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Abstract: This paper investigates the problem of distributed interval estimation for multiple Eu-
ler–Lagrange systems. An interconnection topology is supposed to be strongly connected. To design
distributed interval observers, the coordinate transformation method is employed. The construction
of the distributed interval observer is given by the monotone system theory, and the stability is
analyzed by the Lyapunov stability theory. Unlike the current works, each sub-interval observer
has its own gain; in addition to this, additional observer gains are used to reduce the conservatism
of design. The gains of all sub-interval observers are determined by both the monotone system
theory and the Lyapunov stability theory. Finally, a simulation example verifies the feasibility of the
presented distributed interval observers.
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1. Introduction

Euler–Lagrange systems (ELSs) have been studied by a wide range of scholars as a
common class of systems for describing many real mechanical models. In fact, some of the
variables in a specific mechanical system are not directly available. Therefore, a number of
scholars have addressed the observer design problem for ELSs. A speed observer design
method for general ELSs was presented in [1]. The authors in [2] designed a nonlinear
disturbance observer for ELSs and realized the estimation of unknown disturbances. Ref. [3]
used a sliding-mode disturbance observer for ELSs to design a semi-global exponential
controller. With the deepening of research and the development of multi-agent systems,
scholars investigated the problem of the state estimation of multiple ELSs (MELSs) in
recent years. In [4], the authors designed distributed observers (DOs) for a class of MELSs
without external disturbances. Ref. [5] studied the output-based tracking control problem
for MELSs, in which the authors designed a novel nonlinear DO. In [6], a DO-based fault-
detection method for MELSs was introduced, and a DO-based controller was also designed.
In addition to this, the investigation on MELSs with uncertainties had received considerable
attention. Ref. [7] addressed the problem of leader-following consensus of uncertain MELSs
under switching network topology and proposed a DO design method to recover the states.
Moreover, the distributed adaptive observers were designed for MELSs with uncertainties
in [8]. There are also other interesting works on MELSs [9–12] herein.

As an effective estimation method, interval observers (IOs) can recover the upper and
lower boundaries of uncertain systems. The concept of IOs was introduced in [13]. The IOs
are further divided into centralized IOs (CIOs) and distributed IOs (DIOs). There are many
studies on CIOs [14–21]. For continuous systems, an IO design method was introduced for
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linear time-invariant systems with disturbances in [14]. The authors in [15] gave an effective
design method of IO for time-varying systems. For discrete-time systems, [16] formulated
a design framework of IO, and [17] investigated the IO design problem for time-varying
discrete-time systems. In [18], the IO design method for discrete-time switched systems was
studied. Over the past decade, the research of functional IO has also attracted the attention
of some researchers [19–21]. On the other hand, the investigation on DIOs has also been
reported by some works recently such as [22–24]. The authors of [22] presented an method
to design DIOs, which was applied to fault detection for multi-agent systems. The authors
of [23] considered the design method of DIOs for a class of linear time-invariant systems
with uncertainties. Finally, The authors of [24] extended the DIOs design method to a class
of fractional-order systems. The problem of estimation of MELSs is always complicated due
to the uncertainty contained in the system itself. Most of the existing works add constraints
to achieve state estimation; however, this problem can be avoided if an interval estimation
approach is used and state estimation can also be achieved. Therefore, it is necessary to
design DIOs for MELSs. To the authors’ best knowledge, there are few reports on DIOs
for MELSs.

Based on the above discussion, this paper studies the DIOs design problem of MELSs.
First of all, the coordinate transformation method must necessarily be introduced. Then, the
framework of DIOs is constructed based on the monotone system theory. Additionally, the
stability of DIO is guaranteed by Lyapunov stability theory. The rest of the paper is
structured as follows. Section 2 gives the preliminaries, which include the graph theory
and system model. Section 3 provides the DIO design method based on monotone system
theory. In Section 4, a numerical example is used to show the validity of the presented
design method of DIO. Finally, Section 5 is the conclusion of the paper.

Notaion: For a matrix E, E+ denotes max{0, E}, E− = E+ − E. For a real sym-
metric matrix O ∈ Rn×n, O � 0(O ≺ 0) indicates that O is positive (negative) defi-
nite, He(O) = OT + O. ⊗ represents the Kronecker product, and the diag{·} denotes
a block diagonal matrix.

