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Abstract: In this paper we investigate the problem of a finite-time contractive control method for
a spacecraft rendezvous control system. The dynamic model of relative motion is formulated by
the C-W equations. To improve the convergent performance of the spacecraft rendezvous control
system, a finite-time contractive control law is introduced. Lyapunov’s direct method is employed to
obtain the existence condition of the desired controllers. The controller parameter can be obtained
with the help of the cone complementary linearization algorithm. A numerical example verifies the
effectiveness of the obtained theoretical results.
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1. Introduction

The spacecraft rendezvous system is an important part of the orbital spacecraft since
it provides important technical support for various space missions such as astronaut
pick-up, material supply, space station construction and maintenance, and even manned
lunar landings and deep-space exploration missions. An autonomous rendezvous system
involves two spacecraft: one is the target spacecraft and the other is the chaser spacecraft.
In general, the relative dynamic model of two spacecraft is a set of nonlinear equations [1].
To facilitate analysis and controller design, two kinds of linearized relative motion models
were developed, namely the Clohessy–Wiltshire (C-W) equation [2] and the Tschauner–
Hempel (T-H) equation [3]. The C-W equation is linear time-invariant and is suitable
for target spacecraft running in circular orbits. In contrast, the T-H equation is linear
time-varying and is more appropriate for target spacecraft operating in circular orbits.

The quality of the adopted control strategies directly affects the overall performance
of the autonomous rendezvous system, and then affects the orbital service mission. This
has stimulated an outpouring of enthusiasm from researchers and in the past decades,
various insightful and innovative results on the control of the autonomous rendezvous of
spacecraft have emerged [4–10]. Here, to name a few, a new relative dynamic model that
takes the parameter uncertainty and output tracking into account was developed in [5],
and the guaranteed cost output tracking controller was designed by virtue of the convex
optimization method and the linear matrix inequality technique. Moreover, saturated
state feedback controllers were developed by Luo [7] to globally stabilize the spacecraft
rendezvous system constrained by thrust saturation and/or time delay. In addition, the
semi-global finite-time stabilization issue of a spacecraft rendezvous system with input con-
straints was reported in [8], where the dynamic event-triggered control and self-triggered
control techniques were considered.
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However, finite-time contractive stability (FTCS), proposed in [11] for the first time,
relates to the transient performance of systems in a fixed time interval rather than the
steady performance over an infinite time interval. Roughly speaking, if, given the bound of
the initial condition c1, the state trajectory of a finite-time contractively stable system does
not exceed a bound c2 > c1 over the prescribed time interval [0, Tu], the state trajectory
will further lie within a bound c3 over the time interval [ts, Tu], and it will never escape
from the bound c3 after it comes in [12], where 0 < c3 < c1 < c2, and 0 < ts < Tu. This
suggests that systems under FTCS also have superior convergence performance on the
basis of “boundedness” [13]. In recent years, FTCS has drawn more attention, which
has resulted in the FTCS issue of several kinds of systems being discussed, such as the
stochastic system [14], impulsive systems [15,16], switched systems [17,18], and so on.
Physical applications of FTCS in fields such as clinical medicine [19] and population
control [20] have also been reported. Moreover, we note that there exists the potential
practical application of finite-time contractive stability control of the spacecraft rendezvous
systems on occasions where the relative distance and relative velocity along the x-axis,
y-axis, and z-axis between the target spacecraft and chaser spacecraft need to be within an
ideal prescribed bound after a fixed time ts. However, to the best of the authors’ knowledge,
there exist few results on the FTCS of spacecraft rendezvous systems in the literature, which
motivates this work.

The finite-time contractive control issue for a spacecraft rendezvous system is consid-
ered in this paper. The state feedback controller is designed to finite-time contractively
stabilize the spacecraft rendezvous system. The main contribution of this paper is threefold
as follows. (1) This is the first attempt for the finite-time contractive control of a spacecraft
rendezvous system, and a sufficient condition for the existence of desired controllers is
established. (2) A convex optimization problem with linear matrix inequality constraints is
established for control synthesis, which can be solved by a cone complementary lineariza-
tion algorithm. (3) A numerical example shows that the proposed controller has faster
convergence speed compared with traditional control methods.

Notations: tr(A) represents the trace of A. Matrix A > 0 (≥ 0) denotes that A is
a positive definite matrix (positive semi-definite matrix). Moreover, we assume that the
dimensions of the matrices are compatible with each other, if this is not explicitly stated
before. “w.r.t” denotes the phrase “with respect to”.

