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Abstract: Harmonic estimation is essential for mitigating or suppressing harmonic distortions in
power systems. The most important idea is that spectrum analysis, waveform estimation, harmonic
source classification, source location, the determination of harmonic source contributions, data
clustering, and filter-based harmonic elimination capacity are also considered. The feature extraction
method is a fundamental component of the optimization that improves the effectiveness of the
Harmonic Mitigation method. In this study, techniques to extract fundamental frequencies and
harmonics in the frequency domain, the time domain, and the spatial domain include 67 literature
reviews and an overall assessment. The combinations of signal processing with artificial intelligence
(AI) techniques are also reviewed and evaluated in this study. The benefit of the feature extraction
methods is that the analysis extracts the powerful basic information of the feedback signals from the
sensors with the most redundancy, ensuring the highest efficiency for the next sampling process of
algorithms. This study provides an overview of the fundamental frequency and harmonic extraction
methods of recent years, an analysis, and a presentation of their advantages and limitations.

Keywords: harmonic; frequency domain; time domain; fundamental frequency
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1. Introduction

Distributed energy resources have increased the penetration rate of renewable energy
sources but have also led to intermittency and poor power quality [1]. To address this,
a microgrid combining partially distributed energy resources with a utility grid [2] has
been proposed. Harmonic distortion has been proposed to increase the additional losses of
electrical equipment, overheating it and reducing equipment efficiency and utilization. The
harmonic problem of the microgrid has become a major issue with two main sources: elec-
tronic power devices and nonlinear loads [3]. Electronic power devices, such as inverters,
rectifiers, and static compensators, which generate high-frequency harmonics that can be
suppressed by LC or LCL filters [4], are widely used. Nonlinear loads are the main reason
for generating output voltage drop, which leads to the distortion of the inverter output
voltage waveform. To reduce harmonics and improve system efficiency, anthropological
compensation strategies have been studied [3].

Harmonics affect power quality and increase system losses by up to 27%. Power
quality issues are manifested in voltage, current, or frequency deviations, resulting in
the failure or malfunction of equipment [5]. Common power issues are temporary or
steady-state voltage or frequency variations such as impulsive or oscillatory transients and
voltage sags. Voltage sags and dips are caused by short circuit faults and motor starting [6].
Harmonics derate transformers and affect high-frequency controllers, while transients and
voltage sag influence protection and control equipment. Alternating current drives ride
through interruptions, but induction motor starters and DC drive contactors require backup
RC circuits [7].
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Extracting the fundamental component of harmonics using traditional and modern
techniques is a research trend. It determines the exact harmonic type and is an input to the
control algorithms to select the appropriate compensating current for the lost current in
the source [3]. The shunt adaptive power filter (SAPF) is a suitable choice for the trend of
using modern optimization techniques in the selection of compensating currents, providing
high efficiency for compensating the current loss caused by harmonics [8]. Reactive power
compensation is the administration of reactive energy to improve the performance of
the AC system. It is seen in two ways: load and voltage support. The aim is to achieve
an improved power factor and real power balance, while voltage support is necessary
to reduce voltage fluctuations at a given terminal [9]. In both cases, the reactive power
that flows through the microgrid must be effectively controlled and compensated. Active
harmonic filters work on the principle of measuring the magnitude and frequency of the
currents (from 1st order to 50th order) of the load [3,8]. The processor will analyze the data
and send a signal to control IGBT opening and closing and to bring harmonic currents from
the 2nd order to 50th order with the same magnitude and opposite direction as the system
harmonic current to eliminate all harmonic currents after the position of connection to the
electrical system of the active harmonic filter (Figure 1). The processor performs analysis
and extraction algorithms for harmonics more accurately and faster, and the harmonic
removal efficiency increases accordingly.
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Figure 1. Shunt adaptive power filter (SAPF) in three-phase power supply.

Synthetic evaluation studies on the frequency domain and time domain harmonic com-
ponent extraction methods have been carried out (Table 1). However, there are still many
methods of extracting harmonic components in the signal that have not been evaluated
by researchers and graduate students. This study conducts a literature review of studies
on the frequency domain (the Adaptive Harmonic Wavelet Transform (AHWT) method
and Sliding Discrete Wavelet Transform (SDWT) method), time domain (the Empirical
Mode Decomposition (EMD) method, Sliding Window EMD (LWEMD) method, Adaptive
Harmonic Decomposition (AHD) method, and Adaptive Model-Based Scheme With Short
Sliding Analysis Window (AMS) method), and space domain (Head-Related Transfer Func-
tions (HRTF) method) harmonic extraction to provide the most comprehensive overview
and a document for future researchers.
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Table 1. A brief overview of previous literature review documents on methods of extracting harmon-
ics in signals.

Domain Methods of Extracting Feature Ref Years

Time
domain

Selective Harmonic Elimination Pulse-Width Modulation
(SHEPWM) Power signal [10] 2017

Statistical Time-Domain Features method, Upper and Lower
Bound of Histogram method, Autoregressive (AR) Coefficients
method, Hjorts’ Parameters method, Singular Value
Decomposition (SVD) method, Piecewise Aggregate
Approximation (PAA), and Adaptive Piecewise Constant
Approximation (APCA) method

Vibration signal [11] 2017

Mathematical Morphology (MM) Operators method Electroencephalogram
(EEG) signal [11] 2017

SRF algorithm, pq Theory algorithm Power signal [12] 2017

Fitting a Sum of Exponentials method, Fitting a Straight Line to
the Later Stage method

Pulsed Eddy Current
(PEC) signal [13] 2019

ADALINE Technique,
Self-Tuning Filter (STF) method Power signal [14] 2019

Convolutional Neural Network (CNN) Raw signal [15] 2020

Particle Swarm Optimization (PSO), Power signal [16] 2020

Zero-Crossing Rate (ZCR) method, Short Time Energy (STE)
method, Auto-Correlation-Based Features method,
Rhythm-Based method

Audio signal [17] 2020

Frequency Domains

Fast Fourier Transform (FFT) Method, Eigenvector methods
(EM), Wavelet Transform (WT), and Auto-Regressive
method (ARM)

Electroencephalogram
(EEG) signal [18] 2014

Wavelet Transforms (WT) method, Independent Component
Analysis (ICA) method, Principal Component Analysis
(PCA) method

Electroencephalogram
(EEG) signal [19] 2015

Statistical Frequency-Domain Features, Spectral Skewness,
Spectral Kurtosis, Spectral Entropy and Shannon Entropy
Feature methods, Short-Time Fourier Transform (STFT) method,
Wavelet Transform and Wavelet Decomposition methods,
Wigner–Ville Distribution (WVD) method

Vibration signal [11] 2017

Learning Techniques (Genetic Algorithm (GA)) and Artificial
Neural Network (ANN), Sliding Window Fourier
Analysis (SWFA)

Power signal [12] 2017

Short-Time Fourier Transform (STFT) method, Continuous
Wavelet Transform (CWT) method, Hilbert–Huang Transform
(HHT) method

Electroencephalogram
(EEG) signal [20] 2017

Linear Predictive Coding (LPC) Coefficients method, Code
Excited Linear Prediction (CELP) method, Linear Spectral
Frequency method

Audio signal [17] 2020

Permutation Entropy (PE) method, Dispersion Entropy (DE)
method, Empirical Wavelet Transform (EWT) method, Reverse
Dispersion Entropy (RDE) method

Raw signal [21] 2020

Fourier Transform (FT) method, Fast Fourier Transform (FFT)
method, S-Transform method, Wavelet-Transform (WT) method Power signal [22] 2021

Space domain
Fractal Dimension method, Correlation Dimension method,
Approximate Entropy method, Largest Lyapunov Exponent
method, Kolmogorov–Smirnov Test method

Vibration signal [11] 2017
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The main characteristics of the power signal include the phase angle (θ) and magni-
tude amplitude. The phase origin is calculated from the fundamental component values
of the voltage signal (Vabc for three-phase sources). In practice, the power supply sup-
plies many loads, including linear and non-linear loads. Non-linear loads include power
frequency converters, power supply switches, and LED lighting systems [22]. They are
the main source of harmonics in the power supply. Harmonics generated in the power
supply cause phenomena such as transformer explosion, heating on the surface of electrical
equipment, and the reduced operating efficiency of electrical equipment using power due
to source quality supplied with poor quality power [23]. Therefore, determining the lost
current correctly and accurately and selecting the correct, sufficient amount of current to
compensate for the number of current losses in the power supply generated by the harmon-
ics is a promising future study area for researchers. Analyzing, extracting, and detecting
harmonic characteristics play an important role in harmonic mitigation [24]. There has
been much research on harmonic mitigation methods in the last few decades. However, the
effectiveness of these studies is still limited. Finding a method to implement the harmonic
mitigation that brings the most optimal effect is still an open issue for future researchers.

In an application using a shunt adaptive power filter (SAPF) in a three-phase power
supply (Figure 1), the lost source current (iL) is compensated by the current extracted
from the SAPF (iF); the supply current (iS) is affected by the harmonics arising from
the non-linear load. The harmonic processing block provides an algorithm for handling
load current (iL) and extracting fundamental frequency and harmonic current (iL,harm).
The voltage/current controller then generates a PWM pulse from the reference voltage
signal

(
Vre f

)
fed to the SAPF filter. In some cases, harmonic voltage needs to be detected

by methods such as a series adaptive power filter or hybrid adaptive power filter and
distributed generation to implement power quality improvement [25,26].

Two methods of detecting harmonics in power supply by extracting harmonics are
considered:

• Detecting the overall harmonic, i.e., performing the removal of the fundamental
frequency component of the load current (IL), which extracts only the harmonics in
the form of a signal [27].

• Selective harmonic detection is the practice of isolating harmonics into a set of signals
and extracting them at the output [28,29].

The evaluation of the overall harmonic detection method, the selective harmonic
detection method, has many advantages:

• Controlling investment costs for harmonic compensation and improving power quality
in a reasonable way [5,30].

