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Abstract: In the paper, the authors briefly survey several generalizations of the Catalan numbers
in combinatorial number theory, analytically generalize the Catalan numbers, establish an integral
representation of the analytic generalization of the Catalan numbers by virtue of Cauchy’s integral
formula in the theory of complex functions, and point out potential directions for further study.

Keywords: Catalan number; generalized Catalan function; generalized Catalan number; Cauchy’s
integral formula; generalization; generating function; integral representation

MSC: 05A15; 11B75; 11B83; 26A09; 30E20; 41A58

1. A Brief Survey of the Catalan Numbers and Their Generalizations

The Catalan numbers

Cn =
1

n + 1

(
2n
n

)
=

4nΓ(n + 1/2)√
π Γ(n + 2)

(1)

form a sequence of integers [1–3], have combinatorial interpretations [2,4], have a long
history [1,5], and can be generated [4,6] by

G(x) =
2

1 +
√

1− 4x
=

∞

∑
n=0

Cnxn, (2)

where
Γ(z) = lim

n→∞

n!nz

∏n
k=0(z + k)

, z 6= 0,−1,−2, . . .

is the classical Euler gamma function [7].
A generalization of the Catalan numbers Cn was defined in References [8–10] by

pdn =
1
n

(
pn

n− 1

)
=

1
(p− 1)n + 1

(
pn
n

)
(3)

for n, p ≥ 1. It is obvious that Cn = 2dn. In Reference [2] (pp. 375–376), the generalization
p+1dn is denoted by C(n, p) for p ≥ 0 and is termed the generalized Catalan numbers. In
Reference [2] (pp. 377–378), the Fuss numbers
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F(m, n) =
1

mn + 1

(
mn + 1

n

)
(4)

were given and discussed. It is apparent that F(2, n) = Cn.
In combinatorial mathematics and statistics, the Fuss–Catalan numbers An(p, r) are

defined [11] as numbers of the form

An(p, r) =
r

np + r

(
np + r

n

)
=

rΓ(np + r)
Γ(n + 1)Γ(n(p− 1) + r + 1)

. (5)

It is easy to see that

An(p, 1) = F(p, n), An(2, 1) = Cn, n ≥ 0

and
An−1(p, p) = pdn = C(n, p− 1), n, p ≥ 1.

There has been some discussion in the literature, such as in References [2,6,12], on the
investigation of the Fuss–Catalan numbers An(p, r).

In the paper [13], starting from the second expression in Equation (1) in terms of
gamma functions, the Catalan numbers Cn were analytically generalized to

C(a, b; z) =
Γ(b)
Γ(a)

(
b
a

)z Γ(z + a)
Γ(z + b)

, <(a),<(b) > 0, <(z) ≥ 0 (6)

with

C
(

1
2

, 2; n
)
= Cn, n ≥ 0. (7)

It is not difficult to verify that

C(n + 1, 2; (m− 1)n) =
(

2
n + 1

)(m−1)n

mdn =

(
2

n + 1

)(m−1)n

C(n, m− 1)

for m, n ≥ 1. Thereafter, the Catalan–Qi function C(a, b; z) and its analytic generalizations
were thoroughly investigated in References [5,14–23] and closely related sources therein.

In Reference [13], it was determined that

C(a, b; z) =
Γ(b)
Γ(a)

(
b
a

)z
(z + a)z

(z + b)z+b−a

× exp
[

b− a +
∫ ∞

0

1
t

(
1

1− e−t −
1
t
− a
)(

e−at− e−bt) e−zt d t
]

for <(a),<(b) > 0 and <(z) ≥ 0. In Theorem 1.1 of Reference [16], we discovered
several relations between the Fuss–Catalan numbers An(p, r) and the Catalan–Qi numbers
C(a, b; n), one of which reads that

An(p, r) = rn ∏
p−1
k=0 C

( k+r
p , 1; n

)
∏

p−2
k=0 C

( k+r+1
p−1 , 1; n

) (8)

for integers n ≥ 0, p > 1, and r > 0. In the series of papers [13,15–17,19,24], among
other things, some properties, including the general expression and a generalization of the
asymptotic expansion