2. Problem Formulation

We assume that the target spacecraft is running in a circular orbit, and the coordinate
frame for the two spacecraft is shown in Figure 1. The origin of the coordinate system is
located at the center of mass of the target spacecraft. The x-axis is in the orbital plane of
the target spacecraft, with the positive direction of the Earth center pointing to the target
spacecraft. The y-axis points to the running direction of the target spacecraft. The z-axis is
perpendicular to the orbital plane and forms a right-handed rectangular coordinate system
with the other two axes. Hence, the relative dynamic motion would obey the following
C-W equations [21] 

ẍ− 2nẏ− 3n2x = 1
m Tx,

ÿ + 2nẋ = 1
m Ty,

z̈ + n2z = 1
m Tz,

(1)

where x, y, and z stand for the relative position, m is the mass of the chaser, n is the angular
velocity of the target spacecraft, and Ti(i = x, y, z) is the i-th component of the specific
control force acting on the relative motion dynamics. Letting x(t) = [x, y, z, ẋ, ẏ, ż]T, and
u(t) =

[
Tx, Ty, Tz

]T, then (1) can be further described as{
ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t),

(2)
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where A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3n2 0 0 0 2n 0
0 0 0 −2n 0 0
0 0 −n2 0 0 0

, B =



0 0 0
0 0 0
0 0 0
1
m 0 0
0 1

m 0
0 0 1

m

, C =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

.

Figure 1. Coordinate frame.

Lemma 1 ([22]). For matrices P > 0 and H > 0, if and only if the conditions

tr(PH) = n, (3)

[
P I
I H

]
≥ 0, (4)

hold, PH = I holds.

Definition 1 ([19]). System (2) is finite-time contractively stable w.r.t (c1, c2, c3, R, ts, Tu), if
xT(0)Rx(0) < c1 implies that xT(t)Rx(t) < c2, ∀t ∈ [0, Tu]; furthermore, xT(t)Rx(t) < c3,
∀t ∈ [ts, Tu], where 0 < c3 < c1 < c2, 0 < ts < Tu, and R > 0.

3. Finite-Time Contractive Stabilization

Consider a state feedback control law for (2)

u = Kx(t), (5)

where K is the controller parameter to be designed. Then, the closed-loop system is
established as below

ẋ(t) = (A + BK)x(t). (6)
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The following theorem gives a sufficient condition for the existence of state feedback
controller (5) under which the closed-loop system (6) is finite-time contractively stable.

Theorem 1. For given scalars α > 0, c3 < c1 < c2, and 0 < ts < Tu, and a matrix R > 0, the
closed-loop system (6) is finite-time contractively stable w.r.t (c1, c2, c3, R, ts, Tu), if there exist a
symmetric matrix P > 0 and a matrix K, as well as a scalar ε > 0 satisfying

PA + PBK + ATP + KTBTP + αP < 0, (7)

R < P < εR, (8)

εc1 < c2, (9)

e−αts εc1 < c3, (10)

and the equation restriction
PH = I, (11)

Proof. Choosing a Lyapunov function V(x(t)) = xT(t)Px(t), then taking the time deriva-
tive yields

V̇(x(t)) = xT(t)((PA + PBK) + (PA + PBK)T)x(t). (12)

Furthermore, according to (7), it can be obtained that

PA + PBK + ATP + KTBTP < −αP, (13)

from which we have

xT(t)((PA + PBK) + (PA + PBK)T)x(t) < −αxT(t)Px(t), (14)

i.e.,
V̇(x(t)) < −αV(x(t)). (15)

Multiplying both sides of (15) by eαt, and then integrating both sides of it from 0 to t for
t ∈ [0, Tu], one has

V(x(t)) < e−αtV(x(0)). (16)

Furthermore, since it yields from (8) that xT(t)Rx(t) < V(x(t)) < εxT(t)Rx(t), then,
by letting xT(0)Rx(0) < c1, it can be obtained from (16) and (9) that

xT(t)Rx(t) < V(x(t)) < εc1 < c2, ∀t ∈ [0, Tu]. (17)

Simliar to the proof processes (16)–(17), by (8) and (10), it follows from (15) that

xT(t)Rx(t) < e−αts εc1 < c3, ∀t ∈ [ts, Tu]. (18)

Hence, according to Definition 1, system (6) is finite-time contractively stable w.r.t
(c1, c2, c3, R, ts, Tu). This completes the proof.