• The compensation system has delay time, trigger time, and delay time corresponding
to different delay angles of different harmonic types. Selective harmonic compensation
allows individual signals to be corrected since each harmonic parameter is adjusted
from a single offset angle relative to the hysteresis angle [28].

• The shunt adaptive power filter can be installed in combination with a passive filter
that performs the system’s hybrid compensation function. The SAPF ensures a low-
order harmonic function and the low-pass filter (LPF) performs a high-order harmonic
compensation function [31]. However, the LPF is large and does not respond to
low-order harmonics. The SAPF has the limitation of not responding to high-order
harmonics (high frequency) and the SAPF has a high switching frequency [32]. This
increases the electromagnetic interference and insulation stress. In the case of using
a hybrid compensation method, it is necessary to select the corresponding reference
signal for the SAPF [33].

The fast, accurate harmonic extraction method helps the filter to identify and provide
suitable compensation for the lost current in the power supply quickly because harmonics
change frequently in the power supply [34]. From different devices, the issues of different
grid phases and, correspondingly, different harmonic detection arise but they are both
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closely related to real-time harmonic extraction and detection in the power supply. The
mesh phase detection method performs the separation of the positive sequence into the
basic signal component from the noisy signal [35]. The selective harmonic detection method
performs the function of extracting individual harmonics from the current or voltage signal
of the disturbed signal [36]. The main objectives of this study include:

• A review of studies related to harmonic feature extraction in the last few decades.
• The frequency and time domain harmonic feature extraction methods and hybrid

methods in harmonic feature extraction operation are systematically reviewed.
• The formulas and mathematical models used for the extraction of harmonics in the

frequency and time domains are studied and evaluated in detail in this study.
• The overall evaluation and comparison of the processing time efficiency of each

harmonic extraction method in the frequency domain and the time domain.
• The identification of the limitations of the harmonic extraction methods in the fre-

quency domain and in the time domain. At the same time, it raises open issues for
future research.

This research paper is structured as follows: Section 2 presents the effects of harmonics.
Section 3 shows the content of harmonic signal analysis. Section 4 details the harmonic
feature extraction technique. Section 5 demonstrates the comparison high light on the
harmonic feature extraction technique and the future research topic and Section 6 describes
the content of the conclusion.

2. Effects of Harmonics

Harmonics are a form of interference that directly affect power quality and have a
very bad effect on the equipment and machinery used in a factory. Harmonics cause
cables to overheat, damaging insulation [37]. Harmonics reduce motor life, cause motor
overheating, and induce a loud operating noise [38]. Harmonics give rise to CB overload,
overheating, and transformer explosion (while the amount of electricity used is still less
than rated). Harmonics cause circuit breakers, aptomats, and fuses to be affected for
unknown reasons [39]. Harmonics cause serious harm to the capacitor by damaging the
dielectric, bulging the capacitor, reducing the life of the capacitor, and even causing an
abnormal capacitor explosion [40]. Harmonic interference affects telecommunications
equipment and automation systems. Harmonics cause measuring equipment to operate
incorrectly, and they cause energy waste too (Figure 2). Harmonics occur when the diode
rectifier has no passing current and the current goes directly to the inverters while the AC
voltage at the input is less than the DC voltage at the capacitor. The sinusoidal shape of
the source current is completely distorted when a case of harmonics arises for only a few
seconds. The harmonics generated in the power supply cause heating of the conductors, the
insulation is broken, the performance of the electrical equipment is reduced, and the life of
the electrical equipment is reduced over time. The motor of electrical equipment operates
with noise and it is easy to generate heat harmonics that are not well controlled and can
damage the dielectrics in the capacitors, shorten the life of the capacitors, and potentially
blow up the capacitors. Harmonic currents in rotating machines cause heating effects such
as eddy current losses proportional to the square of the frequency [3,8]. Harmonic cycles
can cause additional losses by inducing higher frequency currents and negative torques in
machine rotors. Harmonic currents can lead to the overloading of power factor correction
capacitors and the derating of cables. Harmonic components add phantom power to the
total power consumption of a transformer, causing it to overload, heat up, and burn. They
heat up and burn conductors, causing serious losses in the electrical system. In a three-
phase system, the neutral conductor is heated or burned to create a stable system. The N-G
(neutral-earth) voltage is too large. The breaker jumps for unknown reasons. This causes
the failure of the PF reactive power compensation capacitor. Noise in communication
systems can lead to the overload of capacitors and transformers due to the weakening
of harmonic currents, resulting in the formation of an LC circuit. As for systems using
backup generators or used on ships and drilling rigs, when running, due to the generator’s
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inductance characteristics that are higher than conventional transformers, harmonics will be
amplified more seriously, from 3 to 4 times, and the seriousness for the system equipment is
greater and can even cause a generator fire, which is very dangerous and costly. Harmonics
also cause losses on the coil and steel core of the motor to increase, distort the torque
form, reduce machine efficiency, and cause noise to affect the error of measuring devices,
leading to erroneous measurement results. More dangerously, the higher-order harmonic
waves can also generate motor shaft torque or cause mechanical resonance oscillations
that damage mechanical components in the engine, causing the flickering of electrical
equipment and lighting, affecting people, and causing electromagnetic waves to propagate
in space, affecting transceivers.

Mathematics 2023, 11, 1877 7 of 39 
 

 

 
Figure 2. Effects of harmonics. 

The load in the distribution power supply generates many types of harmonics, af-
fecting the quality of use and the performance of power-using equipment, reducing its 
efficiency. Much electrical equipment damage, such as fire or explosion, is also caused by 
harmonic sources [37]. The higher frequency harmonic current causes electrons to flow to 
the outside of the conductor, which reduces the current-carrying capacity, resulting in a 
decrease in power rating causing heat gain and damage to the insulation. Harmonic dis-
tortion has a direct effect on the power factor [38,39]. Many harmonics have a low power 
factor value. The heat losses generated by the harmonics shifting to use and pay for the 
reactive power and harmonic currents can cause the capacitor to fail [33,39]. 

Transformer aging or heating on the surface of the transformer body is mainly caused 
by harmonics in the power supply [38]. The transformer structure is formed by winding 
several coils placed close to each other and separated by insulation; when the power flows 
through the windings with harmonics generated in them, overvoltage results [34]. Load 
occurs in the transformer, generating heat in the transformer body, reducing the operating 
efficiency of the transformer, and reducing the insulation strength of the windings in the 
transformer. Eddy currents due to stray flux losses cause overheating. A temperature in-
crease of 7–10 degrees can reduce the life of an insulating material by half. 

The protection of electrical equipment is provided in the electrolytic power supply 
devices that perform overload protection, short circuit protection, or protection from over-
heating generated in electrical circuits, eliminating all the effects potentially affecting the 
performance of electrical equipment. Today, industrial plants use a lot of switching de-
vices such as inverters and switches of devices that control dynamic mechanisms in in-
dustrial machines [32,35]. The factory floor uses a lot of high-intensity discharge (HID) 
bulbs to light up the factory. The power source generates harmonics from the above-men-
tioned devices and the harmonics themselves reduce the performance of those devices. 
Eliminating harmonics, or minimizing harmonics generated in the power supply, requires 
new research to improve electrical equipment the response level of which does not create 
harmonics in the power supply; this is a difficult requirement for researchers. Creating 
methods to eliminate harmonics in power supplies by computer programs combined with 
high-tech equipment is also a promising research direction. 

In the era of the 4.0 industrial revolution, many nonlinear loads are produced and 
operated in the distribution power system. Nonlinear loads such as LEDs, computer mon-
itors, power supply switches, and transformers perform the communication between the 

Figure 2. Effects of harmonics.

The load in the distribution power supply generates many types of harmonics, af-
fecting the quality of use and the performance of power-using equipment, reducing its
efficiency. Much electrical equipment damage, such as fire or explosion, is also caused by
harmonic sources [37]. The higher frequency harmonic current causes electrons to flow
to the outside of the conductor, which reduces the current-carrying capacity, resulting in
a decrease in power rating causing heat gain and damage to the insulation. Harmonic
distortion has a direct effect on the power factor [38,39]. Many harmonics have a low power
factor value. The heat losses generated by the harmonics shifting to use and pay for the
reactive power and harmonic currents can cause the capacitor to fail [33,39].

Transformer aging or heating on the surface of the transformer body is mainly caused
by harmonics in the power supply [38]. The transformer structure is formed by winding
several coils placed close to each other and separated by insulation; when the power flows
through the windings with harmonics generated in them, overvoltage results [34]. Load
occurs in the transformer, generating heat in the transformer body, reducing the operating
efficiency of the transformer, and reducing the insulation strength of the windings in the
transformer. Eddy currents due to stray flux losses cause overheating. A temperature
increase of 7–10 degrees can reduce the life of an insulating material by half.

The protection of electrical equipment is provided in the electrolytic power supply
devices that perform overload protection, short circuit protection, or protection from
overheating generated in electrical circuits, eliminating all the effects potentially affecting
the performance of electrical equipment. Today, industrial plants use a lot of switching
devices such as inverters and switches of devices that control dynamic mechanisms in
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industrial machines [32,35]. The factory floor uses a lot of high-intensity discharge (HID)
bulbs to light up the factory. The power source generates harmonics from the above-
mentioned devices and the harmonics themselves reduce the performance of those devices.
Eliminating harmonics, or minimizing harmonics generated in the power supply, requires
new research to improve electrical equipment the response level of which does not create
harmonics in the power supply; this is a difficult requirement for researchers. Creating
methods to eliminate harmonics in power supplies by computer programs combined with
high-tech equipment is also a promising research direction.

