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Abstract: A mathematical investigation of a thermodynamical system linked with energy management
and its impact on the environment, especially climate change, is presented in this study. In this regard,
a numerical investigation of the flow and heat transfer of hydromagnetic third-grade liquid through a
porous medium. The permeability of the medium and electrical conductivity of the fluid are assumed
to be temperature functions. The appropriate mathematical formulations for momentum, energy,
and entropy equations are presented in both dimensional and dimensionless forms. We obtained the
numerical solutions using the spectral version of the Chebyshev collocation method and compared the
result with the shooting Runge–Kutta method. Numerical results for velocity, temperature, entropy,
and Bejan profiles are communicated through tables and graphs with adequate physical interpretation.
The thermal stability of the thermo-fluid system that guarantees the prevention of spontaneous fluid
heating that fuels climate change is also included in the analysis.

Keywords: variable electrical conductivity; third-grade fluid; variable porous permeability; thermal
stability; entropy analysis

MSC: 76-10

1. Introduction

One typical relationship between some of the Sustainable Development Goals (SDG),
including industrialization, a clean environment, and climate change is that of energy usage.
In this context, the impact of thermodynamics in thermal engineering and other energy
generation settings cannot be overemphasized due to the interconnectivity between heat
generation, dissipation, and its net effect on climate change. Over the last few decades, the
thermodynamics analysis of third-grade fluid (TGF) flow through a porous medium has
been of interest to researchers, scientists, and engineers, due to its numerous and diverse
applications in nature. The study finds its application in several branches of agriculture,
science, and engineering, to mention just a few. Based on the aforementioned geophysical
importance, Adesanya et al. [1] reported thermal analysis for a reactive third-grade liquid
through a non-Darcian medium bounded by Riga walls subjected to Newtonian cooling.
By applying the rapidly converging homotopy analysis method, Sajid and Hayat [2]
presented the solution to a third-grade fluid flow in a porous channel filled with permeable
materials by applying a modified Darcy law. Makinde et al. [3] reported a numerical
approach to solving unsteady, fully developed flow problems in variable viscous TGF
through a porous medium subjected to asymmetrical convective heating in which the fluid
undergoes an exothermic chemical reaction. Hayat et al. [4] discussed the steady, fully
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developed flow of third-grade liquid in a porous space under no-slip and non-moving wall
conditions using a homotopy analysis approach. Rundora and Makinde [5] examined the
influence of vertical penetration on reactive TGF flow through a Darcian medium under
heat-dependent viscosity. Baoku et al. [6] studied numerical solutions to heat and mass
transfer in a boundary layer flow of a third-grade fluid flow in an enclosed porous region.
Adesanya and Falade [7] analyzed the heat irreversibility inherent in the heat transfer of
TGF through a porous medium using the perturbation method. Salawu and Fatunmbi [8]
investigated the inherent heat irreversibility in the convective flow of variable, viscous,
third-grade combustible liquid experiencing a transverse magnetic field. Magnhsoudi
et al. [9] constructed an analytical solution to the heat transfer problem in TGF flowing
steadily through a medium with flow barriers by applying the weighted residual least
square method. Readers can see other exciting results on TGF through a restricted medium
in reference [10–13] and references cited within the work.

Over the last few decades, studies on electrical conducting fluids are becoming more
popular due to their wide range of applications in hydroponics, aquaponics, aquaculture,
electrolytes, polymers, molten metals, and many more that are too numerous to be listed.
Based on a wide application, Rahman et al. [14] used the linear dependence of electrical
conductivity on flow velocity to obtain a numerical approximation of a micropolar fluid flow
over an infinitely long inclined plane with a variable heat source. Additionally, Makinde
and Onyejekwe [15] considered the heat-dependent electrical conductivity of the power law
type for the flow and thermal analysis of a time-independent Couette flow. Hossain and
Gorla [16] presented another variant of electrical conductivity relation based on free steam
and tangential velocity for the developing flow analysis of hydromagnetic liquids. In a
related study by Eguia et al. [17], electrical conductivity was assumed to be a linear function
of temperature for unsteady dusty flow analysis. Similarly, Sivaraj and Kumar [18] studied
the unsteady developing flow of reacting Walter-B fluid along a vertical cone. Eegunjobi and
Makinde [19] utilized the power law dependence of electrical conductivity on temperature
to study the hydromagnetic slip flow between leaking walls. Salawu et al. [20] presented
the heat-dependent electrical conductivity property of an unsteady flow of Eyring–Powell
fluid undergoing Arrhenius kinetics in a non-Darcian setting. Obalalu et al. [21] analyzed
the convective magnetohydrodynamic flow of Casson nanofluid subjected to an exothermic
chemical reaction. Adeosun and Ukaegbu [22] considered the squeezed flow of a reactive
fluid experiencing variable electrical conductivity. The literature is inexhaustive when
considering the variable electrical conductivity property of hydromagnetic fluid.

