000, (d) β̂0, N = 1500, (e) β̂0, N = 2000,
(f) β̂1, N = 100, (g) β̂1, N = 400, (h) β̂1, N = 1000, (i) β̂1, N = 1500, (j) β̂1, N = 2000, (k) γ̂0, N = 100,
(l) γ̂0, N = 400, (m) γ̂0, N = 1, 000, (n) γ̂0, N = 1500, (o) γ̂0, N = 2000, (p) γ̂1, N = 100, (q) γ̂1,
N = 400, (r) γ̂1, N = 1000, (s) γ̂1, N = 1500, (t) γ̂1, N = 2000, (u) γ̂2, N = 100, (v) γ̂2, N = 400,
(w) γ̂2, N = 1000, (x) γ̂2, N = 1500, (y) γ̂2, N = 2000.
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In the second MC experiment, we compare the nonspatial and spatial split-population
Weibull models’ performance when the immune fraction of the simulated split-population
Weibull-distributed outcome variable remains at 25% and the proportion of units that share
spatial frailties is 30%, 40%, 60%, and 80%. Results from Figure 2, which displays the mean
RMSEs for β̂ and γ̂ for N = 100, 400, 1000, 1500, and 2000, demonstrate that the spatial
split-population Weibull model substantially outperforms the nonspatial split-population
Weibull models at all levels of spatial autocorrelation; the mean RMSEs for the spatial SP
Weibull models are always negligible (close to 0) for all the sample sizes that are examined
in the experiment, while those of the two nonspatial SP Weibull models are critically high,
indicating a considerable level of bias. Moreover, the results show that the nonspatial
split-population Weibull models’ split and survival-stage covariates and nonspatial frailties
exhibit deteriorating coverage and lower efficiency at all levels of spatial autocorrelation.
By contrast, the spatial split-population Weibull model recovers the true theoretical values
of the split and survival-stage covariates and the spatial frailties in both stages of the
model with more accuracy, coverage, and efficiency. Therefore, for the various sample sizes
considered here, the spatial split-population Weibull model outperforms the nonspatial
models at all levels of spatial autocorrelation. Again, the trace plots show stability, and the
models pass the Geweke convergence test.
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Figure 2. MC Experiment 2 mean RMSE comparison between SP Weibull, NS Frailty SP Weibull,
and spatial SP Weibull models for (a) β̂ coefficients and (b)γ̂ coefficients with spatial dependence
changing from 30% to 80% of the data.

The third MC experiment applies the d.g.p. from Experiment 1, where the share of
units with spatially dependent frailties is held at 40% and the size of the immune fraction is
varied from 25% to 33%, 40%, 48%, and finally 60%. Figure 3a,b, which additionally shows
the mean RMSEs for β̂ and γ̂ with N = 100, 400, 1000, 1500, and 2, 000, reveals that the
split and survival stage results strongly favor the spatial split-population Weibull model
over the other two nonspatial split-population Weibull models for all the sample sizes
examine here and at all immune fraction levels; the mean RMSEs are close to 0, and are
negligible in the spatial SP Weibull models, while those for the two nonspatial SP Weibull
models are considerably higher. This indicates that the β̂ and γ̂ parameters are biased in
the latter models. Furthermore, the retrieved values of the spatial frailties from the spatial
split-population Weibull model rapidly converge to their true values with high coverage
probabilities. Thus, if the true d.g.p. is split-population Weibull in which the unit-specific
frailties exhibit spatial autocorrelation, then the spatial split-population Weibull should be
estimated when the size of the immune fraction is 25% or above for small, moderate, and
even relatively large sample sizes.
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Figure 3. MC Experiment 3 mean RMSE comparison between SP Weibull, NS Frailty SP Weibull,
and spatial SP Weibull models for (a) β̂ coefficients and (b)γ̂ coefficients with the immune fraction
changing from 25% to 60% of the data.