4xΓ
(
x + 1

2
)

√
π Γ(x + 2)

∼ 4x
√

π

(
1

x3/2 −
9
8

1
x5/2 +

145
128

1
x7/2 + · · ·

)
,
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the monotonicity, logarithmic convexity, (logarithmically) complete monotonicity, minimal-
ity, Schur-convexity, product and determinantal inequalities, exponential representations,
integral representations, a generating function, connections with the Bessel polynomials
and the Bell polynomials of the second kind, and identities of the Catalan numbers Cn, the
Catalan–Qi numbers C(a, b; n), the Catalan–Qi function C(a, b; z), and the Fuss–Catalan
numbers An(p, r) were established.

In Reference [18], the notion

Q(a, b; p, q; z) =
Γ(b)
Γ(a)

(
b
a

)(q−p+1)z

[Γ(z + 1)]q−p Γ(pz + a)
Γ(qz + b)

(9)

was introduced, where <(a),<(b) > 0, <(p),<(q) > 0, and <(z) ≥ 0. We call the quantity
Q(a, b; p, q; z) the Fuss–Catalan–Qi function and, when taking z = n ≥ 0, call Q(a, b; p, q; n)
the Fuss–Catalan–Qi numbers. It is easy to see that

Q
(

1
2

, 2; 1, 1; n
)
= Q(1, 2; 2, 1; n) = Cn,

Q(r, r + 1; p, p− 1; n) = An(p, r),

Q(p, p + 1; p, p− 1; n− 1) = pdn = C(n, p− 1),

Q(a, b; 1, 1; z) = C(a, b; z).

For <(a),<(b) > 0 and <(z) ≥ 0, when p, q ∈ N, we generalized Equation (8) as

Q(a, b; p, q; z) =
[(

b
a

)q−p+1 Γ(b)Γ(p + a)
Γ(a)Γ(q + b)

]z ∏
p−1
k=0 C

( k+a
p , 1; z

)
∏

q−1
k=0 C

( k+b
q , 1; z

) .

The Catalan numbers Cn for n ≥ 0 have several integral representations which have
been surveyed in Section 2 of Reference [5]. The integral representation

Cn =
1

2π

∫ 4

0

√
4− x

x
xn d x, n ≥ 0 (10)

was highlighted in Reference [25] and applied in Reference [21]. An alternative integral
representation

Cn =
1
π

∫ ∞

0

√
t

(t + 1/4)n+2 d t (11)

was derived from the integral representation

1
1 +
√

1− 4x
=

1
2π

∫ ∞

0

√
t

1/4 + t
1

1/4 + t− x
d t, x ∈

(
−∞,

1
4

]
(12)

of the generating function G(x) as given in Equation (2), which was established in Theorem 1.3
of Reference [19] by virtue of Cauchy’s integral formula in the theory of complex functions.

The generalized Catalan function C(a, b; z) defined by Equation (6) also has several
integral representations which have been surveyed in Section 2 of Reference [5]. For
example, corresponding to integral representations in Equations (10) and (11), integral
representations

C(a, b; x) =
(

a
b

)b−1 1
B(a, b− a)

∫ b/a

0

(
b
a
− t
)b−a−1

tx+a−1 d t (13)

and

C(a, b; x) =
(

a
b

)a 1
B(a, b− a)

∫ ∞

0

tb−a−1

(t + a/b)x+b d t. (14)
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for b > a > 0 and x ≥ 0 were established in Theorem 4 of Reference [17], where the classical
beta function B(z, w) can be defined or expressed [26] by

B(z, w) =
∫ 1

0
tz−1(1− t)w−1 d t =

∫ ∞

0

tz−1

(1 + t)z+w d t =
Γ(z)Γ(w)

Γ(z + w)

for<(z),<(w) > 0. We note that, when letting a = 1
2 and b = 2, the integral representations

in Equations (13) and (14) become those in Equations (10) and (11), respectively.
The generating function G(x) in Equation (2) can be regarded as a special case a = 1

2 ,
b = 1

4 , and c = 1 of the function

Ga,b,c(x) =
1

a +
√

b− cx
, a ≥ 0, b, c > 0.