Motivated by the studies in [14–22], the first interest is in investigating variable elec-
trical conductivity’s influence on the flow of third-grade liquid in the porous medium.
Secondly, the studies in [1–9] assumed constant porous permeability. In the real sense,
the permeability of any porous medium allowing the passage of viscous fluid depends
on temperature, pressure/stress field, and non-homogeneity of the permeable material
used. For example, in oil/well engineering, the flows of polymetric fluids in oil recov-
ery/steam injection in petroleum engineering, groundwater, oil in geological flows, some
areas involving water seepage in agricultural engineering, and lots more. As a result, the
main objective of this paper is to study the steady flow of hydromagnetic third-grade
fluid through a porous medium with temperature-dependent porous permeability and
electrical conductivity. The problem will be formulated in the following section with some
mathematical analysis. Section 3 will be dedicated to the numerical method of solution, and
in the Section 4, the results will be presented and discussed while the Section 5 concludes
the article.

2. Mathematical Formulation

This work studies the steady, unidirectional, fully developed flow of an electrically
conducting, pressure-driven, third-grade fluid through a porous medium with no vertical
wall penetration. The third-grade liquid is assumed to undergo a strong exothermic
chemical reaction. A magnetic field of intensity B0 is applied across the horizontal channel.
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It is further assumed that both electrical conductivity and porous permeability of the
medium are nonlinear functions of temperature as shown in the flow geometry in Figure 1.

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 14 
 

 

2. Mathematical Formulation 
This work studies the steady, unidirectional, fully developed flow of an electrically 

conducting, pressure-driven, third-grade fluid through a porous medium with no verti-
cal wall penetration. The third-grade liquid is assumed to undergo a strong exothermic 
chemical reaction. A magnetic field of intensity 0B  is applied across the horizontal 
channel. It is further assumed that both electrical conductivity and porous permeability 
of the medium are nonlinear functions of temperature as shown in the flow geometry in 
Figure 1. 

 
Figure 1. Flow geometry. 

Neglecting the unsteadiness or temporal changes and the convective components of 
acceleration, the appropriate balanced pressure and viscous forces driving the flow 
can be written as: 

( ) ( )
3 2

2
3 3 0

' ' ' ' '0 2 2 '
' ' ' ' '

dP d du du du u T B u
dx dy dy dy dy K T

μ β μ β σ
      
   = − + + − + −            

, (1)

and the energy balance equation 

( ) ( )

2 22

0 32

2
2 2

3 0

' '0 2
' ' '

' '2 '
'

m E
RTd T T du duk QC A e

dy dy dy

du u T B u
dy K T

μ β
υι

μ β σ

−        = + + +             
     + + +      



, (2)

Alongside the non-moving wall and no-slip conditions at the solid boundaries,

 

' 0, , ' ;
' 0, , ' .

a

a

u T T y a
u T T y a

= = =
= = = −

 (3)

While the wall shear stress for the determination of skin friction and heat transfer 
rate can be written as 

3

3
11

' '2 ,
' 'xy w

yy

du du dTq k
dy dy dy

τ μ β
=−=−

 
= + = − 

 
 (4)

Figure 1. Flow geometry.

Neglecting the unsteadiness or temporal changes and the convective components of
acceleration, the appropriate balanced pressure and viscous forces driving the flow can be
written as:
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, (2)

Alongside the non-moving wall and no-slip conditions at the solid boundaries,

u′ = 0, T = Ta, y′ = a;
u′ = 0, T = Ta, y′ = −a.

(3)

While the wall shear stress for the determination of skin friction and heat transfer rate
can be written as

τxy = µ
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dy′
+ 2β3

(
du′

dy′

)3
∣∣∣∣∣
y=−1

, qw = −k
dT
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(4)

Entropy changes from the spontaneous process due to heat transfer and viscous
interaction can be written as

EG =
k

T2
0

(
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0
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}

(5)

The first part of (5) is the heat transfer component of heat irreversibility while the other
part arises from viscous interaction. The permeability of the porous medium is assumed to
vary slightly with temperature, i.e., the thermal effect on permeability is of the form:

K(T) = K0eα(T−T0) ≈ K0(1 + α(T − T0)) + H.O.T, 0 < α << 1 (6)
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While the dependence of electrical conductivity on temperature is given by [20–22]:

σ(T) = σ0

(
E(T − T0)

T2
0 R

)r

, (7)

here, α represents the coefficient of the temperature difference and r is the exponent of
temperature, x′, y′ represents the Cartesian coordinates of the channel, (P, µ, β3) are fluid
pressure, viscosity, and non-Newtonian material effect, (u′, T, K(T)) are the dimensional
velocity, temperature, and porous permeability. (σ(T), B0, k) are the electrical conductivity,
magnetic field intensity, and thermal conductivity, (Q, C0, A) represents the heat of reaction,
initial concentration, and rate constant. (ι, m, υ) are Plank’s constant, reaction exponent,
and frequency of vibration. Using the following dimensionless parameters and variables,

y = y′
a , u = u′
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0
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0 a2
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we arrive at the following dimensionless nonlinear and coupled boundary-value problem:
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The contribution of each parameter to the entropy profile can be monitored using the ratio:

Be =

(
dθ
dy
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dθ
dy

)2
+ λγ
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(

du
dy

)2
)
+

((
1 + 2κ

(
du
dy

)2
)
(1− αθ)S2 + H2θr
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) (10)

The dimensionless quantities (u, θ, G) are velocity, temperature, and pressure gradi-
ent, (H, ε, Da) are Hartmann number, activation energy parameter, and Darcy number,(
S2, α, Ns

)
are shape factor, coefficient of electrical conductivity, and dimensionless entropy

generation, (κ, λ, Be) are the third-grade parameter, Frank–Kameneskii parameter, and
Bejan ratio, respectively.

3. Spectral Collocation Method of Solution

To obtain the solution to the coupled boundary-value problem (9), we apply the
idea of the dense set to take a polynomial approximation as suggested in the Weierstrass
approximation theorem for the existence of a solution. In this way, we assume that the
solution of (9) can be approximated by taking:

u(y) ≈ uN(y) =
N
∑

j=0
bjΦj(y),

θ(y) ≈ θN(y) =
N
∑

j=0
cjΦj(y)

 (11)
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where Φj(y) represents spectral Chebyshev polynomials and
(
bj, cj

)
are the unknown

coefficients to be determined. In this way, the residues that denote the difference between
the exact solution of (9) and the approximated solutions are given by

R1 = 1 +
(

uN
y + 2κ

(
uN

y

)3
)

y
−
((

1 + 2κ
(

uN
y

)2
)(

1− αθN)S2 + H2θNr
)

uN ,

R2 = θN
yy + λ

((
1 + εθN)me

θN

1+εθN + γ

{(
uN

y

)2
(

1 + 2κ
(

uN
y

)2
)
+

((
1 + 2κ

(
uN

y

)2
)(

1− αθN)S2 + H2θNr
)

u2N
})

 (12)

with
uN(−1) = 0 = uN(1), θN

y

∣∣∣
y=−1

= 0 = θN
y

∣∣∣
y=1

. (13)

where yi are points within [−1, 1] = [y0,yN ]. Then the Gauss–Lobato points for the colloca-
tion points are

yj = − cos
(

jπ
N

)
, j = 0, 1, 2, . . . , N. (14)

Which are evaluated at

R1
(
yj
)
= 0 = R2

(
yj
)
, j = 0, 1, 2, . . . , N. (15)

The derivatives for dependent variables are obtained as

dru
dyr =

N

∑
j=0

bi
druj

dyr and
drθ

dyr =
Np

∑
j=0

cj
drθj

dyr . (16)

The differentiation matrices at each Gauss–Lobato point are

dru
dry

= D(r)u = Dru r = 1, 2, 3, . . . and
drθ

dry
= D(r)θ = Drθ, r = 1, 2, 3, . . . (17)

So that the vector forms, defined as

u = (u(y0), u(y1), . . . , u(yN))
T

θ = (θ(y0), θ(y1), . . . , θ(yN))
T

}
, (18)

which are used to convert the coupled, nonlinear, boundary-value problem into a set of
algebraic equations. By utilizing the NDSolve algorithm code in Wolfram Mathematica,
the spectral collocation result for (9) is confirmed by the shooting Runge–Kutta method as
reported in Tables 1 and 2.