In the era of the 4.0 industrial revolution, many nonlinear loads are produced and
operated in the distribution power system. Nonlinear loads such as LEDs, computer moni-
tors, power supply switches, and transformers perform the communication between the
power source and the loads. These devices generate harmonics in the power supply, har-
monics causing significant damage to the performance and operability of the loads [37,38].
Harmonic currents arise in the power supply and seriously affect the communication
system [41]. At magnetic couplings in telephones or information transmission sources,
harmonics will cause interference and the information transmitted will not meet the require-
ments or the transmission speed will be delayed [39]. The method that communication
equipment suppliers use to minimize harmonics affecting communication lines consists in
using equipment to shield the amount of inductance in parallel conductors and building a
device to measure and confirm the information interference system. The maximum value
of the harmonic current can be much higher than the sine wave shape at the fundamental
frequency, causing false tripping [40].

Automation devices use a lot of motors, and the performance of the motors is severely
affected by the harmonics generated by the current. Many types of motors operate ac-
cording to the mechanism of using the PWM method to adjust the operating mechanism;
harmonics cause the mechanism to operate not as desired, e.g., torque ripples created by
wave interaction harmonics cause this mechanical oscillation [35]. The harmonics gener-
ated by the PWM inverters affect the efficiency of the electric motors much more than the
power supply [34]. Nonlinear loads in the distribution power supply create levels that
negatively affect the performance of transformers. The transformer feeds the rectifier six
pulses with a DC load and power dissipation factors such as total harmonic distortion
(THD) compromise efficiency in the transformer. Squirrel-bed synchronous motors operate
on the flux density at the clearances to increase the torque properties of the motor [35,39].
However, the harmonics generated at those gaps affect the magnetic field of the stator
and the rotor negatively, thus impacting the torque of the motor. Researchers calculate
the flux density at the gaps using the Finite Element Analysis (FEA) formula. Usually,
parallel capacitors are used to perform the function of filtering high-order harmonics or
a single-tuned harmonic filter. High-frequency voltage components cause eddy current
losses in the core of the AC motor. These losses increase the operating temperature of the
fault as well as the coil around the core and can cause undesired torque spikes. Excessive
harmonic distortion will cause a lot of zero interference of the current waveform, affecting
the timing of the voltage regulator. This may cause the generator to stop working.

3. Harmonic Signal Analysis

Harmonic component extraction analysis of the signal is performed in four stages
(Figure 3). Stage 1 performs normalization of the signals in the frequency domain or in
the time domain. Signal normalization includes many different functions, depending on
the type of sensor, so there is no single device that can provide complete normalization
for all sensors. Time-frequency representation (TFR) describes parameters performed
over time including the instantaneous RMS current parameter, instantaneous fundamental
RMS current parameter, total harmonic distortion (THD) parameter, and parameter of
instantaneous TnHD. The characteristics of TFR are temporally informative and spectrally
informative (Equations (2)–(6)). The signal is analyzed according to the frequency shown
through the spectral shapes; the time-varying frequency is shown specifically according to
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the time-varying spectral information shape. Time-frequency representation is considered
a useful tool for monitoring the signal being analyzed by frequency. Stage 2 performs the
estimation of basic signal components and parameters. Instantaneous root-mean-square
(RMS) voltages and Instantaneous root-mean-square (RMS) fundamental voltages are
the square roots of the mean over one cycle of the square of the instantaneous voltage
(Equations (7) and (8)). A quantitative unit is used to measure harmonic distortion in a
signal source. Harmonic distortion or total harmonic distortion (THD) is measured as the
ratio value of the total power of all harmonic components to the power of the fundamental
frequency. The lower the THD value, the more complete the system’s output signal wave-
form is in the sine wave shape and the less noise or distortion there is. The THD value
index is used as an indicator of power quality assessment according to the IEEE 519:2014
standard. The smaller the THD value, the less heat generation the power system has, and
the lower the thermal power emissions in the field. This proves that the power source is of
good quality and improves the performance of electrical equipment. The monitoring and
evaluation of power quality can be carried out according to the IEEE 519:2014 standard.
Stage 3 performs the classification of signal characteristics. The instantaneous total har-
monic distortion (THD) parameter of the harmonics is calculated according to the measure
of the harmonic content in a waveform and express value according to Formula (9) and
the instantaneous total non-harmonic distortion TnHD(t) parameter of the harmonics is
calculated according to Formula (10). In addition, Stage 4 harmonizes the classification
of signal types. A deterministic classification method used in practical applications is a
rule-based classifier that is easy to implement and relies on threshold settings and expert
rules. The classification of harmonic signals is based on parameters for efficient input
threshold settings and expert rules that meet IEEE 519:2014 (Figure 4). The harmonic signal
in the power supply is normalized to an intensity signal that is analyzed in the frequency
and time domains [42,43]. The basic parameters in the harmonic extraction analysis system
include RMS fundamental voltage, total waveform distortion, instantaneous RMS voltage,
total non-harmonic distortion, and calculated total harmonic distortion [38,39]. The above-
stated parameters are used as input parameters for the harmonic component classification
and analysis system.

The harmonic signal model is analyzed to extract the signal of the fundamental
components of the harmonics according to the IEEE 519:2014 standard [36–39], which is
built according to Formula (1) according to the exponential signal complex shape.

xwd(t) = ej2π f0t + A·ej2π f1t (1)

where f0 is the fundamental signal frequency, f1 is the harmonic or interharmonic frequency
and t is the time. As for harmonics, A = 0.25 and f1 = 250 Hz. As for interharmonics,
A = 0.25 and f1 = 275 Hz.

Signal time-frequency distribution is a method of representing a signal in terms of
time frequencies that include components such as Spectrum, Gabor Transform, and S-
Transform [42,43].

The spectrum chart implements the distribution of the fundamental components of the
signal in terms of frequency and time. The Hanning window performs a narrow analysis
of signal components by the frequency with a window length of 512, and the frequency
and time resolution of the signal are performed according to Formula (2).

Px(t, f ) =
∣∣∣∣∫ ∞

−∞
x(t)w(τ − t)·e−j2π f tdt

∣∣∣∣2 (2)

where x(t): signal, w(n): the presence of white noise, f : a function of the frequency.
The Gabor Transform method performs the analysis of the local properties of a set of

signals with frequency and time domain characteristics [43]. The resolution of the signals
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in the frequency domain and in the time domain, always having the same Gabor Transform
value for all frequencies, is shown using Formula (3):

C(n, k) =
∫ ∞

−∞
x(τ)h∗(n, k)dτ (3)

where x(t): signal, h∗(n, k): a dual basis of biorthogonal basis.
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The S-Transform (ST) method is considered as a time-frequency spectral localization
method that is made by combining two methods, namely Short-Time Fourier Transform
(STFT) and Wavelet Transform. The ST method also uses the window model, but ST
implements the method of expanding the windows in Gaussian form and perfecting the
signal resolution in the frequency domain represented by the real distribution spectra and
virtual shows detailed according to Formulas (4)–(6).

ST(τ, f ) =
∫ ∞

−∞
h(t)

| f |√
2π

e
−(τ−t)2 f 2

2 ·e−j2π f tdt (4)
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g(t) =
1

σ
√

2π
·e
−t2

2σ2 (5)

σ( f ) =
1
| f | (6)

where h(t) is the signal, g(t) is the scalable Gaussian window, and σ( f ) is a control param-
eter for the Gaussian window.
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The ST method responds well to signals with resolution in the low-frequency domain,
and for high-frequency resolution signals the ST method responds well in the time domain.
The ST method performs signal component extraction analysis in two types of resolution
according to the frequency of different signals. For signals with a high-frequency resolution,
the ST method reduces the length of the window, and for signals with a low-frequency
resolution the ST method expands the length of the window.

The Instantaneous RMS voltage parameter of the harmonics is calculated according to
the root-mean-square (RMS) voltage expressed using Formula (7):

Vrms(t) =

√∫ fx

0
Px(t, f )d f (7)

where Px(t, f ) is the time-frequency representation signal and fs is the sampling frequency.
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The instantaneous total waveform distortion (TWD) parameter of the harmonics is
calculated according to the total waveform distortion relative signal energy existing at a
non-fundamental frequency and expressed according to Formula (8):

TWD(t) =

√
Vrms(t)

2 −V1rms(t)
2

V1rms(t)
(8)

where:

V1rms(t) =

√
2
∫ fhi

flo

Px(t, f )d f , fhi = f0 + 25Hz and fl0 = f0 − 25Hz

where V1rms(t) is the instantaneous RMS fundamental voltage; f0 is the fundamental
frequency.

The instantaneous total harmonic distortion (THD) parameter of the harmonics is
calculated according to the measure of the harmonic content in a waveform and express
value according to Formula (9):

THD(t) =

√
∑H

h=2 Vh,rms(t)
2

V1rms(t)
(9)

The instantaneous total non-harmonic distortion TnHD(t) parameter of the harmonics
is calculated according to the following Formula (10):

TnHD(t) =

√
Vrms(t)

2 −∑H
h=0 Vh,rms(t)

2

V1rms(t)
(10)

The characteristics of harmonic signals are classified according to their parameters
and expressed in detail by the following formulas:

Vrms,ave =
1
T

∫ T

0
Vrms(t)dt

Average of total harmonic distortion (THDave):

THDave =
1
T

.
∫ T

0
THD(t)dt

Total nonharmonic distortion (TnHDave):

TnHDave =
1
T

.
∫ T

0
TnHD(t)dt

The classification of harmonic signals is based on parameters for efficient input thresh-
old settings and expert rules that meet IEEE 519:2014 (Figure 4).

It measures the performance of analytical methods that extract harmonics in the time
domain and the frequency domain by evaluating the feasibility and performance of the
methods based on accuracy.

The analysis accuracy is expressed through the accuracy of the signal characteristic
measurements, and the mean absolute percentage error (MAPE) value is used as a value
to evaluate the accuracy of the physical measurement expressed using Formula (11). The
lower the MAPE for the value, the better the performance of the signal characteristic that
responds to the measurement.