2. Preliminaries
2.1. Graph Theory

For a digraph G with N vertices, the adjacency matrix A ∈ Rn×n = [aij] is given by
aij = 0, if (i, j) ∈ S, where S is the set of edges, and aij = 1, otherwise. The length path
from a vertex i to a vertex j is a sequence of r + 1 distinct vertices starting at i and ending at
j, and consecutive vertices are adjacent to each other. A graph G is said to be connected if
there is a path between any two vertices of the graph G. The Laplacian matrix L of graph
G is defined as L := D −A. D is called the degree matrix of G. For a connected graph,
the Laplacian matrix has a single zero eigenvalue and the corresponding eigenvector is 1N .
Additionally, if G is connected then 0 = λ1(G) ≤ λ2(G) ≤ · · · ≤ λN(G), where λi(G) is
the eigenvalue of L.

Lemma 1 ([25]). Assume that G is a strongly connected graph. Denote ri(i = 1, · · · , N) as the
left eigenvector with eigenvalue 0, and R = diag{r1, · · · · · · , rN}; then, RL+ LT R ≥ 0 holds.

Lemma 2 ([26]). If graph G is strongly connected, the generalized algebraic connectivity of G could

be represented as a(L) = min
rT x=0,x 6=0

xT(RL+LT R)x
2xT Rx . If the topology is balanced, the matrix R = r1 IN .

Then, a(L) = λmin(
He(L)

2 ) holds.

2.2. System Model

In general, an ELS with second-order dynamics can be written as

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + Gi(qi) = ui, (1)
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where qi ∈ Rn is the vector of generalized coordinates, Mi(qi) ∈ Rn×n represents the inertia
matrix, C(qi, q̇i) ∈ Rn×n denotes the vector of Coriolis and centripetal forces, G(q) ∈ Rn

is the gravity vector, and ui ∈ Rn stands for the vector of generalized control input forces.
Next, we take the following transformations for system (1):{

ẋ1 = x2,

ẋ2 = h(x1)u + f (x1, x2),
(2)

where xi1 = qi, xi2 = q̇i, h(xi1) = M(xi1)
−1, f (xi1, xi2) = −M(xi1)

−1(C(xi1, xi2)xi2 +
G(xi1)). The joint displacements are measurable; under the above state reconstruction, we
can obtain the following equation:{

ẋi(t) = Axi(t) + Bui(t) + φi(xi(t)),

yi(t) = Cxi(t),
(3)

where A =

[
0n×n In×n
0n×n 0n×n

]
∈ R2n×2n, B =

[
0n×n
h(xi1)

]
∈ R2n×n, C =

[
In×n 0n×n

]
∈ Rn×2n,

and φi(xi(t)) =
[

0n×1
f (xi1, xi2)

]
∈ R2n.

Lemma 3 ([27]). If φ(xi) is a Lipschitz function that is globally differentiable, then there are two
increasing Lipschitz functions f (xi) and g(xi) such that

φ(xi) = f (xi)− g(xi). (4)

Lemma 4 ([27]). For the function φ(xi) in Lemma 3, a global Lipschitz function φ̄(xia, xib) exists
such that:

? φ̄(xi, xi) = φ(xi),

?
∂φ̄

xia
≥ 0, and

∂φ̄

xib
≤ 0.

The above lemmas can help us obtain the boundaries of nonlinear function φ(xi, xi):

xi ≤ x ≤ xi ⇒ φ̄(xi, xi) ≤ φ(xi, xi) ≤ φ̄(xi, xi). (5)

Lemma 5 ([24]). For φ(xi), φ̄(xi, xi) and φ̄(xi, xi) defined in Lemma 4, matrices Fi ∈ {1, 2, 3, 4}
exist such that {

φ̄(xi, xi)− φ(xi)) ≤ F1ei + F2ei,

φ(xi)− φ̄(xi, xi) ≤ F3ei + F4ei,
(6)

where ei = xi − xi and ei = xi − xi.

Lemma 6 ([14]). Given a constant matrix A ∈ Rm×n and a vector ζ ∈ Rn×1, if ζ ∈ [ζ, ζ]
holds, then

A+ζ − A−ζ ≤ Aζ ≤ A+ζ − A−ζ. (7)

In order to obtain the main results, we need the following assumptions.

Assumption 1. The nonlinear function φi(xi(t)) is considered as a global Lipschitz function.