Remark 1. The parameters c1, c2, and c3, where 0 < c3 < c1 < c2, represent the specific
bounds within which system state variables lie over the prescribed time interval. They are generally
chosen from practical consideration and are pre-specified in a given problem, as stated in [23,24].
Furthermore, the obtained conditions for the finite-time contractive stability control issue in theorems
are provided in terms of feasibility problems [25]. Hence, this suggests that the expected parameters
c1, c2, and c3 that we choose are achievable and the considered system can be said to be finite-time
contractively stable w.r.t. (c1, c2, c3, R, ts, Tu) over the fixed time interval according to Definition 1
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if the established sufficient conditions in theorems are feasible. In addition, if needed, achievable
values of c1, c2, and c3 that make the obtained sufficient conditions feasible can be chosen by using
the one-dimension linear search method or trial-and-error method.

A sufficient condition for the existence of the finite-time contractive controller (5) is
established in Theorem 1. However, it is different to solve the controller parameter K
straightforwardly since there exists the nonlinear term PBK in inequality (7). To make the
controller design numerically tractable, a controller design method is developed by the
following theorem where the parameters P and K are separated.

Theorem 2. For given scalars α > 0, c3 < c1 < c2, and 0 < ts < Tu, and a matrix R > 0, the
closed-loop system (6) is said to be finite-time contractively stable w.r.t (c1, c2, c3, R, ts, Tu), if there
exist a matrix Q, symmetric matrices H > 0, P > 0, and a scalar ε > 0 such that

(AH + BQ) + (AH + BQ)T + αH < 0, (19)

R < P < εR, (20)

εc1 < c2, (21)

e−αts εc1 < c3, (22)

with the equation restriction
PH = I, (23)

where H = P−1 and the controller parameter is obtained by K = QH−1.

Proof. Pre-and post-multiplying (19) by P, one has

(PA + PBK) + (PA + PBK)T + αP < 0. (24)

Then, following from the proof processes of Theorem 1, it can be easily obtained that
system (6) is finite-time contractively stable w.r.t (c1, c2, c3, R, ts, Tu). Here, the proof is
omitted for simplicity.

Remark 2. It follows from (19) that V̇(x(t)) < −αV(x(t)) < 0, which indicates that the sys-
tem (6) must be Lyapunov asymptotically (exponentially) stable in the case of finite-time contractive
stability control. Furthermore, due to the existence of contraction conditions (21) and (22) over
a finite-time interval for state trajectory under finite-time contractive stability control, when the
system (6) is Lyapunov asymptotically (exponentially) stable, it may not be finite-time contractively
stable w.r.t prescribed parameters c1, c2, c3, R, ts, and Tu. Briefly speaking, if a system is said to be
finite-time contractive stable, it must be Lyapunov asymptotically stable, while, conversely, it may
not be. In addition, with the aim of small ts and c3, the convergence speed of finite-time contractively
stable systems may be better than that of Lyapunov asymptotic stable systems, which results in the
considered system approaching the equilibrium state faster under FTCS.

Remark 3. In Theorem 2, the analytic solution of controller parameters K is given in the form
of K = QH−1, which is numerically solvable through the use of the well-established variable
substitution method. However, matrices P and H that only satisfy the conditions (19)–(22) may not
qualify since the potential relationship shown in (23) does not hold in this case. Hence, to ensure that
the obtained feasible set satisfies both the constraints (19)–(22) and (23), the following minimization
problem is considered.
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Problem 1.

min tr(PH)
s.t. (4) and (19)–(22)

Remark 4. On one hand, according to Lemma 1, tr(PH) ≥ n always holds if (4) holds. Then, if and
only if tr(PH) = n, tr(PH) reaches the minimum, and PH = I holds. Hence, conditions (19)–(23)
are feasible, and the controller parameter K can be further solved, when the solution of Problem 1 is n.
On the other hand, Problem 1 is essentially a non-convex problem and it is difficult to solve. Hence,
inspired by [26], the following cone complementary linearization algorithm (CCLA) is employed to
address it (Algorithm 1). By this algorithm, φ + tr(P1H + PH1) is used to linearly approximate
tr(PH) at a given point (P1, H1), where φ is a constant that is small enough. In this way, if and
only if tr(P1H + PH1) = 2n, the constraint PH = I holds.