Table 1. Numerical validation when λ = 0.5, ε = 0.2, m = 0.5, Bi = 20, α1 = 0.1 = α2, κ = 0.5,
G = γ = H = r = S = 1.

y u(y)CWRM u(y)RK45 |u(y)CWRM−u(y)RK4|
0 0.29059333168978096 0.2905933626764475 3.098666651046855× 10−8

0.1 0.2875531229984736 0.28755315707369733 3.407522375376004× 10−8

0.2 0.2784580603387541 0.27845809831693963 3.797818554085452× 10−8

0.3 0.26337977611466257 0.2633798176311869 4.151652432948793× 10−8

0.4 0.24242311286613746 0.24242315706503897 4.419890151097228× 10−8

0.5 0.21571064483575425 0.21571069190190728 4.70661530305172× 10−8

0.6 0.18336924938712212 0.18336929955583225 5.016871013063806× 10−8

0.7 0.14552094841986923 0.14552100275459876 5.433472952121043× 10−8

0.8 0.10227800886883381 0.10227806869495099 5.982611717136876× 10−8

0.9 0.05374120503311206 0.053741270769143465 6.573603140297424× 10−8

1.0 −2.306642251952988× 10−20 7.112594643000738× 10−8 7.112594643003045× 10−8
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Table 2. Numerical validation when λ = 0.5, ε = 0.2, m = 0.5, Bi = 20, α = 0.1, κ = 0.5, G = γ =

H = r = S = 1.

y θ(y)CWRM θ(y)RK45 |θ(y)CWRM−θ(y)RK4|
0 0.38590264401948615 0.38590263681021386 7.209272290253921× 10−9

0.1 0.38190747745163284 0.3819074704013799 7.050252937013113× 10−9

0.2 0.36994346490495467 0.36994345794711025 6.957844411736858× 10−9

0.3 0.3500734997990253 0.35007349292163265 6.877392655368908× 10−9

0.4 0.322397158501689 0.3223971517395266 6.762162385598458× 10−9

0.5 0.28704280983610114 0.28704280313984776 6.696253385118922× 10−9

0.6 0.24415664136968146 0.24415663474092741 6.628754045667762× 10−9

0.7 0.1938888308327938 0.19388882426219917 6.570594623944714× 10−9

0.8 0.13637721443702794 0.13637720796479974 6.472228197829111× 10−9

0.9 0.07172886591491089 0.07172885987750592 6.037404964853721× 10−9

1.0 −2.853996136427998× 10−17 −5.010838847582127× 10−9 5.010838819042166× 10−9

4. Results and Discussion

Tables 1 and 2 reveal the results of comparing the two numerical methods used to
solve (9) with parameter values used for the computation. The two results point to a unique
numerical approximation. Table 3 shows the rapid convergence of the weighted residual
method based on spectral collocation. Table 4 presents the effects of various parameters
on thermal flow stability. As seen from the table, porous permeability extends the critical
value of the Frank–Kameneskii parameter, thus stabilizing the flow. Similarly, the third-
grade parameter also delays the early occurrence of instability in the flow field. However,
increasing magnetic field intensity and shape factor parameter values encourage thermal
instability in the flow field.

Table 3. Convergence of critical values α = κ = H = S = 0.1, γ = 1 = G = r.

N Nu(ε=0.1,m=0) λc(ε=0.1,m=0) Nu(ε=0.2,m=0.5) λc(ε=0.2,m=0.5)

5 2.846627970782652 0.9374126233474899 3.3625398187527153 0.9572961968391648
10 2.8501958216533407 0.9361333473082082 3.3789867582903286 0.9568015766586552
15 2.8501681280213513 0.9361332230608462 3.378984457190358 0.9568015916975717
20 2.8501680805234675 0.9361332229338021 3.3789844559157363 0.9568015917674281
25 2.8501680600340458 0.9361332229334971 3.3789844559157363 0.9568015917671002
30 2.850168051013584 0.9361332229334965 3.3789844559157363 0.9568015917670978

Table 4. Numerical result for stability analysis r = 1,∈= 0.2.

α κ γ H S λc

0.1 0.1 1 0.1 0.1 0.9568015917674281
0.3 0.1 1 0.1 0.1 0.9568150977269292
0.5 0.1 1 0.1 0.1 0.9568287821788171
0.1 0.3 1 0.1 0.1 0.9602351070037033
0.1 0.5 1 0.1 0.1 0.9624900150111185
0.1 0.1 2 0.1 0.1 0.9182714895582226
0.1 0.1 1 0.3 0.1 0.9563995116349202
0.1 0.1 1 0.5 0.1 0.9562084981492455
0.1 0.1 1 0.1 0.5 0.9563131736440517
0.1 0.1 1 0.1 1 0.9571020598593034