We conducted three additional MC experiments that we do not report here in order
to save space; these are briefly presented in the Supplementary Materials (see Figure S2
and Tables S3 and S4) . Briefly, in one set of MC experiments (Experiment 4) we increased
both the immune fraction and the share of units with spatially dependent frailties. In
another experiment (Experiment 5), we re-evaluated our primary MC results using an
alternative prior. In the third set of MC experiments (Experiment 6), we compared our
model’s performance to a Bayesian spatial SP model that incorporates spatial frailties in
just the survival stage. For each of these additional experiments, we set sims = 100 and
evaluated model performance for a variety of different sample sizes. These additional MC
experiments revealed that, unlike the nonspatial models, both the retrieved values of the
split and survival-stage parameters and the spatial frailties from the spatial SP Weibull
model converge to their true values with high coverage probabilities when the true d.g.p.
is SP Weibull in which the unit-specific frailties exhibit spatial autocorrelation.

4. Empirical Applications

Our MC experiments suggest that if spatial autocorrelation exists in the true d.g.p.,
then failing to account for it leads to faulty inferences. In applied settings, this means
that if there are a priori theoretical reasons to suspect that the survival times and immune
fractions of interest are spatially clustered, where our spatial frailty approach is superior to
nonfrailty or i.i.d. frailty split-population models. Below, we apply our Bayesian spatial
split-population Weibull model to survival data from two published studies in Political
Science about (1) democratic regime survival [17] and (2) the duration of post-civil war
peace (i.e., before civil war recurs) [18]. In both cases, we discuss theoretical reasons and
empirical evidence suggesting that these processes exhibit spatial clustering, then compare
results from our Bayesian spatial frailty model to those of nonspatial specifications.

4.1. Democratic Consolidation and Survival

Comparative political scientists often conceptually distinguish between transitional
democracies, which can revert to authoritarian rule, and consolidated democracies, in which
the “democratic regime becomes sufficiently durable that democratic breakdown is no
longer likely” [32] (p. 743). Previous empirical analyses of democratic consolidation, which
typically employ discrete choice models, consistently find that wealth (measured by GDP
per capita) has a positive and highly significant effect on the probability of democratic
consolidation [32,33]. On the other hand, presidential systems (as opposed to parliamentary
systems) have a negative but weakly significant or insignificant impact on democratic
consolidation, while the association between past authoritarian institutions and democratic
consolidation is inconsistent [32,34]. Research on the survival of democratic regimes (which
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often uses conventional parametric survival models) usually finds that, unlike presidential
systems, economic growth and parliamentary systems help democracies to endure [35,36],
while democracies preceded by military rule revert to dictatorships more quickly [34,37].
The most consistent finding, however, is that GDP per capita has a strong positive influence
on survival of democracy, leading a number of scholars to infer that democratic survival
“increases monotonically with per capita income” and then endures indefinitely after GDP
per capita reaches approximately USD 6000 [38] (p. 165).

Although these insights are important, Ref. [17] emphasizes that by employing stan-
dard duration or discrete choice models these studies assume that all democracies face
the same baseline risk of reversal to authoritarianism. This assumption is unjustified, as
the population of democracies includes “at-risk” transitional democracies along with an
“immune fraction” of fully consolidated democracies for which the risk of authoritarian
reversal is negligible. Hence, the observed survival of democracy results from two separate
processes: “democracies that survive because they are consolidated and those democra-
cies that are not consolidated but survive because of some favorable circumstances” [17]
(p. 153). Considering these two subpopulations, Ref. [17] then re-examines extant findings
about democratic consolidation and survival by estimating via MLE parametric (Weibull)
nonspatial split-population survival models (with and without i.i.d. frailties) on a dataset
of democratic spells across 133 countries between 1789 and 2001. All right-censored ob-
servations in his data are either consolidated or transitional democracies that have not yet
reverted to authoritarian rule. Thus, the split-stage in his SP survival model estimates the
probability of democratic consolidation (62% of his cases are right-censored), while the
survival stage estimates the duration of democracy among cases that eventually experience
an authoritarian reversal. He incorporates seven covariates in both stages: GDP per capita,
GDP growth, Presidential and Parliamentary systems, and previous Military, Civilian, and
Monarchical dictatorships.