Assumption 2. For every sub-system, the initial state of system (3) satisfies the following inequality:

xi(0) ≤ xi(0) ≤ xi(0). (8)
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Assumption 3. The topology graph is considered to be balanced and strongly connected.

Assumption 4. Matrices L, M, Y, and Y exist such that Π is Metzler with

Π =

[
Ψ + Y Y

Y Ψ + Y

]
,

where Ψ = Â− LĈ− γM(L⊗ In).

Remark 1. The above assumptions have been commonly used and widely accepted in previous
studies. Similar to [22], the topology graph is supposed to be balanced and strongly connected in
this paper; based on this, we provide the following results.

3. Main Results

To design DIO for system (3), some preliminary preparations are needed. First,
the equivalence transformation is performed for system matrix A ∈ Rn×n. Using the
linear transformation zi = Hxi, the system (3) becomes{

żi(t) = Azi(t) + Bui(t) + Hφi(H−1zi(t)),

yi(t) = Czi(t),
(9)

where A = HAH−1, B = HB, and C = CH−1.

Remark 2. In order to estimate the bounds of the nonlinear function φi(x) , we define that{
ϕi(zi, zi) = φi(H+

a zi − H−a zi, H+
a zi − H−a zi),

ϕi(zi, zi) = φi(H+
a zi − H−a zi, H+

a zi − H−a zi),
(10)

where zi(t) and zi(t) represent the estimated values of zi(t), and Ha = H−1.
Under Lemma 6, the following inequality can be obtained:

Φi(zi, zi) = H+ϕi(zi, zi)− H−ϕi(zi, zi)

≤ Hφi(H−1zi)

≤ H+ϕi(zi, zi)− H−ϕi(zi, zi)

= Φi(zi, zi).

Remark 3. After the transformation of the coordinates, the conclusion of Lemma 5 takes the
following form: {

Φi(zi, zi)− Hφi(H−1zi) ≤ N1ei + N2ei,

Hφi(H−1zi)−Φi(zi, zi) ≤ N3ei + N4ei,
(11)

where Ni = Fi H(i = 1, 2, 3, 4) are constant matrices.

To achieve z ≤ z ≤ z, the following DIOs for each sub-system are constructed:

żi(t) =Azi(t) + Bui(t) + Φi(zi, zi) + Li(yi − Czi(t)) + Yi(zi(t)− zi(t))

+ γMi

N

∑
j=0

aij(zj − zi),

żi(t) =Azi(t) + Bui(t) + Φi(zi, zi) + Li(yi − Czi(t))−Yi(zi(t)− zi(t))

+ γMi

N

∑
j=0

aij(zj − zi).

(12)
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Then, the error system for i-th sub-system is obtained

ėi(t) =żi − żi

=(A− LiC− γMi

N

∑
j=0
Lij)ei(t) + Φi(zi, zi)− Hφi(H−1zi(t)) + Yi(ei(t)− ei(t)),

ėi(t) =żi − żi

=(A− LiC− γMi

N

∑
j=0
Lij)ei(t) + Hφi(H−1zi(t))−Φi(zi, zi) + Yi(ei(t)− ei(t)).

(13)

Under Assumption 3, the dynamics of the global system are expressed as{
ż(t) = Âz(t) + B̂u(t) + φ̂(z(t)),

y(t) = Ĉz(t),
(14)

where z = [zT
1 , · · · , zT

N ]
T , y = [yT

1 , · · · , yT
N ]

T , Â = diag{A, · · · , A︸ ︷︷ ︸
N

}, B̂ = diag{B, · · · , B︸ ︷︷ ︸
N

},

u = [uT
1 , · · · , uT

N ]
T , φ̂ = [(Hφ1)

T , · · · , (HφN)
T ]T , Ĉ = diag{C, · · · , C︸ ︷︷ ︸

N

}.

The dynamics of the global observer system are given by
ż(t) =Âz(t) + B̂u(t) + Φ + L(y− Ĉz(t)) + Y(z(t)− z(t))

− γM(L⊗ In)z(t),

ż(t) =Âz(t) + B̂u(t) + Φ + L(y− Ĉz(t))−Y(z(t)− z(t))

− γM(L⊗ In)z(t),

(15)

where Φ =

 Φ1(z1, z1)
...

ΦN(zN , zN)

, Φ =

 Φ1(z1, z1)
...