Essentially, it is better to regard the function

Ga,b(x) =
1

a +
√

b− x
, a ≥ 0, b > 0 (15)

as a generalization of the generating function G(x), because

G1/2,1/4(x) = G(x), Ga,b(x) = Ga,b,1(x), Ga,b,c(x) =
Ga/
√

c ,b/c(x)
√

c
,

but we can not express Ga,b(x) in terms of G(x).
Now we would like to pose the following three questions.

(1) Can one establish an explicit formula for the sequence C(a, b; n) generated by

Ga,b(x) =
1

a +
√

b− x
=

∞

∑
n=0
C(a, b; n)xn (16)

for a ≥ 0 and b > 0?
(2) Can one find an integral representation for the sequence C(a, b; n) by finding an

integral representation of the generating function Ga,b(x) in Equation (15)?
(3) Can one combinatorially interpret the sequence C(a, b; n) or some special case of

C(a, b; n) except the case a = 1
2 and b = 1

4 ?

It is easy to see that

lim
a→0+

C(a, b; n) =
(−1)n

n!

〈
−1

2

〉
n

1
b(2n+1)/2

(17)

and

C
(

1
2

,
1
4

; n
)
= Cn (18)

for n ≥ 0, where the notation

〈α〉n =
n−1

∏
k=0

(α− k) =

{
α(α− 1) · · · (α− n + 1), n ≥ 1
1, n = 0

for α 6= 0 is called the falling factorial [27,28]. Comparing Equation (18) with Equation (7)
reveals that C(a, b; n) 6≡ C(a, b; n), although it is possible that

{C(a, b; n) : n ≥ 0, a ≥ 0, b > 0} = {C(a, b; n) : n ≥ 0, a ≥ 0, b > 0}

or that there exist two 2-tuples (an, bn) ∈ (0, ∞)× (0, ∞) and (αn, βn) ∈ (0, ∞)× (0, ∞)
such that C(an, bn; n) = C(αn, βn; n) for all n ≥ 0.
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For our own convenience and referencing to the convention in the mathematical
community, while calling C(a, b; n) for n ≥ 0, a ≥ 0, and b > 0 generalized Catalan
numbers of the first kind, and we call C(a, b; n) for n ≥ 0, a ≥ 0, and b > 0 generalized
Catalan numbers of the second kind.

In order to make this article more readable, we provide the following overview of all
of the definitions used:

(1) Cn: Catalan numbers,
(2) C(a, b; z): generalized Catalan function of the first kind,
(3) C(a, b; n): generalized Catalan numbers of the first kind,
(4) C(a, b; n): generalized Catalan numbers of the second kind,
(5) C(a, b; z): generalized Catalan function of the second kind.

In this paper, we will give solutions to the first two problems above—establishing an
explicit formula for generalized Catalan numbers of the second kind C(a, b; n) and finding
an integral representation for generalized Catalan numbers of the second kind C(a, b; n)
by finding an integral representation of the generating function Ga,b(x) in Equation (15)—
while leaving the third problem above to interested combinatorists.

2. An Explicit Formula for Generalized Catalan Numbers of the Second Kind

In this section, we will establish an explicit formula for generalized Catalan numbers of
the second kind C(a, b; n), which gives a solution to the first problem posed in Equation (16).

Theorem 1. The generalized Catalan numbers of the second kind C(a, b; n) for n ≥ 0, a ≥ 0, and
b > 0 can be explicitly computed by

C(a, b; n) =
1

(2n)!!bn+1/2

n

∑
k=0

(
2n− k− 1
2(n− k)

)
k![2(n− k)− 1]!!(

1 + a/
√

b
)k+1 , (19)

where the double factorial of negative odd integers −(2`+ 1) is defined by

(−2`− 1)!! =
(−1)`

(2`− 1)!!
= (−1)`

(2`)!!
(2`)!

, ` ≥ 0.