Briefly, [17] found that GDP per capita has a positive and statistically significant effect
on the probability of democratic consolidation in the split-stage, while presidential systems
and democracies preceded by military dictatorships are less likely to consolidate. Economic
growth helps “transitional” democracies to survive longer, though there is no statistically
significant relationship between GDP per capita and democratic survival among these
at-risk regimes. Most other covariates are statistically insignificant, though the insignificant
coefficient for presidential systems is notably positive in the survival stage.

Despite this important contribution to the extensive literature on the durability of
democracies, the nonspatial split-population survival models employed in the original
study assumed that neither the likelihood of democratic consolidation nor the prospects
for democratic survival exhibit spatial autocorrelation. This assumption may be unten-
able, as democracies tend to cluster in space. Indeed, “since 1815, the probability that a
randomly chosen country will be a democracy is about 0.75 if the majority of its neighbors
are democracies, but only 0.14 if the majority of its neighbors are nondemocracies” [39] (p.
916). Research in political science has found that geographical proximity to (consolidated)
democracies not only encourages democratic transition in authoritarian regimes, it increases
the odds of consolidation and survival of nascent democracies, as stable democracies create
a “regional production chain” of democratic institutions, practices, and norms that are con-
ducive to democracy [40] (p. 25; and see [32,39,41]). Thus, democratic clustering reinforces
democratic norms, making it costly for elites to engage in democratic backsliding [41]. In
this way, democratic neighborhood effects may have important latent influences on both
democratic reversal and democratic survival.

Although there are clear theoretical reasons to expect spatial autocorrelation in the
d.g.p. of democratic regime survival and consolidation, we can additionally use common
tools in spatial statistics to diagnose the extent of spatial clustering in each year of the data.
Specifically, we conduct two pre-estimation tests by calculating (1) the join count and (2) the
Global Moran’s I statistic for each cross-section of democracies in the data. The join count
is a measure of the extent to which the number of observed areal units that are adjacent and
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of the same category is greater than or less than what is expected if the spatial distribution of
those categories were random [42]. In general, in a setting with two discrete categories A
and B, the join count test statistic is

Z(AB) =
AB− E(AB)√

σ2
AB

, (11)

where AB and E(AB) are the observed and expected counts of adjacent units in categories
A and B, respectively, and σ2

AB = E
(

AB2)− E(AB)2. Positive statistics indicate spatial
dispersion (units of the same category are further from each other than expected by chance),
while negative statistics indicate positive spatial clustering (units of the same category are
more likely to be adjacent than what is expected by chance.

For this application, we construct a separate cross-sectional adjacency matrix with
elements aii′ for each year in the data, wherein proximate pairs of democratic countries
(within 800 km of each other) are assigned a weight of 1 (aii′ = 1). Our outcome of interest
for the join count analysis is whether a country is identified as being “at risk” of democratic
reversal in the original dataset.

In addition, we use the Global Moran’s I statistic to assess the number of years that
democratic regimes survive as a group of clusters in space. Global Moran’s I is an inferential
statistic that measures the direction and degree of spatial clustering in continuous data [43].
Positive statistics indicate positive spatial clustering of similar values of the continuous
variable of interest, while negative statistics indicate that dissimilar values are more likely
to be proximate than if they were distributed randomly in space. Using the same adjacency
matrix described above, we use the Global Moran’s I to evaluate whether democracies
that have survived for similar periods of time exhibit spatial heterogeneity (clustering
or dispersion).