ΦN(zN , zN)

, L =

L1
. . .

LN

,

Y =

Y1
. . .

YN

, Y =

Y1
. . .

YN

.

Theorem 1. If Assumptions 1–4 hold, the z(t) and z(t) given in (15) satisfy z(t) ≤ z(t) ≤ z(t).

Proof. The dynamics of the global error system are given by
ė(t) =ż(t)− ż(t)

=[Â− LĈ− γM(L⊗ In)]e(t) + Φ− φ̂(z(t)) + Y(e(t)− e(t)),

ė(t) =ż(t)− ż(t)

=[Â− LĈ− γM(L⊗ In)]e(t) + φ̂(z(t))−Φ + Y(e(t)− e(t)).

(16)

Define ε(t) =
[

e(t)
e(t)

]
, then we can obtain the derivative of ε(t)

ε̇(t) = Πε(t) + Φ̃, (17)

where

Π =

[
Ψ + Y Y

Y Ψ + Y

]
, Φ̃ =

[
Φ− φ̂(z(t))
φ̂(z(t))−Φ

]
. (18)

The proof of the validity of (12) and (15) is equivalent to the proof of the non-negativity
of the error system. From Lemma 4 and Remark 2, we have Φ− φ̂(z(t)) ≥ 0 and φ̂(z(t))−
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Φ ≥ 0. It is obvious that e(0) ≥ 0 and e(0) ≥ 0 from Assumption 2. By Assumption 4, we
have Π is Metzler. Above all, considering the monotone system theory, ε(t) ≥ 0 holds,
which implies z(t) ≤ z(t) ≤ z(t) for all t ≥ 0. Hence, the proof of Theorem 1 is completed.

After proving the boundedness of DIO, we proceed to design the observer gain
Li, Yi, Yi, and Mi to guarantee the stability of the DIO (15).

Theorem 2. Given a positive definite matrix P = PT and a constant τ > 0, if a solution exists
such that

Ω̃ =

[
He(PA−QiC + PN1 + Wi)− 2τ In PN2 −Wi + N3

T P + WT
i

N2
T P−WT

i + PN3 + Wi He(PA−QiC + PN4 −Wi)− 2τ In

]
≤ 0,

γ >
τ

a(L) , (19)

where Li = P−1Qi, Yi = P−1Wi, Yi = P−1Wi, and Mi
−1 = P are the observer gains, γ is the

coupling strength, then the system (15) is a DIO of (14).

Proof. A Lyapunov function candidate can be defined as V(t) = ∑N
i=0 rieT

i Pei +∑N
i=0 rieT

i Pei;
then, the derivative of V(t) can be written as

V̇(t) =
N

∑
i=0

ri(Γei + χi + Yi(ei − ei))
T Pei +

N

∑
i=0

ri(Γei + χi + Yi(ei − ei))
T Pei

+
N

∑
i=0

rieT
i P(Γei + χi + Yi(ei − ei)) +

N

∑
i=0

rieT
i P(Γei + χi + Yi(ei − ei))

≤
N

∑
i=0

ri(Γei + N1ei + N2ei + Yi(ei − ei))
T Pei

+
N

∑
i=0

ri(Γei + N3ei + N4ei + Yi(ei − ei))
T Pei

+
N

∑
i=0

rieT
i P(Γei + N1ei + N2ei + Yi(ei − ei))

+
N

∑
i=0

rieT
i P(Γei + N3ei + N4ei + Yi(ei − ei))

=((R⊗ (A− LiC)− γRL⊗Mi)e + R⊗ (N1 + Yi)e + R⊗ (N2 −Yi)e)(I ⊗ P)e

+ ((R⊗ (A− LiC)− γRL⊗Mi)e + R⊗ (N3 + Yi)e + R⊗ (N4 −Yi)e)
T(I ⊗ P)e

+ eT(I ⊗ P)((R⊗ (A− LiC)− γRL⊗Mi)e + R⊗ (N1 + Yi)e + R⊗ (N2 −Yi)e)

+ eT(I ⊗ P)((R⊗ (A− LiC)− γRL⊗Mi)e + R⊗ (N3 + Yi)e + R⊗ (N4 −Yi)e)