Algorithm 1 CCLA for solving Problem 1

Step 1. Given parameters α, c1, c2, c3, R, ts, and Tu. Moreover, set j = 1, φ = 1× 10−6, and
maximum iterations Iter = 50.
Step 2. Compute conditions (4) and (19)–(22). If not feasible, exit; otherwise, go to Step 3.
Step 3. Set (Hj, Pj, Qj, εi) = (H, P, Q, ε), where (H, P, Q, ε) is the feasible solution attained
in Step 2. Furthermore, compute Problem 1.
Step 4. Compare the value of tr(Pi H + PHi) with 2n, where n is the dimension of P. If
|tr(Pi H + PHi)−2n| < φ, output the value of K = QH−1 and then exit; else, j = j + 1, and
compare j with Itea, if i ≤ Iter, go to Step 3; else, exit.

Next, the Lyapunov asymptotical stabilization and the classical linear quadratic regu-
lator (LQR) control issues of system (2) are also discussed for comparison.

(A) Lyapunov asymptotical stabilization
When α = 0, one has from (19) that

(AH + BQ) + (AH + BQ)T < 0, (25)

Then, based on Problem 1 and Remark 2, it can be attained that closed-loop system (6)
is Lyapunov asymptotic stable (LAS) if the following Problem 2 is feasible.

Problem 2.

min tr(PH)
s.t. (4) and (25)

The following Algorithm 2 can be applied to compute the above Problem 2.

Algorithm 2 CCLA for solving Problem 2

Step 1. Set j = 1, φ = 1× 10−6, and maximum iterations Iter = 50.
Step 2. Solve the conditions (4) and (25). If not feasible, exit; otherwise, go to Step 3.
Step 3. Set (Hj, Pj, Qj) = (H, P, Q), where (H, P, Q) is the feasible solution attained in
Step 2. Furthermore, solve Problem 2.
Step 4. Compare the value of tr(Pi H + PHi) with 2n, where n is the dimension of P. If
|tr(Pi H + PHi)−2n| < φ, output the value of K = QH−1 and then exit; else, j = j + 1, and
compare j with Itea, if i ≤ Iter, go to Step 3; else, exit.

(B) LQR control [27]
Considering system (2) with controllable (A, B), we can obtain an optimal LQR by

using the full state feedback control law u = −Kx, which can minimize the performance
index as below



Mathematics 2023, 11, 1871 7 of 14

J =
∫ ∞

0

(
xTQx + uTRu

)
dt (26)

where symmetrical matrices Q ≥ 0 andR > 0.
In this case, the controller gain K is represented as K = R−1BTP, where P is the

solution of the following algebraic Riccati equation

PA + ATP +Q− PBR−1BTP = 0

4. Simulation Results

In this section, the effectiveness of the proposed method is verified through the use of
the following example.

We assume that the mass m of the chaser spacecraft is 300 kg and the angular velocity
n of the target spacecraft is 1.168× 10−3 rad/s. Furthermore, we assume that the two
spacecraft are relatively static at t = 0, and the initial relative positions of the two spacecraft
are 750 m (along the x-axis), 650 m (along the y-axis), and 550 m (along the z-axis) at t = 0.
Then, it is obtained that x(0) = [750, 650, 550, 0, 0, 0]T. Next, we will stabilize the considered
spacecraft rendezvous system in the case of finite-time contractive stability and the case of
the Lyapunov asymptotical stability, respectively.

Case 1. Finite-time contractive stabilization

For given parameters c1 = 1.3× 106, c2 = 2.5× 106, c3 = 1× 104, R = I, ts = 10, and
Tu = 40, we solve Algorithm 1 through the use of the Yalmip toolbox [28]; when α = 0.56,
it can obtain the following feasible set of Problem 1 as follows.