We report the join count and Moran’s I tests in detail in the Appendix A (Figure A1)
provided at the end of the paper. Briefly, the results clearly indicate significant spatial
clustering in both the probability of democratic reversal and the survival rates of democ-
racies, particularly in the post-World War 2 period. Next, we replicate the above analysis
using our Bayesian spatial SP survival model in order to compare our results to the original
nonspatial models with and without i.i.d. frailties. Because the original analysis of these
data used maximum likelihood estimation, we used the same for the nonspatial frailty and
nonfrailty models in order to exactly replicate the previous results. Our spatial SP Weibull
model incorporates spatially-weighted frailties across neighboring democracies via the
adjacency matrix A. We construct a matrix A with elements aii′ such that aii′ = 1 for each
year if the capital of country i is less than 800 km from the capital of country i′ and aii′ = 0
if countries i and i′ are greater than 800 km from each other. Using geographic proximity as
the spatial relationship of interest is appropriate, as it allows the frailties to be correlated
with those of neighboring democracies rather than assuming spatial independence even
within the same regions. Considering our Bayesian MCMC estimation approach, we in-
corporate the spatial information in A by employing separate CAR priors for the frailty
terms vector V (split-stage) and W (survival-stage), which implies a CAR structure of V|λ
∼ CAR(λ) and W|λ ∼ CAR(λ). The spatial SP Weibull model is estimated based on the
sample from [17] using the MVN prior and our MCMC algorithm described earlier and
assigning the Gamma hyperprior for λ. Here, we use the hyperparameters a = 1, b = 1,
Sβ = Ip1, Sγ = Ip2, νβ = p1, νγ = p2. Recall that Σβ is the variance of the MVN prior of
the vector β for p1-dimensional survival stage covariates and that Σγ is the MVN’s prior
of the vector γ for p2-dimensional split-stage covariates. Hence, when we employ the
Inverse Wishart (IW) distribution to estimate both Σβ, in which νβ is the hyperparameter,
and Σγ, in which νγ is the hyperparameter, we adopt the values p1 for νβ and p2 for νγ.
Finally, λ ∼ Gamma(aλ, bλ) with a vague prior (aλ, bλ) = (0.001, 1/0.001). Our Bayesian
SP Weibull model results are based on a set of 50,000 iterations after 4000 burn-in scans and
thinning of 10.



Mathematics 2023, 11, 1886 13 of 23

We begin our analysis of the split-stage results by examining choropleth maps (Figure 4a,b)
that illustrate the posterior means of the spatial frailties obtained from the spatial SP Weibull
model. The split-stage map (Figure 4a) reveals that there are distinct spatial bands in the
frailties, which range from −0.725 to 0.716 with a corresponding standard deviation of
0.31. The spatial patterns in the map suggest that there is strong spatial clustering in the
underlying factors linked to democratic consolidation, as states with a higher baseline risk
for democratic consolidation are in similar geographic neighborhoods, whereas those with
lower propensities are clustered in separate regions.

(a) (b)

Figure 4. Democratic survival application spatial frailty maps: (a) depicts the posterior mean
estimates of V (split−stage spatial frailties) and (b) depicts the posterior mean estimates of W
(survival−stage spatial frailties).

Figure 5 displays the results for each covariate from the replicated models and our
spatial frailty model. For the nonspatial models, the points represent coefficient estimates
and the bars represent 90% confidence intervals. For admittedly rough comparability
purposes, the dots in the figure represent posterior means for the spatial frailty models,
while the bars represent symmetric 90% credible intervals. Although these are certainly not
perfect comparisons, our goal here is simply to illustrate the applicability of our model and
the way in which accounting for spatial autocorrelation can affect inferences.

The dot-whisker plots in Figure 5 show that while Svolik’s results for GDP growth,
Monarchy, and Civilian are similar across the nonfrailty and nonspatial frailty SP Weibull
models, the differences in the split-stage results between these nonspatial models and
our spatial frailty model are more pronounced. For instance, the Presidential and Military
covariates are each negative and highly significant in the nonspatial SP Weibull models
with and without i.i.d. frailties. By contrast, the negative estimates for Presidential and
Military are each highly unreliable in the spatial SP Weibull model’s split-stage equation.
Thus, after we explicitly account for spatial autocorrelation in the split-stage of the SP
survival model, the relationship between each of the covariates noted above and the
probability of democratic consolidation is considerably attenuated. In nonspatial SP
Weibull models from [17], the Parliamentary dummy’s split-stage estimate is positive, albeit
insignificant. However, the estimate of Parliamentary in the spatial SP Weibull model’s
split-stage is negative (though not reliably so). Thus, the results from our spatial model
raises doubts about prior claims that parliamentary systems are strongly associated with
democratic consolidation.