MAPE =
1
N

N

∑
n=1

∣∣∣∣ xi(n)− xm(n)
xi(n)

∣∣∣∣× 100% (11)



Mathematics 2023, 11, 1877 12 of 36

where xi(n) is an actual value, xm(n) is the measured value, and N is the data number.
Perform analysis on over 100 unique signals in a defined time-frequency domain

for accuracy, model complexity, and memory capacity size to select the most efficient
harmonic analysis method. Table 2 for the results of the precision analysis indicates that the
S-Transform has the highest accuracy. The frequency resolution method for low frequencies
is the most suitable.

Table 2. The MAPE of the accuracy of the analysis.

Signal
Characteristics

Time-Frequency Domain

Spectrogram Gabor Transform S-Transform

Vrmsave 0.1571 0.627 0.0621

THDave 0.1541 0.963 0.0592

TnHDave 0.1573 0.930 0.0593

Table 3 shows the results of the analysis of the computational complexity of the model;
the results show that the Spectrogram, Gabor Transform, and S-Transform properties are
nearly the same. This confirms the choice of the Harmonic Analysis method by windows
of the same length and signal for the time-frequency domain.

Table 3. The MAPE of the computational complexity of the analysis.

Signal
Time-Frequency Domain

Spectrogram Gabor Transform S-Transform

Normal 20,509,504 1,061,408,000 21,876,460

Harmonic 20,504,605 1,061,408,000 21,876,460

Interharmonic 20,513,609 1,061,408,000 21,876,460

Table 4 shows the results of the analysis of the memory size. The results show that
Gabor Transform gives the smallest memory size, and Spectrogram and S-Transform give
the largest memory size.

Table 4. The MAPE of the memory size of data analysis.

Signal
Time-Frequency Domain (Mbyte)

Spectrogram Gabor Transform S-Transform

Normal 2,285,356 2,240,000 2,287,825

Harmonic 2,285,356 2,240,000 2,287,825

Interharmonic 2,285,356 2,240,000 2,287,825

4. Harmonic Feature Extraction Technique

The methods of extracting harmonic components in different signal sources in the
frequency domain, time domain, and space domain are shown in Figure 5. The time
domain harmonic extraction methods include Empirical Mode Decomposition (EMD),
which performs the decomposition of the signals into IMF but still ensures the common
settings, meeting the goal of separating the high-frequency waves from the X(t) signal and
creating symmetrical differential oscillations. Sliding Window EMD (LWEMD) implements
X(t) signal separation in operation to separate harmonics from the carrier and shorten the
amount of signal filtering by applying Hermite interpolation to detect inflection points at the
intersections; the score is 0. Adaptive Harmonic Decomposition (AHD) detects error pulses
with a high noise ratio in the time domain and separates error spectra. The AHD performs
frequency shifting of the harmonic components, and the adaptive model-based scheme
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with a short sliding analysis window (AMS) implements features of online sampling
and corrects analytical models directly in the data to extract the harmonic component
in real time and monitor the frequency offset at each cycle of the data. The Frequency
Domain Harmonic Component Extraction method is the Adaptive Harmonic Wavelet
Transform (AHWT), which uses a time-frequency separation technique to exploit harmonic
features, cross-compare wavelet features, and identify important features in the signal to
determine the efficiency and damage of the structure. Sliding Discrete Wavelet Transform
(SDWT) is a frequency domain current control algorithm and performs RC half-cycle
correction that halves the delay value and response time; the Spatial Domain Harmonic
Component Extraction method is Head-Related Transfer Functions (HRTF), which is a
sparse representation of the spherical wavelet basis modeled, consisting of scaling functions
at the lowest scale level and wavelet functions at higher levels.
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4.1. Harmonic Feature Extraction Technique in the Time Domain
4.1.1. Empirical Mode Decomposition (EMD) Method

This monitors modern systems in real time using sensors that measure unstable signals.
The Empirical Mode Decomposition (EMD) method works by intrinsic mode function (IMF)
analyzing the multi-component signal in the time domain. Traditional EMD algorithms
consider a sample part x(t) of the signal X(t) extracted in terms of T− and T+ according to
the two largest and smallest extremes.

A part of signal x(t) oscillates at the starting point, which is the maximum or the
minimum, and it passes through the maximum or minimum point and ends with the
maximum or minimum, respectively. This is manifested as a high-frequency wave that
varies im f (t) at part of the signal x(t). The wave has a low frequency r(t) at part of the
signal x(t). The signal X(t) is represented using Formula (12):

X(t) = im f (t) + r(t), t ∈
(
T−, T+

)
(12)

where r(t) is a residual and can be thought of as some slowly changing behavior.
At the IMF, the response levels of im f (t) high-frequency waves include:
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• From a zero-crossing point, the minimum and maximum number of points must be
equal or different.

• The amplitude between the maximum and minimum points must be symmetrical to
meet the requirement that the mean value of the signal must be 0.

The EMD method performs the analysis of the IMF proficient signals but still ensures
the common settings that meet the objective of separating the high-frequency waves from
the X(t) signal and symmetrical oscillations. The high-frequency im f (t) is the first IMF
level of the X(t) signal. It represents the detected high-frequency wave by the correspond-
ing points of the maximum and minimum point levels. An upper envelope connects the
maximum points and a lower envelope connects the minimum points. Spline interpolation
between those values is called the extreme point. The sum of the upper and lower bounds
is a fixed number. However, the mean value of the signal in the IMF analysis is a constant
and is obtained based on Equation (13).

r1(t) = X(t)− im f1(t) (13)

The EMD algorithm is explained in detail in the following steps (Table 5) and the flow
chart of EMD is shown in Figure 6.

Table 5. The EMD algorithm.

Step No. Explained in Detail in the Following Steps

Step 1: All extremes in signal X(t) are detected

Step 2: Connecting all maxima points by spline interpolation to form a contour on Xmax(t)

Step 3: Connecting all the minimum points by spline interpolation to form the lower contour Xmin(t)

Step 4: Calculating the average value between the upper and lower contours according to Formula (14)
m(t) = Xmax (t)−Xmin (t)

2
(14)

Step 5: Finding the value of the high-frequency wave starting at IMF of signal X(t) according to Formula (15)
im f1(t) = X(t)−m(t) (15)

Step 6:

The first RF value im f1(t) is considered the input value of the next screening process. The values of the envelopes
and the mean of the high-frequency waves are first deduced. This value is calculated according to Formula (16).

This screening process is repeated until the IMF attributes have values that are met
im f1(t) := im f1(t)−m(t) (16)

Step 7:
Reducing the initial signal X(t) according to the mode with the first high-frequency response level and determining

the first uniform residual r1(t) according to the Formula (17)
r1(t) = X(t)− IMF1(t) (17)

Step 8:
The residual value of the first signal part is considered input to the second IMF. This process is repeated until the

IMF value is extracted based on Formula (18)
ri(t) = ri−1(t)− im fi(t) (18)

The algorithm will terminate when the remainder ri(t) no longer contains the extreme
value. That is, the X(t) signal no longer extracts any more IMF values. In conclusion, the
EMD method performs the analysis of X(t) signals into components containing frequency
characteristics in descending order through a filtering process. The original signal is
analyzed for response according to Formula (19):

X(t) = rn(t) +
n

∑
i=1

im fi(t) (19)

where n is the number of modes.
The EMD method extracts the signal according to the response time domain to solve

the frequency resolution problem of the X(t) signal and the EMD algorithm stops when
the extreme value is no longer detected. However, the traditional EMD method performs
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eight steps of signal filtering to perform full harmonic extraction; the applications at the
windows in the signal extraction process are time-consuming and this is the weak point
of this EMD method. This results in some unextracted low-frequency signals. The EMD
method is not suitable for SAPF filters.
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4.1.2. Sliding Window EMD (LWEMD)

The LWEMD technique uses a counter that accumulates enough data for signal analy-
sis. The signal screening procedure is performed similarly to the signal screening procedure
of the EMD method. The signal analysis data are buffered during the iteration process,
securing the signal in the data block and performing the first data block selection analysis to
perform a smooth merger. However, the LWEMD method also encounters some challenges
when performing signal extraction analysis:
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• After each difference iteration, the IMF provides different values at the data blocks. It
is necessary to ensure that the IMF value is continuously connected to the data blocks
by selecting the number of iterations together.

• The bulk data performed by the screening process make it difficult for real-time
analysis of the final signals. Therefore, discarding the final signal is necessary.

• There is a selectively fixed number of iterations for signal filtering. However, low-
frequency signals are still present inside the data blocks. Therefore, this low-frequency
signal rejection solution should be studied and implemented when removing the
harmonic signal from the carrier in the X(t) signal.

The LWEMD method is implemented into X(t) signal analysis to separate harmonics
from the carrier. The LWEMD method improves the filtering process from the EMD method
by shortening the number of signal iterations by applying the Hermite interpolation to
generate an inflection point signal at zero intersections. From here, the envelopes are
calculated and all low-frequency signals are cut off for the duration of the algorithm. Some
advantages discovered when implementing the LWEMD algorithm in harmonic extraction
are as follows:

• The filtering process is streamlined and reduced when implementing the algorithm.
• The detection of low-frequency harmonics in data blocks is guaranteed.
• The execution time to extract harmonics from the signal is less than the traditional

EMD method.

The LWEMD algorithm is detailed step-by-step (Table 6) and the flow chart applying
LWEMD to harmonic extraction is shown in Figure 7.

Table 6. The LWEMD algorithm.

Step No. Explained in Detail Step-by-Step

Step 1: Creating data block from buffer 1 dataset.

Step 2: Implementing the Hermite spline interpolation method for the buffer region of the
signal X(t).

Step 3: Calculating the average value according to Formula (20).
m1(t) =

Xmax (t)−Xmin (t)
2

(20)

Step 4: Finding the IMF value at the first data block of the signal according to Formula (21).
im fi(t) = X(t)−m1(t) (21)

Step 5:
Calculating the residual value of the signal in the first signal data block according to Formula

(22).
r1(t) = X(t)− im f1(t) (22)

Step 6: Obtaining the value of r1(t)

Step 7:
Applying interpolation Hermite spline to detect extremes and calculating contours according

to Formula (23).
dr1(t) =

dr1(t)
dt

(23)

Step 8: Extracting the value at time i where no dr1(t) value exists.