=eT(R⊗ He(PA− PLiC + P(N1 + Yi))− γ(RL+ LT R)⊗ PM)e

+ eT(R⊗ (P(N2 −Yi) + (N3 + Yi)
T P))e + eT(R⊗ ((N2 −Yi)

T P + P(N3 + Yi)))e

+ eT(R⊗ He(PA− PLiC + P(N4 −Yi))− γ(RL+ LT R)⊗ PM)e,

(20)

where Γ = A − LiC − γMi ∑N
j=0 Lij, χi = Φi(zi, zi) − Hφi(H−1zi(t)),

and χi = Hφi(H−1zi(t))−Φi(zi, zi).
It follows from Lemma 2 that

2a(L)eT Re ≤ eT(RL+ LT R)e, (21)

2a(L)eT Re ≤ eT(RL+ LT R)e. (22)

Considering Mi = P−1, (21) and (22), (20) can be written as
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V̇(t) ≤eT(R⊗ He(PA− PLiC + P(N1 + Yi))− 2γa(L)R⊗ In)e

+ eT(R⊗ (P(N2 −Yi) + (N3 + Yi)
T P))e + eT(R⊗ ((N2 −Yi)

T P + P(N3 + Yi)))e

+ eT(R⊗ He(PA− PLiC + P(N4 −Yi))− 2γa(L)R⊗ In)e.

(23)

Noting that γ > τ
a(L) , we have

V̇(t) ≤eT(R⊗ He(PA− PLiC + P(N1 + Yi))− 2τR⊗ In)e

+ eT(R⊗ (P(N2 −Yi) + (N3 + Yi)
T P))e + eT(R⊗ ((N2 −Yi)

T P + (PN3 + Yi)))e

+ eT(R⊗ He(PA− PLiC + P(N4 −Yi))− 2τR⊗ In)e

=εT(t)R⊗Ωε(t),

(24)

where ε(t) = [eT , eT ]T , and

Ω =

[
He(PA− PLiC + P(N1 + Yi))− 2τ In P(N2 −Yi) + (N3 + Yi)

T P
(N2 −Yi)

T P + P(N3 + Yi) He(PA− PLiC + P(N4 −Yi))− 2τ In

]
. (25)

Then, V̇(t) < 0 and Ω ≺ 0 are equal, which shows that limt→∞e(t) = 0 and limt→∞e(t) = 0.
The stability of DIO can be guaranteed.

Remark 4. To satisfy the LMI toolbox, Qi = PLi, Wi = PYi, Wi = PYi are applied to Ω, which
results in

Ω̃ =

[
He(PA−QiC + PN1 + Wi)− 2τ In PN2 −Wi + N3

T P + WT
i

N2
T P−WT

i + PN3 + Wi He(PA−QiC + PN4 −Wi)− 2τ In

]
.

4. Simulation

In this section, a team of 2-DOF manipulator models with an directed graph is applied
to validate the feasibility of the presented DIOs for ELSs. The example runs on a CPU
Inter Core i7-10750H CPU with 2.59 GHZ and 8 GB of RAM; the main software used is
MATLAB 2018a.

The parameters of the model can be referred to [12], and the description of the param-
eters is shown in Table 1. First of all, the matrix L is

L =


3 −1 −1 −1
−1 2 −1 0
−1 −1 2 0
−1 0 0 1

,

From Lemma 2, it follows that α(L) = 1. Then, we chose the coordinate transformation
matrix as

H =


1 0 0 0
0 1 0 0
−1 0 1 0
0 −1 0 1

.

By solving (19), the gain of the observer can be calculated.

Wi =


1.7448 0 0.3703 0

0 1.7448 0 0.3703
0.3703 0 1.0920 0

0 0.3703 0 1.0920

, Wi =


−1.7448 0 −0.3703 0

0 −1.7448 0 −0.3703
−0.3703 0 −1.0920 0

0 −0.3703 0 −1.0920

,
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Q =


5.3976 0

0 5.3976
3.0250 0

0 3.0250

, Mi =


0.5235 0 0.0920 0

0 0.5235 0 0.0920
0.0920 0 0.8917 0

0 0.0920 0 0.8917

,

and

P =


1.9456 0 −0.2008 0

0 1.9456 0 −0.2008
−0.2008 0 1.1422 0

0 −0.2008 0 1.1422

.