Finally, we consider the split-stage parameter estimate for GDP per capita, which is
positive and statistically significant in the original nonspatial SP Weibull models with
and without i.i.d. frailties. In contrast, the split-stage estimate of GDP per capita is nega-
tive (though insignificant) in our spatial SP Weibull model. Hence, the widely accepted
positive association between higher per capita income and democratic consolidation is
neither consistent nor robust when accounting for spatial autocorrelation among neighbor-
ing democracies.
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Figure 5. Democratic consolidation stage (γ̂) coefficient results from SP Weibull, NS Frailty SP
Weibull, and spatial SP Weibull models for the following covariates: (a) GDP/cap, (b) GDP growth,
(c) military government, (d) monarchy, (e) civilian government, (f) parliamentary government, and
(g) presidential government.

Turning to the survival stage results, we first consider the choropleth map in Figure 4b,
which illustrates posterior means of the spatial frailties obtained from the Spatial SP Weibull
model. The spatial frailty values vary from −0.95 to 0.859, with a corresponding standard
deviation of 0.313. These maps again reveal spatial clustering associated with democratic
regime survival; those democracies with greater underlying propensity for democratic
survival are located near countries with similar propensities, while those with a lower
propensity for democratic survival are located in disparate geographic areas.

The plots in Figure 6 reveal additional differences between the original nonspatial split-
population model results and the new results from the Bayesian spatial split-population
model. For instance, although the original study found that the survival stage estimate of
Monarchy is positive and highly significant in the nonspatial models, this relationship is
insignificant and negative in the spatial SP Weibull model. Hence, the association between
democracies that were previously ruled by a monarch and democratic durability is tenuous
after accounting for the influence of spatial autocorrelation on democratic survival. Next,
the original survival stage estimate for Military in both the nonspatial SP Weibull models is
negative (though insignificant). In the spatial SP Weibull model, Military is again negativ;
however, unlike the nonspatial models, in this case it is statistically reliable. This suggests
that not accounting for neighborhood democracies can lead researchers to underestimate
the relationship between democratic durability and democratic states that were preceded
by military rule. Finally, while [17] challenged the confidence of previous findings with
respect to the relationship between GDP per capita and democratic survival (e.g., [35,36]),
the influence of per capita income on democratic survival in our spatial SP Weibull model
is positive and statistically reliable, consistent with the previous literature. Taken together,
a re-examination of these data on democratic survival and consolidation using the spatial
SP survival model leads to new inferences about important political phenomena.
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Figure 6. Democratic survival stage (β̂) coefficient results from SP Weibull, NS Frailty SP Weibull, and
Spatial SP Weibull models for the following covariates: (a) GDP/cap, (b) GDP growth, (c) mil-
itary government, (d) monarchy, (e) civilian government, (f) parliamentary government, and
(g) presidential government.

4.2. Post-Civil War Peace Duration

To further demonstrate the applicability of our framework, in this section we use
our spatial SP survival model to re-investigate previous findings that suggest information
transparency and other political freedoms can increase post-civil war peace survival [18].
The normative importance of consolidating peace after civil war has motivated a wide body
of research in Political Science on why certain civil wars recur and others do not. Much of
this literature has focused on the characteristics of the initial war and termination [44,45]
and the characteristics of the post-war environment, including the presence of third-party
or U.N. intervention [46–48]; ref. [18] contributes to this literature by arguing that increased
political accountability and civil liberties in the post-war period can augment the costs of
reneging on an agreement and allow governments to credibly commit to not resuming
violence. Her primary testable expectation is that “civil wars that are fought against
governments with limited accountability should be more likely to repeat themselves than
civil wars in countries with highly accountable governments” [18] (p. 1248). Estimating
conventional survival models using a sample of 77 post-civil war peace spells during
1945–2009, Ref. [18] finds support for her hypotheses in various measures of civil liberties,
democratic institutions, and rule of law; however, one of her primary variables of interest,
Press Freedom, does not reach standard frequentist levels of statistical significance.