Step 9:
Calculating the mean value of signal m2(t) according to the residual value of signal r1(t)

according to Formula (24).
m2(t) =

r1max (t)−r1min (t)
2

(24)

Step 10: Finding the IMF value at signal value m2(t) according to Formula (25).
im f2(t) = r1(t)−m2(t) (25)

Step 11: Calculating the residual value at signal value m2(t) according to Formula (26).
r2(t) = r1(t)− im f2(t) (26)

Step 12: Cutting off the block signal at time i.

Step 13: The data are saved in the last block and at least seven extreme points are saved for duplicate
data blocks.
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4.1.3. Adaptive Harmonic Decomposition (AHD) Method

Vibration signals from rotating motors contain error pulses that give rise to frequency
modulation effects. In the frequency domain at a uniform interval, there is a connection
between two pulses including the fault-causing pulse and the pulse of a harmonic cluster.
In a definite resonance sequence, this symphony helps determine the placement of samples
and spectrum distribution of the signal and detects periodic pulses that cause errors. The
adaptive harmonic decomposition method detects error pulses with a high noise ratio in
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the time domain and discrete error spectra even in the case of low signal-to-noise (SNR).
The error pulse detection algorithm is detailed in the following steps (Table 7).

Table 7. The error pulse detection algorithm.

Step No. Explained in Detail in the Following Steps

Step 1:

The camcorder generates vibration pulses that form error pulses and is mathematically modeled for the error
pulse according to Formula (27).

g(t) = s(t) + n(t) = A(t).cos
[
2π
∫ t

0 f (τ)dτ + ϕ0

]
+ n(t) =

=
p
∑

p=1
Sp(t) + n(t) =

p
∑

p=1
ap.cos

(
2π fp(t) + θp

)
+ n(t)

(27)

Where s(t) is an impulse signal consisting of harmonics. P has a frequency in the resonant series g(t) with IA and IF
modulation levels. n(t) represents additional noise signals and noise components arising from the source of the

camera vibrations.

Step 2:
An error pulse detection model is designed by separating the Sp(t) harmonics in the resonant range of the g(t)

angular signal and putting them back together. This proposed harmonic extraction method can extract harmonics
with an SNR cap that responds to component decomposition and bandwidth shrinkage.

Step 3:

The adaptive harmonic decomposition method performs frequency shifting of the harmonic components. Given
an initial frequency fpof the series resonant to the Pth harmonic part, the Sp(t) harmonic of the moment with the

Pth harmonic component is transformed according to Formula (28).
Sp(t) = Up(t).cos

(
2π fp(t)

)
+ Vp(t).sin

(
2π fp(t)

)
(28)

The two harmonic displacement components are described using Formula (29) Up(t) = ap.cos
[
2π
(

fp − f̃p

)
(t) + θp

]
Vp(t) = −ap.sin

[
2π
(

fp − f̃p

)
(t) + θp

] (29)

Step 4:

where the estimated frequency f̃p is close to the original frequency fp value. The two shifting harmonics Up(t),
Vp(t) form good variation patterns in the time domain and noise to zero-frequency trends in the frequency

domain. The Sp(t) harmonic, at the time of having the Pth harmonic component, is reconstructed to the original
amplitude and phase according to Formulas (30) and (31).

a
(p| f̃p= fp)

=
√

U2
p(t)−V2

p (t) (30)

θ
(p| f̃p= fp)

= tan−1
[−Vp(t)

Up(t)

]
(31)

Step 5:

Based on the aforementioned frequency change operation, optimization is performed followed by discretization
according to the estimated frequency value and the Sp(t) harmonic component is reproduced in the Pth harmonic

according to Formula (32):
min{

Up
}

,
{

Vp
}

,
{

f̃p

}{τϑ

(
Up, Vp, f̃p

)}
=

min{
Up
}

,
{

Vp
}

,
{

f̃p

}{∅ω2
p2
+∅V2

P2
+ ϑg−

(
CpUp + Sp.Vp

)2
2

} (32)

where ∅ second order deviation operator is used to calculate a quantitative value for the smoothness of harmonic
displacement components Up(t), Vp(t). ϑ Penalty coefficient and discrete variables g sampled over time

{t0, t1, . . . , ti, . . . , tl−1} are calculated according to Formulas (33)–(36).
g = [g(t0), g(t1), . . . , g(tl−1)]

T (33)
UP =

[
Up(t0), Up(t1), . . . , Up(tl−1)

]T (34)

VP =
[
Vp(t0), Vp(t1), . . . , Vp(tl−1)

]T (35)

Cp = diag
[
cos
(

2π f̃p(t0)
)

, cos
(

2π f̃p(t1)
)

, . . . , cos
(

2π f̃p(tl−1)
)]

(36)

Sp = diag
[
sin
(

2π f̃p(t0)
)

, sin
(

2π f̃p(t1)
)

, . . . , sin
(

2π f̃p(tl−1)
)]

(37)

Analyzing the Sp(t) harmonic component at the time of the Pth harmonic by updating, and updating the details
of the optimal equation according to Formula (37).

4.1.4. Adaptive Model-Based Scheme with Short Sliding Analysis Window (AMS)

This improves power quality by providing the correct and sufficient amount of current
loss compensation in the power supply. It fully and in detail determines the fundamental
and harmonic components of a power supply that condition the efficiency of the power
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supply’s lossy current compensation operation. The weakness of the frequency domain
method of harmonic extraction is that it generates a sampling delay of at least one cycle and
depends on the frequency resolution. The weakness of the method of extracting harmonic
components in the power source by the time domain method is that it does not guarantee
the stability and deviation of the interference.

The proposed adaptive model-based scheme with a short sliding analysis window
method fulfills the features of online sampling and directly corrects analysis models in the
data to extract the harmonic component in real time and monitor the frequency offset at
each cycle of the sample data. It extracts the harmonic component accurately, providing
timely compensation for the loss of current, improving the power quality, and improving
the working efficiency of the new method. It extracts the fundamental and harmonic
components of sample data online. It sets the point of the harmonic signal to follow the
sine wave shape.

The power signal (S) in discrete time (Sn) form of the amount of sample collected (N)
during the (∆t) period is presented as a sine component (H) according to Formula (38):

Sn =
H

∑
h=1

ah.cos(nhw1∆t + θh), n = 0, 1, . . . , N − 1 (38)

where ah: amplitude, θh: initial phase angle, w1 = 2π f1: fundamental angular frequency.
To simplify the calculation, Formula (1) is analyzed according to Formula (39):

Sn =
H

∑
h=1

(
Ah.ejnhw1∆t + A∗h.e−jnhw1∆t

)
=

H

∑
h=1

(
Ah.xn

h + A∗h.(xn
h)
∗) (39)

where Ah = ahejnhw1∆t

2 : complex amplitude, xh = ejnhw1∆t, and (∗): complex conjugate
calculation.

The amplitude value (A) calculated by minimizing the error between the actual number
of samples, sn, and its estimate is presented using Formula (40):

A = argmin

(
N−1

∑
n=0

∣∣Sn − Ŝn
∣∣2) (40)

Complex amplitude estimation is according to Formula (41):

Â =
(

XTX
)−1

.XT .S (41)

where T: Transpose of a matrix.
The amplitude and phase angle of the h-th harmonic are arguments of the complex

amplitude and are expressed by Equations (42) and (43):

ah = 2|Ah| (42)

θh = arg{Ah} (43)

Harmonic component extraction generates a minimal error because the fundamental
frequencies of the signals in the power supply are time-biased and deviated from their
nominal values due to the power imbalance between the power supply and the loads on
demand. There are many methods used to modify the X matrix when frequency bias occurs.
The Frequency Domain Interpolation (FDI) method analyzes and detects the fundamental
frequency in a better manner. However, frequency resolution and delay of at least one cycle
are incurred depending on the finite amount of the analysis window in FDI. The Kalman
filtering method and the PLL-based technique perform estimation error tracking and time-
domain parameter tuning of the system to perform the synchronization of the results from
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the measurement. However, the weakness of this method is that the method of determining
the parameters is not suitable for maintaining the stability of the signal quantity and
improving the accuracy and convergence speed. It prevents long durations arising in
frequency domain methods and creates numerical instability in time domain methods. The
short sliding window technique performs signal analysis (sn) from Equation (2) to form a
low-pass filter according to Equation (44), described as follows:

s1−n = A1xn
1 + A∗1 .(xn

1 )
∗ (44)

observing three consecutive data samples and describing them in detail according to
Equation (45):

s1−n−2 = A1.xn−2
1 + A∗1 .

(
xn−2

1

)∗
s1−n−1 = A1.xn−1

1 + A∗1 .
(

xn−1
1

)∗
s1−n = A1xn

1 + A∗1 .
(
xn

1
)∗ (45)

The assumed linear relationship of three consecutive samples is shown in Equation (46).
The fitting parameter (ε) is considered the error estimation parameter described by
Equation (47), with the estimated sample being ŝ1−n.

ŝ1−n = s1−n−2 + ε.s1−n−1 (46)

ε = argmin(E) = argmin
(

N
∑

n=3
|s1−n − ŝ1−n|2

)
=

= argmin
(

N
∑

n=3
|s1−n − s1−n−2 − ε.s1−n−1|2

) (47)

The minimum error estimate (E) is presented by Equation (48) and then the linear
estimation parameter is reconstructed according to Equation (49):

dE
dε

= 2
N

∑
n=3

(s1−n − s1−n−2 − ε.s1−n−1).(−s1−n−1) = 0 (48)

ε =
∑N

n=3(s1−n−1).(s1−n − s1−n−2)

∑N
n=3
(
s2

1−n−1
) (49)

Representative equations of three samples are reconstructed according to Equation (50):

A1.xn−2
1 + A∗1 .