P =



1.4615 0.0046 0.0031 0.3576 −0.0014 −0.0010
0.0046 1.4644 −0.0011 −0.0013 0.3568 0.0004
0.0031 −0.0011 1.4663 −0.0008 0.0003 0.3562
0.3576 −0.0013 −0.0008 1.2772 −0.0048 −0.0033
−0.0014 0.3568 0.0003 −0.0048 1.2742 0.0012
−0.0010 0.0004 −0.3562 −0.0033 0.0012 1.2721

,

H =



0.7346 −0.0027 −0.0018 −0.2057 0.0007 0.0006
−0.0027 0.7329 0.0007 0.0007 −0.2052 −0.0002
−0.0018 0.0007 0.7318 0.0005 −0.0002 −0.2049
−0.2057 0.0007 0.0005 0.8406 0.0027 0.0019
0.0007 −0.2052 −0.0002 0.0027 0.8423 −0.0007
0.0006 −0.0002 −0.2049 0.0019 −0.0007 0.8435

,

W =

−217.5592 0.7428 −0.5725 −603.5876 123.1579 123.7787
−1.0199 −218.1600 0.3047 123.2236 −603.8824 123.6221
−0.5871 0.3145 −218.5594 123.2847 123.7681 −603.9867

.

η = 1.8807.

Then, the controller gain matrix K can be obtained as

K = QH−1 =

−534.1135 42.7502 43.1158 −849.7152 160.1318 159.6025
42.2767 −535.0346 44.4461 159.8061 −847.7123 156.1346
42.9813 44.4588 −535.6834 158.8171 156.4078 −846.4539

.

Case 2. Lyapunov asymptotic stabilization.

By Algorithm 2, we can obtain the qualified feasible set of Problem 2 below
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P =



3.0361 −0.0086 −0.0086 1.2422 0.0585 0.0513
−0.0086 3.0374 −0.0084 0.0434 1.2404 0.0500
−0.0086 −0.0084 3.0372 0.0506 0.0514 1.2412
1.2422 0.0434 0.0506 9.7036 0.9601 0.9577
0.0585 1.2404 0.0514 0.9601 9.7123 0.9645
0.0513 0.0500 1.2412 0.9577 0.9645 9.7090

,

H =



0.3477 0.0008 0.0008 −0.0449 0.0020 0.0023
0.0008 0.3475 0.0007 0.0026 −0.0449 0.0023
0.0008 0.0007 0.3475 0.0023 0.0023 −0.0449
−0.0449 0.0026 0.0023 0.1108 −0.0100 −0.0100
0.0020 −0.0449 0.0023 −0.0100 0.1107 −0.0101
0.0023 0.0023 −0.0449 −0.0100 −0.0101 0.1107

,

Q =

−10.0000 1.8545 1.8133 −10.0000 0.5097 0.5140
1.7942 −10.0000 1.8326 0.5097 −10.0000 0.5104
1.8145 1.8309 −10.0000 0.5140 0.5101 −10.0000

,

from which it yields that

K = QH−1 =

−42.7585 5.9275 5.7365 −108.3038 −2.3458 −2.2657
5.5921 −42.7602 5.7790 −2.2787 −108.3461 −2.3347
5.7346 5.7838 −42.7628 −2.2725 −2.3341 −108.3334

.

Case 3. LQR control
Through numerous simulations in trial and error, the following matrices Q andR, by

which a great convergence performance of system (2) can be achieved, are set.

Q =



12 0 0 0 0 0
0 16 0 0 0 0
0 0 20 0 0 0
0 0 0 12 0 0
0 0 0 0 20 0
0 0 0 0 0 14

,R =

0.001 0 0
0 0.002 0
0 0 0.015

.

Then, we can obtain a qualified solution P and a corresponding controller gain K as
below

P =



30.5407 0.0042 0 32.8636 0.1238 0
0.0042 45.1365 0 −0.1011 53.6654 0

0 0 82.7805 0 0 164.3151
32.8636 −0.1011 0 83.6389 −0.0726 0
0.1238 53.6654 0 −0.0726 151.3918 0

0 0 164.3151 0 0 680.1108

,

K =

109.5452 −0.3371 0 278.7964 −0.2421 0
0.2064 89.4424 0 −0.1211 252.3197 0

0 0 36.5145 0 0 151.1357

.

Remark 5. Note that the best results obtained through numerous experiments in trial and error
were chosen to be compared to ensure the fairness of the comparison in the above three cases.

Furthermore, the illustration of the trajectory xT(t)Rx(t) of the designed spacecraft ren-
dezvous system in the cases of finite-time contractive stabilization, Lyapunov asymptotic
stabilization, and LQR control are shown in Figure 2, where xT(t)Rx(t)-FTCS, xT(t)Rx(t)-
LAS, and xT(t)Rx(t)-LQR denote the trajectory of xT(t)Rx(t) under the finite-time contrac-
tive stabilization, the Lyapunov asymptotic stabilization, and LQR control, respectively.