The conventional survival models used in the aforementioned study, however, as-
sume that all wars recur at some point. A split-population survival model may be more
appropriate for studying post-war peace survival, as certain wars are at risk for recurring
while others are structurally distinct cases in which peace is “consolidated” or one side is
eliminated entirely, in which the same conflict cannot recur. Moreover, there are theoretical
and empirical reasons to believe that spatial autocorrelation may influence both the risk
of peace consolidation or of renewed war in these data. Previous research has shown that
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diffusion processes may lead to conflict contagion (e.g., [13,49,50]), while peace stability is re-
gionally clustered due to the clustering of observable and unobservable political attributes
(e.g., [39,51,52]). In the split stage, post-war countries might never return to violence if they
are surrounded by similarly peaceful countries that have demonstrated the institutional
capability and political interest to prevent the resurgence of violence in the region [49], or
if latent localized interests among elites or civilian populations to contain violence—for
instance, to prevent war recurrence in their own contiguous countries—are clustered in
space [53]. In the survival stage, stable institutions [51] or other latent geographic factors
that transcend the borders of a single state may influence the time that rebels take to remo-
bilize or that governments take to re-engage with dormant dissident movements. If any of
these unobserved factors are not randomly distributed in space, then failing to account for
this heterogeneity will lead to faulty inferences [13].

As in the previous application, we conducted Moran’s I and join count tests to evaluate
whether spatial autocorrelation exists between peace survival rates and countries that
experience a civil war and never experience another. The results (see Figure A2 in the
Appendix A) clearly indicate spatial clustering and dispersion, especially after 1960 and
prior to 1900. This pre-estimation empirical evidence suggests that spatial autocorrelation
should be taken into account when modeling the survival and consolidation of post-civil
war peace.

In our analysis of post-civil war peace, we use replication data from the aforementioned
study and specify an SP model with four covariates in the split-stage: Press Freedom; whether
the previous conflict ended in an outright Victory; percentage of Mountainous terrain; and
GDP/capita. In the survival stage, we include our main variable of interest, Press Freedom,
and control for GDP/capita, whether the previous conflict ended in a Peace Agreement, the
Intensity of the previous conflict, Ethnic Factionalization, the presence of UN Peacekeeping
forces, whether the previous conflict was over Territory, whether the country has some
Non-Contiguous territory that can be used to expedite rebel mobilization, and the percentage
of Mountainous terrain. We focus on Press Freedom because it closely captures information
transparency, which is an important mechanism of interest in the original theory, and
because the results for this variable were inconsistent with the other findings in the study.

To examine the effects of these covariates on both the probability of peace consolidation
and the survival of peace, we estimate a nonfrailty SP Weibull model and a spatial SP
Weibull model. Following the original analysis of these data, we estimate the nonfrailty
model using maximum likelihood. For the spatial model, we again define spatial proximity
as aii′ = 1 if the distance between the capitals of state i and i′ is less than 800 km and aii′ = 0
otherwise [54], though we found similar results when increasing these distances to 2000
and 2500 km. We allow the frailties between neighboring units to be spatially correlated
by employing separate CAR priors for the frailty vectors V and W, which implies a CAR
structure of V|λ ∼ CAR(λ) and W|λ ∼ CAR(λ). The spatial SP Weibull model is estimated
using the multivariate normal prior. For the slice-sampling (MCMC) algorithm, we specify
the hyperparameters as a = 1, b = 1, Sβ = Ip1, Sγ = Ip2, νβ = p1, and νγ = p2, and assign the
Gamma hyperprior λ ∼ Gamma(aλ, bλ) for λ with vague prior (aλ, bλ) = (0.001, 1/0.001).
We estimated the model with 50,000 iterations and 38,000 burn-ins. Every parameter passes
the Geweke [28] convergence test and Heidelberger and Welch [29] stationarity test.

Turning first to the choropleth maps of the spatial frailty values from the spatial SP
Weibull model in Figure 7a,b, the split-stage frailties (V) range from −1.19 to 1.49 with a
standard deviation of 0.5503, and the survival-stage frailties (W) range from −1.21 to 0.727
with a standard deviation of 0.4498. In both stages, there seem to be regional clusters of
frailty values.
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−1.19 −0.547 −0.135 0.343 1.49

(a)

−1.21 −0.427 −0.155 0.286 0.727

(b)

Figure 7. Post−war peace duration application spatial frailty maps: (a) depicts the posterior mean
estimates of V (split−stage spatial frailties) and (b) depicts the posterior mean estimates of W
(survival−stage spatial frailties).