(
xn−2

1

)∗
+ ε.A1.xn−1

1 + ε.A∗1 .
(

xn−1
1

)∗
=

= A1.xn
1 + A∗1 .

(
xn

1
)∗

=> x2
1 − ε.x1 − 1 = 0

(50)

The fundamental frequency information of the three sample signals is shown at x1
according to Equation (51):

x1 =
ε± j
√

ε2 + 4
2

= ejw1∆t = cos(w1∆t) + jsin(w1∆t) (51)

The fundamental frequency components of the three sample signals containing the
matching parameter (ε) are shown by Equation (52):

f1 =

cos−1
(

∑N
n=3 (s1−n−1 )(s1−n−s1−n−2)

2 ∑N
n=3 s2

1−n−1

)
2π∆t

(52)
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Fundamental frequency value ( f1) performs an analysis model tuning operation con-
ducting the X-matrix modification function, which improves the accuracy of the fundamen-
tal frequency and harmonic component extraction in the signal.

The benefits of the AMS solution are that it monitors frequencies by sliding window
function and performs analysis model modification to improve the accuracy of real-time
varying fundamental frequency and harmonic extraction. The sliding window in N on-
line acquisition samples helps in normal frequency domain signal analysis and frequency
monitoring. The harmonic extraction is performed quickly, regardless of frequency reso-
lution. The fundamental frequency component ( f1) prevents the numerical imbalance of
conventional time domain techniques and helps to determine the appropriate parameters
(Figure 8).
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The limitation of the AMS method is that it uses a low-pass filter that defines the pa-
rameters to match the frequency response to the fundamental signal due to the attenuation
of the signal magnitude. The study of modifying frequency detection by a new method
that is better than the low-pass filter method is promising.

4.2. Harmonic Feature Extraction Technique in the Frequency Domain
4.2.1. Adaptive Harmonic Wavelet Transform (AHWT)

The components of a wave signal include frequency content or time frequency. Adap-
tive harmonic wavelet transform uses a time-frequency separation technique to exploit
highly efficient response features and outperforms empirical mode decomposition (EMD)
methods. The AHWT method uses a deterministic basis to extract the features of the signal
in the time-frequency domain. The cross-compared wavelet and AHWT characteristics
confirm important features in wave signals to determine the efficiency and damage of the
waveform structure. The AHWT method implements one filter bank; at each filter, a specific
frequency range (m2π, n2π), 0 ≤ m ≤ n is designed, which is called the parameter level.
The size of each filter is designed to be small and complete in the frequency domain, also
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known as the ideal sequence pass filter. A complete filter forms an orthogonal wavelet and
is detailed by Equation (53):

wmnk(t) = wmn

(
t− k

n−m

)
=

exp
[
in2π

(
t− k

n−m

)]
− exp

[
im2π

(
t− k

n−m

)]
(n−m)i2π(t)

(53)

The value of the generalized harmonic wavelet is obtained by the inverse Fourier
transform according to Formula (54):

wmnk(w) =

{
1

(n−m)2π
e−1w k

n−m , m2π ≤ w ≤ n2π

0 , otherwise
(54)

where the integer K is the displacement parameter in the region (m, n) and each level of
the K value represents a frequency range in the frequency domain. The advantage of the
harmonic wavelet method is that the signal is analyzed within a limited range of specific
frequency ranges.

The discrete harmonic wavelet transform is based on the Fast Fourier Transform
(FFT) method, which responds well to the signals of sensors operating in real-world
environments that collect time series signal data {x(r), r = 0, 1, 2, . . . , N − 1}; Fourier
coefficients {F(q), q = 0, 1, . . . , N − 1} and F(q) are calculated using the Fast Fourier
Transform (FFT) Formula (55).

F(q) =
1
N

N−1

∑
r=0

x(r).exp
(
− i2πrq

N

)
(55)

The harmonic wavelet coefficient {amnk} is calculated using Formula (56).

amnk =
n−m−1

∑
l=0

x(r).exp
(
− i2πkl

n−m

)
, k = 0, 1, . . . , n−m− 1 (56)

This study reconstructs the original time series from the parameters for the harmonic
wavelets function. However, in discrete transform, continuous wavelet functions are
replaced by corresponding circular continuous functions according to Formula (57):

WC
mnk(r) =

1
(n−m)

n−1

∑
l=m

exp
(

i2πl
(

r
n
− k

n−m

))
(57)

The signal S(r) is determined in the time unit interval according to Formula (58):

S(r) =
n−1

∑
k=m

{
amnk.WC

mnk(v) + amnk.WC
mnk(r)

}
(58)

The selection of {(m0, n0), (m1, n1), . . . , (ml−1, nl−1)} parameter pairs must begin with
the m0 = 0 value and continue with each pair that touches each other until nl−1 = N f . N f
is the Nyquist frequency and l is the total number of levels.

The strength of the harmonic wavelet lies in the flexible selection of parameter pairs
(m, n) as the basis for the possible subharmonics. In a case where a wavelet level (m,
n) is determined in a frequency band, that signal is separated by the Wavelet Transform
method. This demonstrates that the Harmonic Wavelet Transform method has the potential
to perform the same detection. The point of this issue is what method to use to choose the
parameter pair (m, n) accordingly. According to the signal processing theory, a signal whose
signal energy is sparsely concentrated in a few basic functions is considered a good signal.
The method of Shannon entropy according to Formula (59) is implemented by the original
Harmonic Wavelet Transform Hybrid Improvement method to select a suitable pair of (m,
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n) parameters. Each pair of {(m0, n0), (m1, n1), . . . , (ml−1, nl−1)} parameters selected for
processing in the algorithm is considered an ∅ = {0, 1, . . . , N − 1} element and searches
for the best region that meets the wavelet coefficient with the minimum entropy value:

H(Z) = −∑
j

Pj.logPj (59)

where Pj =
|Zj|2
‖Z‖2 and Pj.logPj = 0 when Pj = 0.

The Shannon entropy value is a measure of sparsity value and the smaller the Shannon
entropy value, the better the search area. The search loop occurs typically two or three
times. Eight Fourier coefficients are used in the loop, and the number of iterations for 16
elements is used for the algorithm of mathematical equations at level 2 (Figure 9).
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Figure 9. A sample binary search tree for partition selection used for AHWT (N = 16).

In the algorithm flowchart (Figure 10), each Fourier coefficient is set for the first group,
where in the Shannon entropy value is set as the first entropy value. Each parameter pair
(m, n) represents a subgroup. In the second iteration, the FFT is performed on each group of
two adjacent Fourier coefficients, and the values of the entropy are calculated and compared
with the sum of the corresponding initial entropy. Through the whole process of searching
by multiple loops, the pairing process price is the best. The AHWT coefficient is updated.
At the same time, the wavelet’s basic function reimplements the signal reconstruction.

4.2.2. Sliding Discrete Wavelet Transform (SDWT)

The active power filter (APF) has a conversion frequency from 10 kHz to 20 kHz. At
the output of the APF, an LCL filter is used for a good response to the group of converted
harmonics. However, the LCL filter has complex design parameters, often generating
resonance points, and the complex circuit design and control algorithm for the APF be-
comes difficult. Designing SiC-MOSFET into the source device of the APF to increase the
switching frequency to 50 kHz and using an L filter instead of the LCL filter helps suppress
subharmonics at the switching switch to a minimum, making the circuit design simple and
the algorithm in the APF easy and simple. At the same time, the sampling frequency and
switching frequency are faster and increase exponentially. As a result, harmonic detection
achieves higher accuracy and better output current control. The harmonic extraction algo-
rithm applied to the APF is represented by a sliding window discrete Fourier transform
(SDFT) and frequency domain analyzed flow control algorithm. The modification of the
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SDWT algorithm half cycle and RC half cycle reduces algorithm delay by half and APF
dynamic response time from two times to half of the power frequency cycle.
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The harmonic extraction algorithm plays a decisive role in the harmonic mitigation
model. Precise harmonic extraction helps the APF to provide accurate and fast compensat-
ing currents. The SDWT method is a commonly used harmonic extraction and is developed
from the traditional DWT method. The formulas used for the harmonic extraction process
are shown below.

1. The description of the nth harmonic component is made according to Formula (60):

in(k) = An(k).cos
(

2πnk
N

)
+ Bn(k).sin

(
2πk
N

)
(60)
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2. The AA and BB coefficients are calculated according to Formula (61):An(k) = An(k− 1) + 2
N .cos

(
2πnk

N

)
[i(k)− i(k− N]

Bn(k) = Bn(k− 1) + 2
N sin

(
2πnk

N

)
[i(k)− i(k− N]

(61)

where N is the number of sampling points in one cycle and K is the latest current sam-
pling point.

The main difference between the SDWT method and the DWT method is in the
different update method of the coefficients An(k), Bn(k). The DWT method (Figure 11)
requires a full data sampling cycle to calculate and update the coefficients. The SDWT
method (Figure 12) takes a new sample each time and the corresponding sample value of
one cycle before it is discarded and replaced with the newly acquired sample value and
updated coefficients, which increases the time efficiency of the system.
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However, SDWT requires additional memory space to store sample values for one
cycle, and this introduces its inherent delay over one cycle.