In Figure 2, the curve “xT(t)Rx(t)-FTCS” indicates that for given x(0) = [750, 650, 550, 0,
0, 0]T, which satisfies xT(0)Rx(0) = 1.2875 × 106 < 1.3 × 106, xT(t)Rx(t) < 2.5 × 106
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holds, ∀ t ∈ [0, 40], xT(t)Rx(t) < 1.0 × 104 holds, ∀ t ∈ [10, 40]. Hence, according to
Definition 1, the designed spacecraft rendezvous system is finite-time contractively stable
w.r.t.(1.3× 106, 2.5× 106, 1.0× 104, I, 10, 40) under finite-time contractive stabilization. In
addition, the curve “xT(t)Rx(t)-LAS” shows that the trajectory of xT(t)Rx(t) reaches the
bound c3 at 7.947 s for the first time under the case of Lyapunov asymptotic stabilization;
however, it escapes from the bound at the time interval [10, 14.022]. Hence, the designed
spacecraft rendezvous system is Lyapunov asymptotically stable but is not finite-time
contractively stable w.r.t. (1.3× 106, 2.5× 106, 1.0× 104, I, 10, 40) in this case, which verifies
the conclusion that if a system is finite-time contractively stable, it must be Lyapunov
asymptotically stable, but not vice versa.
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Figure 2. Evolution of xT(t)Rx(t) under different control methods.

The trajectories of relative position and velocity under different control laws are
presented in Figures 3–8. Moreover, the distribution diagram of pole points of the resulting
closed-loop system from input u1 to all outputs (y1, y2, y3) is shown in Figure 9. (Such
diagrams from u2, u3 to all outputs (y1, y2, y3) are the same as that from u1 to all outputs
in this case. Here, they are not listed for simplicity.) It follows from Figures 3–8 that the
relative position and velocity of the considered two spacecrafts along the x, y, and z axes
gradually reduce to 0 under cases of finite-time contractive stabilization and Lyapunov
asymptotic stabilization. This indicates that the spacecraft rendezvous can be achieved
through the use of the designed controllers. Furthermore, comparing x(t)-FTCS, . . . , ż(t)-
FTCS with x(t)-LAS, . . . , ż(t)-LAS and x(t)-LQR, . . . , ż(t)-LQR, respectively, it is attained
that in the case of finite-time contractive stabilization, the achievement of the spacecraft
rendezvous is quicker than that in the case of Lyapunov asymptotic stabilization and LQR
control, from which it can be concluded that the convergence performance for finite-time
contractive stability can be better than Lyapunov asymptotic stability. This conclusion can
also be supported intuitively by Figure 9, where poles in the FTCS case that all lie on the
left of “s = −α” are definitely farther from the imaginary axis than that in the LAS and
LQR cases.

In addition, according to the simulation results, if assuming that the chaser spacecraft
needs to approach the target spacecraft within a short enough ts, there is no doubt that the
strength of thrust of the chaser spacecraft is suffering challenges in the consideration of
finite-time contractive stabilization in this paper, and thus, the corresponding cased energy
consumption has to be accommodated. Actually, a balance between the expected ts and
acceptable strength of thrust is needed in practice.
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Figure 3. Relative position along x-axis under different control laws.
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Figure 4. Relative position along y-axis under different control laws.
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Figure 5. Relative position along z-axis under different control laws.
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ẋ(t)-LQR

Figure 6. Relative velocity along x-axis under different control laws.
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Figure 7. Relative velocity along y-axis under different control laws.
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5. Conclusions

The finite-time contractive control problem for spacecraft rendezvous was investi-
gated in this paper. Based on the Lyapunov stability theory, the existence condition of the
finite-time contractive controller was established. The cone complementary linearization
technique was adopted to make the controller design numerically tractable. An illustrative
example showed the effectiveness of the proposed controller. Considering that the state
unavailability and noise of the spacecraft rendezvous system, which we ignored in this
paper, commonly need to be considered in practice, the future research interests of this
paper include the robust finite-time contractive boundedness control issue for an uncertain
spacecraft rendezvous system with disturbance and noise effects under observer-based
dynamic output feedback control, and the guaranteed cost finite-time contractive stabiliza-
tion issue for an uncertain spacecraft rendezvous system with/without disturbances and
noise effects.
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