Noting Remark 4, we can obtain

Yi =


0.9474 0 0.2943 0

0 0.9474 0 0.2943
0.4908 0 1.0078 0

0 0.4908 0 1.0078

, Yi =


−0.9474 0 −0.2943 0

0 −0.9474 0 −0.2943
−0.4908 0 −1.0078 0

0 −0.4908 0 −1.0078

,

Li =


3.1040 0

0 3.1040
3.1941 0

0 3.1941

.

The initial value is defined as x(0) = [0 5 6 4 4 1 5 6 3 4 6 1 6 4 1 5]T . The initial
values of DIO are chosen as x(0) = [10 10 9 7 10 10 13 9 10 10 7 13 10 10 8 10]T and
x(0) = [−4 − 4 − 4.5 − 3.5 − 4 − 4 − 5 − 1 − 4 − 4 − 4 − 6 − 4 − 4 − 1 − 4]T , and γ
is given as γ = 3.

Table 1. The descriptions of the parameters.

Parameter Description (i = 1, 2, 3, 4)

qi The position of manipulator i
q̇i The velocity of manipulator i
q̈i The acceleration of manipulator i
Mi The inertia matrix of manipulator i
Ci The vector of Coriolis and centrifugal force of manipulator i
Gi The vector of Gravitational force of manipulator i
ui The control input of manipulator i

The simulation results are displayed in the figures below. It is worth noting that i
in vij refers to the i-th manipulator and j represents the j-th state. Figures 1–4 depict the
original state trajectory of velocity and the state trajectory of DIO at the two joints of the
four manipulators, respectively. It can be seen that the boundaries of the DIO recover the
state of the original system. Figures 5–8 show the errors in the DIO and the original system
velocity for the four manipulators at the two joints, respectively. From the figures, we can
see that the error between the original system and observer converge to a small bound,
which means that the DIO is valid.

Remark 5. In the simulation, we first need to design a coordinate transformation matrix and then
solve Ω̃ < 0 (25) by using the LMI toolbox, and the feasible solution is applied to the simulation
model we have built. The complexity of the computation is reflected in solving the LMI, and the
details are shown in Table 2.
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Table 2. Complexity of the calculation.

Parameter Description Time

Wi Observer gain 0.436 s
Wi Observer gain 0.436 s
Q Observer gain 0.456 s
Mi Weight matrix 0.318 s
P Weight matrix 0.318 s
Yi Observer gain 0.624 s
Yi Observer gain 0.624 s
Li Observer gain 0.624 s

It is worth noting that the parameters in Table 2 all need to be recalculated if the topology or
the coordinate transformation matrix changes.

Remark 6. Compared with [22], MELSs contain nonlinearities, which makes it more complicated
to design the IO. That is, the design method proposed in the paper can also be applied to more
general systems. Unlike [24], two observer gains Yi and Yi are considered to make the the sufficient
condition less conservative while ensuring the existence of the interval observer. As shown in Table 3,
the conditions obtained using the method in this article are solvable. However, using the method
in [24], there is no solution.

Table 3. The solution under different τ [24].

Value of τ Theorem 2 Theorem 2 in [24]

−100 X -

(a) (b)

Figure 1. Evolutions of velocity of original system and DIO at the first joint (a) and second joint (b) of
first manipulator.

(a) (b)

Figure 2. Evolutions of velocity of original system and DIO at the first joint (a) and second joint (b) of
second manipulator.
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(a) (b)

Figure 3. Evolutions of velocity of original system and DIO at the first joint (a) and second joint (b) of
third manipulator.

(a) (b)

Figure 4. Evolutions of velocity of original system and DIO at the first joint (a) and second joint (b) of
fouth manipulator.

Figure 5. The error between the observer and the original system of the first manipulator.
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Figure 6. The error between the observer and the original system of the second manipulator.

Figure 7. The error between the observer and the original system of the third manipulator.

Figure 8. The error between the observer and the original system of the fouth manipulator.

5. Conslusions

In this paper, a DIO design method for MELSs is studied. The design conditions
are relaxed by using the coordinate transformation method. Two methods of designing
observer gains are formulated under monotone system theory and Lyapunov stability
theory. Meanwhile, the additional observer gains Y and Y are introduced in DIO, which
also provide more feasibility for the existence of the observer. Finally, an example is given
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to verify the effectiveness of the presented DIO design method. In the future, we will
try to relax the requirements of the topology graph and study the design of DIO-based
controller algorithms.
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