The extraction of half-cycle harmonics by the SDWT method is described by an
exponential function and nth harmonic expression according to Formula (62):

in(k) = In(k)ej 2πk
N (62)

The In(k) coefficient is calculated according to Formula (63):

In(k) = 1
N

k
∑

l=k−N+1
i(l)e−j 2πnk

N =

= In(k− 1) + 1
N i(k)e−j 2πnk

N − 1
N i(k− N)e−j 2πnk

N .ej2nπ

(63)

If you multiply both sides of Equation (5) by the expression ej 2πk
N , you obtain the result

of Equation (64):

in(k) = in(k− 1)ej 2πk
N +

1
N

i(k)− 1
N

i(k− N)ej2nπ (64)

If you convert Formula (6) to the Z domain, you obtain the SDFT transfer function
according to Formula (65):

Hs(Z) = Z
(

in(k)
i(k)

)
=

1
N

.
1− Z−N

1− ej 2nπ
N .Z−1

(65)
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Formula (7) is broken down into the expressions in Equation (66):

Hs(Z) =
1
N

Hc(Z).Hrn(Z); Hc(Z) = 1− z−N ; Hrn(Z) =
1

1− ej 2nπ
N .Z−1

(66)

where Hc(Z) is divided into a filter by frequency and the results are expressed according to
the Bode plot (Figure 13) and the Hc(Z) formula is further subdivided into Formula (67):

Hc(Z) = 1− z−N =
N−1

∏
K=0

(
1− ej 2nπ

N .Z−1
)

(67)
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Formula (9) shows that the filter has N 0 points and each of these 0 points represents
one attenuation for the system where harmonics are generated, or it causes a sampling
delay. This proves that a signal with N zeros means that there are N sampling delays, also
known as delayed sampling periods.

Hrn(Z) is considered a resonator and increases with the nth harmonic level. In addition
to filters and resonators, other necessary frequency components can be extracted. The main
harmonic components generated in the power supply are odd harmonic components. In
cases where the harmonic component is ignored, Formula (68) is rewritten as follows:

Hc(Z) =

N
2 −1

∏
K=0

1− ej 2nπ(2k+1)
N .z−1 = 1− ejnπ .Z−

N
2 = 1 + Z−

N
2 (68)

The filter according to Equation (10) contains only N/2, which demonstrates only the
attenuation of the odd harmonic component, and the delay is reduced from one period to
one half cycle (Figure 14).
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Within the bandwidth limitation, the PI algorithm cannot separate and monitor har-
monics well. The periodic repetition of the harmonic currents based on the internal principle
provides better harmonic monitoring. Link delay in the repeater controller has an impact
on the dynamic response performance of the controller. By deploying the SDFT method in



Mathematics 2023, 11, 1877 27 of 36

process optimization, the controller repeats the half cycle to reduce the sampling delay by
half a cycle (Figure 15).
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Here, Hs: feedback signal from voltage network, d(z): internal noise signal, Gp(z):
object to be controlled, Kr: scale factor, zk: phase compensation link, S(z): low pass filter.

The harmonic current in the THD power supply network is 4.15, which meets the
IEEE 519:2014 standard. However, the half-cycle control algorithm makes the second
harmonic high. This requires new research to improve the performance of shunt adaptive
power filters.

4.2.3. Head-Related Transfer Function (HRTF) Methods

The head-related transfer function (HRTF) methods are built in the spatial domain
based on the structure of spherical wavelets. The HRTF method represents local features
with a small number of analytic functions that allow the spatial resolution to be controlled
in the local region in the sphere with control coefficients. The HRTF spatial transformation
models perform the harmonic decomposition of spheres that represent the rough structure
and respond to the lowest level of the model. The HRTF method is formed from a combi-
nation of spherical harmonics and spherical wavelets that respond to the corresponding
coarse structure and spatial detail. The HRTF method performs the function of describing
the audio transmission characteristics of the spatial audio signal source. The HRTF method
is a variable of many parameters such as frequency, direction, and distance, and the HRTF
implements the principle that spherical wavelets are local functions and wavelets have
difficulty discretely expanding the signals in spheres.

The objective function of the spatial domain HRTF modeling is built according to
the objective function H(θ,∅) determining the magnitude in the direction (θ,∅) with
azimuth angle θ ∈

(
−1800, 1800) and elevation angle ∅ ∈

(
−900, 900). The incidences(

00, 00) and
(
900, 00) represent the front and left directions. A point source

⇀
r = (r, θ,∅)

with its distance r in the coordinate system (Figure 16).
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The objective function H(θ, ϕ) of the HRTF is built as weighted sums of the spherical
values that implement the real values of the harmonics shown using Formula (69):

H(θ,∅) = ∑
n,m

Ym
n (θ,∅).hsm

n (69)

where Ym
n (θ,∅) is a harmonic function of a sphere of order n and of mode m calculated

according to Formula (70). hsm
n is the corresponding coefficient implemented according to

the overall description of the spatial frequency of the objective function.

Ym
n (θ,∅) =


(−1)m+1

√
2n+1

2π . (n+m)!
(n−m)! .P

−m
n .sin(∅).cos(mθ) m > 0√

2n+1
4π .P0

n .sin(θ) m = 0

(−1)m
√

2n+1
2π . (n−m)!

(n+m)! .P
m
n .sin(∅).cos(mθ) m < 0

(70)

where Pm
n is the associated Legendre function of order n and mode m.

The harmonic coefficient (hm
n ) for the continuous objective function H(θ,∅) on the

sphere is calculated using Formula (71):

hm
n =

∫ π

−π

∫ π
2

− π
2

H(θ,∅).Ym
n (θ,∅)sin(∅)d∅dθ (71)

The vector (H) of the HRTF dataset is calculated using Formula (72) based on the
matrix of spherical harmonics (W) and the extended vector coefficients (C):

H = W.C + ε (72)

The objective function of the sphere in the spherical wavelet functions is based on the
functional weights calculated using Formula (73):

H(θ,∅) = ∑
k

∂0,k.ϕ0,k(θ,∅) + ∑
j≥0

∑
i

γj,i.ϕj,i(θ,∅) (73)

where ∂0,k: approximation coefficients, γj,i: wavelet or detail coefficients.

∂j,k = ∑
l∈K(j)

h̃j,k,l∂j + 1, l

γj,i = ∑
l∈I(j)

g̃j,i,l∂j + 1, l

where h̃ and g̃: decomposition filters.
The approximation coefficient uses Formula (74):

∂j+1,k = ∑
kεK(j)

hj,k,l∂j,l + ∑
i∈I(i)

gj,i,lγj,i (74)

The HRTF method performs the transformation and decomposition of the objective
function down to the lowest level value of 0 to meet high accuracy in a certain locality
and performs data size compression to ensure that the data size is maintained. Several
coefficients expand the corresponding coefficients.

The HRTF method performs a holistic description of the harmonics according to the
spatial features in all directions of the HRTF, and the spherical wavelet model performs the
capture of the local features of the harmonic signal. The HRTF method performs spherical
harmonic analysis and kie3m controls the spatial resolution to underestimate perceived
importance. Spherical harmonics represent the coarse structure of low resolution, and
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spherical wavelets perform the modeling of spatial details. The rough structure Hc(θ,∅)
implemented in the objective function of HRTF is calculated according to Formula (75):

Hc(θ,∅) =
Nc

∑
n=0

∑
|m|≤n

Shm
n (θ,∅).hcm

n (75)

where hcm
n : expansion coefficient of spherical harmonic, Shm

n (θ,∅): spherical harmonic.
The residual part Hd(θ,∅) is the difference between the initial HRTF intensities

Hc(θ,∅) and the rough structure Hc(θ,∅) calculated using Formula (76):

Hd(θ,∅) =
Ld

∑
l

Il

∑
i

Swi
l(θ,∅).hri

l (76)

where Il : truncated level scale, hri
l : corresponding coefficient, Swi

l(θ,∅): spherical wavelet.
The approximated coarse structure of the HRTF method is carried out according to

Formula (77):
Hcom(θ,∅) = Hc(θ,∅) + Hd(θ,∅) (77)

The HRTF method performs intensity based on spherical wavelets and shows low-
order spherical harmonics with a very small number of parameters that perform the
modeling of finer details in the residuals.

5. Comparison High Light on Harmonic Feature Extraction Technique and Future
Research Topic

This paper reviews the literature on methods of extracting harmonic components
in the time domain, frequency domain, and space domain from previous reviews by the
authors and methods that have not been previously evaluated. This study tries to conduct a
review of the literature, specifically each mathematical formula, and, step by step, perform
the harmonic extraction of the methods of extracting harmonic components in the time
domain, frequency domain, and spatial domain. The strength of this study is that it
describes, in detail and step by step, the harmonic component extraction according to each
corresponding mathematical model; it effectively evaluates the signal extraction time and
the performance of the signal for each method of extracting harmonic components. The
strength of time-domain extraction methods is that, using a window frame to extract signals
in small amounts and monitor low frequencies, it helps to improve the signal extraction
performance that other signal extraction methods have. Traditional brands are not available.
The weakness of time domain extraction methods is that the signal processing time is still
slow. As for the improvement of the signal extraction performance in terms of time,
the Active Distribution Rejection Control (ADRC) method appears to be promising. The
Frequency Domain and Space Domain Signal Extraction method is conducted according to
the wavelet formula, which requires a lot of mathematical modeling, and this is a weak
point and is difficult for computers to implement, and the users also need to perform very
difficult computer programming.