The β and γ results for both the nonspatial and spatial SP Weibull models are reported
in Figures 8 and 9. The dots and bars are interpreted in the same way as in the previous
application. Much like the original analysis, the nonspatial SP model reveals no clear
evidence that information transparency affects the survival of peace after conflict; the
coefficient estimates for Press Freedom are statistically insignificant in both stages. In fact,
the only (weakly) significant result in the split-stage of the nonspatial model is GDP/capita,
indicating limited evidence that increased economic prosperity can increase the probability
of a civil conflict never recurring. Mountains and previous Victory appear to have no
relationship with peace consolidation, contrary to extant findings (e.g., [44]). The survival
stage results of the nonspatial Weibull model reveal that conflicts over Territory and Ethnic
Factionalization are associated with longer post-conflict peace periods, while Non-Contiguous
territory and previous war Intensity are associated with shorter peace periods, at least
among countries at risk of recurrent conflict.

SP Weibull

Spatial SP Weibull

0 5 10
Posterior Estimate

(a)

SP Weibull

Spatial SP Weibull

−4 0 4
Posterior Estimate

(b)

SP Weibull

Spatial SP Weibull

−4 0 4 8
Posterior Estimate

(c)

SP Weibull

Spatial SP Weibull

−10 −5 0 5
Posterior Estimate

(d)

Figure 8. Peace consolidation (γ̂) coefficient results from SP Weibull and Spatial SP Weibull models
for the following covariates: (a) press freedom, (b) victory, (c) mountains, and (d) GDP/cap.
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Figure 9. Peace survival stage (β̂) coefficient results from SP Weibull and Spatial SP Weibull models
for the following covariates: (a) press freedom, (b) GDP/cap, (c) peace agreement, (d) intensity,
(e) ethnic factionalization, (f) UN peacekeeping, (g) territory, (h) non-contiguous, and (i) mountains.

When we account for spatially autocorrelated frailties, however, we find remarkably
different results. First, although conflicts over Territory remain positively associated with
post-war peace survival, we cannot reliably conclude that Non-Contiguous territory, Inten-
sity, or Ethnic Factionalization have systematic relationships with peace in at-risk conflict
locations. In addition, we find that better economic opportunities are no longer reliably
associated with post-war peace consolidation, though they do have a reliable statistical rela-
tionship with the survival of peace in at-risk countries. This finding is important because it
suggests that while a stronger economy can make it more difficult for rebels to re-mobilize,
it is not a panacea for permanently exiting the “conflict trap,” as previous research has
suggested [55].

Finally, although Press Freedom appears to have no real relationship with post-war
peace survival among at-risk cases, it is positively and reliably associated with the consolida-
tion of peace after war. In other words, although a country having a higher level of press
freedom may not elongate a temporary peace when conflict is likely to recur, press freedom
is associated with a significant decrease in a country’s overall susceptibility to renewed
war. Although there remains considerable debate over whether democratization after a
conflict hinders or helps peace to endure (e.g., [56]), this evidence suggests that information
transparency and an independent media may lead to a far more durable, if not permanent,
period of domestic stability after a conflict ends.

5. Discussion and Conclusions

This has article developed a parametric spatial Split-Population Survival model that
accounts for both the probability that some observations are immune to an event of interest
and the tendency of underlying risk factors associated with political processes to cluster
in space. While the model builds upon previous work [11,12,57], it is unique in that it
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allows for spatially autocorrelated frailties in the split and survival stages. The model
incorporates time-varying covariates in both the split and survival stages. These features
allow researchers to explicitly model and statistically account for spatial heterogeneity
that may influence the probability of an observation becoming immune from an event as
well as the duration of a process among units considered “at-risk” in panel survival data.
Our innovation is distinct from extant works on spatial statistics that address different
types of spatial dependence in settings with continuous or binary dependent variables
or in conventional survival models [12,58,59], as it relaxes the assumption that all ob-
servations eventually experience the event of interest. Our MC experiments reveal that,
unlike nonspatial models, our spatial split-population survival model provides accurate
estimates when SP survival data exhibit spatial autocorrelation. Finally, we apply our
model to previously published data on widely studied phenomena in political science in
the contexts of democratic regime survival and the durability of post-civil war peace. After
accounting for the immune fraction and spatial autocorrelation in these applications, we
find evidence contrary to previous studies’ original findings, particularly in the first-stage
“cured” fraction equation.