Figure 2 reveals the Frank–Kameneskii parameter’s effect on the third-grade fluid’s
temperature-dependent electrical conductivity. From the plot, an increase in the heat of
the reaction from the initial liquid concentration produces a slight drop in the maximum
flow velocity. This decline in flow peak is directly connected with the electrical resistance
of the fluid to allow for passage of the electric current due to reduced ion formation in the
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liquid. In Figure 3, the rise in the Frank–Kameneskii parameter shows that the temperature
distribution within the flow domain increases. This positive rise in temperature is due
to a rise in the heat of the reaction, indicating that heat significantly flows into the flow
domain from the surroundings. The significant increase in fluid temperature distribution
(as shown in Figure 3) and the almost negligible decrease in the velocity maximum, as
shown in Figure 2, reveal that the system’s entropy mainly depends on heat transfer rather
than viscous interactions, as shown in Figure 4. Moreover, Figure 5 represents the effect
of the Frank–Kameneskii parameter on the Bejan profile. From the plot, it is evident that
the viscosity of the fluid becomes infinite at the center, thus BE(λ, y) = 0 at the core center.
Beyond this point, towards the channel walls, the magnitude of attains BE(λ, y) = 0.25.
This means that, at the walls, heat transfer irreversibility contributes to heat irreversibility.
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Figure 5. Effect of the Frank–Kameneskii parameter on Bejan profile.

Figure 6 represents the effect of the porous permeability variation parameter on flow
velocity. The plot reveals that the flow velocity maximum rises with increasing values
of the passable permeability parameter. This is because as temperature increases, there
is a reduction in the viscosity of the third-grade fluid. This encourages flow due to the
increased permeability of the porous matrix. The increase in porous permeability with the
temperature of the fluid is presented in Figure 7. The result shows that the fluid’s porous
permeability improves temperature distribution within the flow channel. This is connected
with the reduced activation energy of the combustible liquid. Figure 8 shows the effect
of variations in porous permeability on the entropy generation rate. The fact that flow
velocity and temperature distribution increases with this parameter indicates that frictional
interaction within the fluid layer is negligible. Therefore, the entropy profile is on the rise
across the channel. Finally, fluid viscosity-related irreversibility dominates significantly
over heat-transfer irreversibility at the core center of the flow channel. In contrast, heat
transfer irreversibility is more prominent at the walls, as seen in Figure 9.
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Figure 6. Effect of the porous permeability variation parameter on flow velocity.
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Figure 7. Effect of the porous permeability variation parameter on fluid temperature.
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Figure 8. Effect of the porous permeability variation parameter on entropy profile.
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Figure 9. Effect of the porous permeability variation parameter on Bejan profile.

Figure 10 shows the effect of magnetization on the flow of third-grade fluid. The
velocity peak declines with increasing magnetic field strength, as seen in the plot. This
decline is physically correct since the spinning of fluid particles encourages fluid thickening;
therefore, flow velocity declines with the increasing intensity of the magnetic field. Similarly,
the kinetic energy of the fluid particles is expected to decrease due to fluid thickening.
Therefore, the liquid temperature distribution declines, as seen in Figure 11. The combined
effect of reducing flow velocity and temperature shows that heat transfer and fluid friction
irreversibility will uniformly decrease across the flow channel, as observed in Figure 12.
The Bejan ratio signifies the dominating viscous effect over heat transfer irreversibility at
the core region of the flow channel, while irreversibility from heat transfer is more at the
walls as seen in Figure 13. The bifurcation study in Figure 14a,b shows the variation of the
Nusselt number with the Frank–Kameneskii parameter. The reaction exponent, m, has a
stabilizing effect on third-grade fluid’s thermal stability.
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Figure 10. Effect of Hartmann number on flow velocity.
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Figure 11. Effect of Hartmann number on fluid temperature.
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Figure 12. Effect of Hartmann number on entropy profile.
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Figure 13. Effect of Hartmann number on Bejan profile.
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5. Conclusions

In this work, numerical simulations have been conducted to study the heat irre-
versibility inherent in the steady flow of hydromagnetic third-grade fluid through a porous
medium with temperature-dependent porous permeability and electrical conductivity. The
spectral collocation method solved the dimensionless nonlinear equations and validated
the results using the shooting Runge–Kutta method. The agreement between the two
numerical results suggests the accuracy of the two numerical methods in handling the
coupled nonlinear boundary-value problem. The significant contributions to knowledge
from this study are:

i. The effect of the increasing values of temperature-dependent porous permeability
in the present study reveal that it stabilizes the flow and elevates both velocity and
temperature while encouraging entropy generation;

ii. The influence of rising temperature-dependent electrical conductivity parameters
destabilizes the flow, lowering both flow and temperature peaks while discouraging
entropy generation in the flow field.
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