The EMD method uses the intrinsic mode function to process multi-component signals
in the time domain [44,45]. The EMD reviews each signal sample according to the maximum
and minimum two extremes [46]. This gives rise to variable high-frequency and low-
frequency waves in some parts of the signal since the intrinsic mode function only responds
to high-frequency signal levels [47,48]. The EMD performs signal filtering in seven steps
to complete harmonic component extraction; the applications at windows during signal
filtering take a lot of time, and this results in low-frequency harmonic signals that are
not fully extracted. The data LWEMD method uses the LWEMD signal analysis response
using a cumulative buffer [44,49]. The data used to analyze the signal are buffered during
the iteration [47]. However, since the IMF values provide different values after each
iteration, an integrated method is needed to remove the last signal of the iterations; the
low frequency is still present in the signal after the iteration at different times in the
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data block [50,51]. The advantage of the LWEMD method is that the time to perform
signal extraction is shortened compared to the EMD method [52]. The LWEMD method is
proposed to be used in active distribution rejection control to eliminate harmonics. The
AHD method performs the formation of a design error pulse detection model by detecting
the harmonics in the resonant array with the original signal by frequency shifting the
harmonic components [53–55]. The AHWT method is designed with a bank of signal filters
and, at each filter, the frequencies are designed according to a specific filter; the size of each
filter is designed to be small according to the frequency domain [56–59]. The AHWT method
performs the feature extraction of each signal in the frequency-time domain according to
wavelet features [60–62]. The AHWT method performs the selection of parameter pairs to
respond well to the wavelet search area according to the minimum entropy value [63,64].
The Difference Evolution (DE) method, which optimizes each parameter pair to provide the
AHWT method as a direction to consider for research in this field, is the proposed artificial
intelligence method for parameter pair selection [65,66]. The SDWT method performs
the half-cycle correction of the signal, which minimizes the delay [62] and reduces the
signal response time to half a cycle of the source frequency [67,68]. The SDWT method
performs harmonic shifting in the frequency domain [69]. The SDWT method re-updates
the sample value after each iteration and discards the previous sample value [70]. However,
the SDWT method increases the second harmonic when performing half-cycle frequency
control [71–73]. The method to suppress second order harmonics is a promising research
direction for the future. The AMS method performs online sampling and corrects the
models directly in the data to extract real-time harmonic component and frequency offset
per cycle [56,60–62]. The AMS method prevents generation duration and instability in the
frequency domain [63]. However, a low-pass filter is used to determine suitable frequency
response parameters [64–66]. A new study that needs frequency modification in a low-pass
filter is promising for the future. A brief description of the strengths and weaknesses of the
methods to extract the harmonic component of the signal is shown in Table 8.

Table 8. Comparison of harmonic signal feature extraction processing techniques.

Method Advantages Disadvantages Reference List

EMD
• Meets the objective of separating the

high-frequency waves.

• The extreme value is no longer detected.
• The signal extraction process is

time-consuming.
• Some unextracted low-frequency signals.
• The EMD method is not suitable for SAPF

filters.

[44–48]

LWEMD

• Accumulates enough data for signal
analysis.

• The filtering process is streamlined and
reduced when implementing the
algorithm.

• Guaranteed detection of low-frequency
harmonics in data blocks.

• The execution time to extract harmonics
from the signal is less than the traditional
EMD method.

• Low-frequency signals are still present
inside the data blocks.

• Iterations after each difference. The IMF
gives different values to the data blocks.

• The bulk data performed by the screening
process make it difficult for real-time
analysis of the final signals.

[44,47,49–52]

AHD

• Determines the placement of samples and
spectrum distribution of the signal and
detects periodic pulses that cause errors.

• Detects error pulses with a high noise
ratio in the time domain and discrete
error spectra even in the case of low
signal-to-noise (SNR).

• The connection between two pulses
including the fault-causing pulse and the
pulse of a harmonic cluster.

[53–55,57–59]
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Table 8. Cont.

Method Advantages Disadvantages Reference List

AMS

• Fulfills the features of online sampling
and corrects analysis models directly in
the data to extract the harmonic
component in real time and monitor the
frequency offset at each cycle of the
sample data.

• Provides timely compensation for the loss
of current, improves the power quality,
and improves the working efficiency of
the new method.

• Generates a sampling delay of at least one
cycle and depends on the frequency
resolution.

• Not guaranteed for the stability and
deviation of the interference.

• Uses a low-pass filter that defines the
parameters to match the frequency
response to the fundamental signal due to
the attenuation of the signal magnitude.

[56,60–66]

AHWT

• Uses a time-frequency separation
technique to exploit highly efficient
response features and outperforms
empirical mode decomposition (EMD)
methods.

• Deterministic basis to extract the features
of the signal in the time-frequency
domain.

• Flexible selection of parameter pairs (m,
n) as the basis for the possible
sub-harmonics.

• The point of this issue is what method to
use for choosing the parameter pair (m, n)
accordingly.

• The original harmonic wavelet transform
hybrid improvement method is to select a
suitable pair of (m, n) parameters.

[62,67–73]

SDWT

• Half-cycle and RC half-cycle reduce
algorithm delay by half.

• Provides accurate and fast compensating
currents.

• The half-cycle control algorithm makes
the second harmonic high. [67,68,74–81]

HRTF

• Represents local features with a small
number of analytic functions.

• Performs the function of describing the
audio transmission characteristics of the
spatial audio signal source.

• Represents the rough structure and
responds to the lowest level of the model.

• A variable of many parameters such as
frequency, direction, and distance; HRTF
implements the principle that spherical
wavelets are local functions and wavelets
have difficulty discretely expanding the
signals in spheres.

• Spherical harmonics represent coarse
structures of low resolution, and
spherical wavelets perform the modeling
of spatial details.

[49,82–84]

The challenges for the methods to perform the extraction of harmonic components in
the signal include:

• Choosing the correct and proper harmonic components in the signal. Harmonic parts
have low frequency and high frequency, an even harmonic type and an odd order
type. At present, no signal extraction method meets the aforementioned criteria. The
correct and precise selection of the harmonic component in the signal is still an open
issue for future scientific researchers.

• Mathematical formulas using harmonic component extraction in the signal are often
very complex, making it difficult for computer programmers as well as causing delays
in the processing of computer programs. There have not been many studies applying
bio-inspired optimization methods to perform harmonic extraction, and this is an
open road for researchers. The mathematical models in bio-inspired optimizations are
very simple and convenient for computer programmers.
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• The extraction time of the harmonic component in the signal contributes to improving
the efficiency of harmonic filtering devices. Current methods do not meet the harmonic
filtering rate required by computer processing because there is no perfect method to
perform the extraction of all harmonic components in the signal.

• The efficiency of extracting harmonic components in the signal is the deciding factor
in the success or failure of the harmonic filter device. Accurate, complete, and timely
harmonic component extraction is a suitable input for classifiers and signal selectors
that compensate for harmonic losses quickly. A new method of applying artificial
intelligence algorithms is considered perfect for future researchers.

6. Conclusions

Signals are recognized and classified based on the feature composition of each cor-
responding signal type. The accuracy of signal feature extraction methods contributes to
improved signal-processing performance. The nonlinear signals are feature-extracted based
on the nonlinear dynamic analysis method and this nonlinear dynamic analysis method is
widely used in signal processing. The selection of signal-processing algorithms and features
determines the performance of the signal-processing system. The main contributions of
this study are as follows:

• This paper presents four methods (EMD, LWEMD, AHD, and AMS) to extract har-
monic components based on the time domain. The AMD method performs full
harmonic extraction by binning, but it is time-consuming in terms of signal processing
and many low-frequency signals exist. The LWEMD method performs a small amount
of signal extraction during filtering, which improves the efficiency of signal extraction
and shortens the signal processing time, effectively responding to low-frequency signal
monitoring. The AHD method detects pulses with a high noise rate. The AMS method
implements the analysis model modification in the sliding window to improve the
harmonic extraction accuracy.

• The study also presents, in detail, two extraction methods (AHWT, SDWT) to output
harmonics in the frequency domain. The AHWT method uses a cross-comparison
of wavelet features to monitor the efficiency and damage of the signal waveform
structure. The SDWT method performs half-cycle correction, which reduces the signal
processing time but generates high-gain second harmonics.

• This paper presents a method (HRTF) for spatial domain harmonic component extrac-
tion. The HRTF states that spherical wavelets are local functions and have difficulty
expanding signals in spheres, while spherical harmonics represent coarse structures of
low resolution. Both are used to model spatial details.

This paper makes an overview and presents in detail some methods used to extract
the harmonic and fundamental wave components in signals in the time domain, frequency
domain, and space domain. In principle, all three applications of harmonic and funda-
mental frequency extraction are different. In some cases of different signals, extracting
the harmonic component gives better results. However, the frequency domain extrac-
tion method requires a more complex method and uses a lot of complex mathematical
equations, which leads to higher computational costs and an increased sampling delay
of a minimum of one sampling cycle and depends on the resolution of the frequency. A
method is used to extract the harmonic component in the frequency domain and halve the
sampling period to shorten the harmonic extraction time. However, it generates second
harmonics. Along with the development of switching devices as well as frequency mod-
ulation devices, this leads to an increasing amount of digital signal processing over time
and the development of new technologies and processing methods. Signal management is
increasingly demanding in terms of the characteristics of harmonic extraction efficiency;
the signal extraction processing time must be fast. A method of signal extraction in the
time domain is used by many developers of harmonic extraction applications because they
help in the real-time monitoring of the signal. In the time domain, the signal extraction
method is used in combination with methods such as feedback control techniques for
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signals, filtering, and canceling techniques according to the user’s requirements. However,
the feedback signal tuning technique is a difficult technique that requires high accuracy of
the tuning parameters; therefore, the signal-processing system needs to perform the correct
parameter correction to achieve high signal processing efficiency that provides optimal
signal-processing performance when there are changes in signal processing. Extracting the
harmonic component signal in the time domain has one weakness: it does not guarantee
the stability and durability of the generated noise signals.

Filters and harmonic component signal extraction always come with many challenges
that signal extraction or processing techniques face, such as the delay or lengthening of
the feedback signal when processing signal filtering; to perform filter cancellation, the
delay signal must be within a certain frame of reference. Several methods have been
developed to eliminate the aforementioned problems, and those methods are implemented
entirely in a stationary frame of reference that ensures the complete dynamics of their
operation. Mathematical equations are also considered for use to simulate filtering or
canceling processes for deferred signals because the operators of the difference are close
to the mathematical model. The operator models used to cancel the reflected signals in
this period are implemented at discrete impulse response filters. Techniques have been
developed to cancel the signal delay using first-order filters to fourth-order filters and they
are widely used in digital signal processing and deliver solid performance. Moreover, error
states arise when signal processing is lower or zero; the response rate has the shortest time
to meet the goal of extracting the most accurate harmonic component for filter system
selection to compensate for the best harmonic losses and improve the performance of the
signal system.

Extracting harmonics from the signal by artificial intelligence techniques is increasingly
being considered. Using meta-heuristic optimization techniques in signal processing with
support from computer science is always a promising research direction.
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