Future work can build upon our model to devise estimation routines for survival
data with multinomial outcomes (e.g., competing risks), recurrent events, or variable time
trends; a particularly useful next step would be to apply this approach to a semi-parametric
setting [3,60]. Extant work on nonparametric solutions could benefit from this approach [61].
Although our contribution is significant in Bayesian survival modeling by allowing for
spatial frailties in the split stage rather than only in the survival stage (e.g., [11]), future
extension could increase the flexibility of our model by incorporating spatial frailties only in
the estimation of the immune fraction, while the survival stage includes only i.i.d. frailties
or no frailties. This could be useful in applied cases where a researcher believes that the
processes leading to immunity are spatially clustered while the survival probabilities of
those at risk of the event are not.

Of course, any Bayesian analysis can be sensitive to the choice of the prior distribution;
thus, applied researchers should take care to not limit themselves to the priors implemented
here depending on their topic of study. Future analytical work could continue to investigate
our model’s performance using alternative priors, such as the Gamma distribution [62].
Furthermore, further application of the model could benefit from the development of
goodness-of-fit tests for distributional assumptions in the data [63] and additional tools for
model specification [60].

Beyond the applications presented here, this Bayesian spatial split-population survival
model can be a useful tool for researchers interested in anything from success rates of
vaccines or other medical treatments, to customer analytics around the purchase of new
products, to coups d’état around the world. All of these phenomena and more tend
to involve some fraction of the population under investigation being probabilistically
immune from the event for some measurable reason(s) while being influenced by the
spatial clustering of unobserved yet meaningful factors.
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Appendix A

To conduct the join count test and Moran’s I test for assessing spatial autocorrelation
among countries possibly ‘at risk’ of democratic reversal and the survival of democracy
in the sample from [17], we constructed a separate cross−sectional adjacency matrix with
elements aii′ for each year in the data, wherein proximate pairs of democratic countries
(within 800 km of each other) are assigned a weight of 1 (aii′ = 1). Our outcome of interest
for the join count analysis is whether a country is ‘at risk’ of democratic reversal in the data;
the outcome for the Moran’s I test is the number of years each democracy has survived.
Figure A1a plots the results of the join count tests, with the difference between the observed
and expected join counts displayed with 95% confidence intervals. The figure shows
significant spatial clustering of countries possibly at risk of democratic failure, particularly
during the twentieth century. Figure A1b reports the resulting Moran’s I statistics for each
year. Clearly, a large proportion of the sampling period, most notably between 1925–1945
and from 1952–2001, exhibits positive spatial clustering in democratic survival.

(a) (b)

Figure A1. Results from the two autocorrelation diagnostics for the democratic survival application:
(a) join count and (b) Moran’s I.

minniejoo.com/research/
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As with the democratic regime survival application, we employed two tests, join count
analysis and Moran’s I, to evaluate the possibility of spatial autocorrelation in the split and
survival stages of the replication data on post−war peace survival. Figure A2a plots the
observed−expected join counts of "at risk" (non-censored) conflicts in the dataset from [18]
for each year along with their 90% confidence intervals. Negative values indicate clustering
(positive spatial autocorrelation) and positive values indicate spatial dispersion. The figure
depicts clear spatially correlated patterns of countries at risk of recurrent conflict, though
the direction of the autocorrelation varies over time. Figure A2b depicts the Moran’s I
values for spatial autocorrelation in post-war peace duration. Again, we observe significant
degrees of some variety of spatial autocorrelation in the majority of years between 1975
and 2010.
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Figure A2. Results from the two autocorrelation diagnostics for the post-war peace duration applica-
tion: (a) join count and (b) Moran’s I.
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