Proof. The Bell polynomials of the second kind Bn,k(x1, x2, . . . , xn−k+1) for n ≥ k ≥ 0 are
defined in Reference [29] (p. 134, Theorem A) by

Bn,k(x1, x2, . . . , xn−k+1) = ∑
1≤i≤n−k+1
`i∈{0}∪N

∑n−k+1
i=1 i`i=n

∑n−k+1
i=1 `i=k

n!

∏n−k+1
i=1 `i!

n−k+1

∏
i=1

(
xi
i!

)`i

.

The famous Faà di Bruno formula can be described [29] (p. 139, Theorem C) in terms
of the Bell polynomials of the second kind Bn,k(x1, x2, . . . , xn−k+1) by

dn

d xn f ◦ h(x) =
n

∑
k=0

f (k)(h(x))Bn,k
(
h′(x), h′′(x), . . . , h(n−k+1)(x)

)
, (20)

where f ◦ h denotes the composite of the n-time differentiable functions f and h.
Let h = h(x) =

√
b− x . Then

h(k)(x) = (−1)k
〈

1
2

〉
k
(b− x)1/2−k → (−1)k

〈
1
2

〉
k
b1/2−k, x → 0
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for k ≥ 0 and, in light of Formula (20) for f (u) = 1
a+u ,

dn Ga,b(x)
d xn =

n

∑
k=0

dk

d hk

(
1

a + h

)
Bn,k

(
h′(x), h′′(x), . . . , h(n−k+1)(x)

)
=

n

∑
k=0

(−1)k k!
[a + h(x)]k+1 Bn,k

(
h′(x), h′′(x), . . . , h(n−k+1)(x)

)
→

n

∑
k=0

(−1)k k!
[a + h(0)]k+1 Bn,k

(
−
〈

1
2

〉
1
b−1/2,

〈
1
2

〉
2
b−3/2,

. . . , (−1)n−k+1
〈

1
2

〉
n−k+1

b1/2−(n−k+1)
)

, x → 0

=
n

∑
k=0

(−1)k k!(
a +
√

b
)k+1 (−1)nbk/2−n Bn,k

(〈
1
2

〉
1
,
〈

1
2

〉
2
, . . . ,

〈
1
2

〉
n−k+1

)

=
1

2nbn+1/2

n

∑
k=0

k![2(n− k)− 1]!!
(

2n− k− 1
2(n− k)

)( √
b

a +
√

b

)k+1

,

where we used the formulas

Bn,k
(
abx1, ab2x2, . . . , abn−k+1xn−k+1

)
= akbn Bn,k(x1, x2, . . . , xn−k+1)

and

Bn,k

(〈
1
2

〉
1
,
〈

1
2

〉
2
, . . . ,

〈
1
2

〉
n−k+1

)
= (−1)n+k[2(n− k)− 1]!!

(
1
2

)n(2n− k− 1
2(n− k)

)
(21)

for n ≥ k ≥ 0, see p. 135 of Reference [29] and Formula (3.6) in the first two lines on p. 168
of [27], respectively. By the way, Formula (21) is connected with Remark 1 of Reference [30],
Section 1.3 of Reference [28], Theorem 4 of Reference [24], and closely related sources
therein.

The Equation (16) means that

n!C(a, b; n) = lim
x→0

dn Ga,b(x)
d xn .

Consequently, we obtain the explicit formula

C(a, b; n) =
1

(2n)!!bn+1/2

n

∑
k=0

k![2(n− k)− 1]!!
(

2n− k− 1
2(n− k)

)( √
b

a +
√

b

)k+1

,

which can be rearranged as Equation (19). The proof of Theorem 1 is complete.

Corollary 1 ([24], Theorem 1.3). The Catalan number Cn for n ≥ 0 can be explicitly computed by

Cn =
1
n!

n

∑
`=0

(
n + `− 1

2`

)
2`(n− `)!(2`− 1)!!. (22)

Proof. This follows from utilizing Relation (18) and applying a = 1
2 and b = 1

4 in (19). The
proof of Corollary 1 is complete.
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3. An Integral Representation for Generalized Catalan Numbers of the Second Kind

In this section, we will discover an integral representation for generalized Catalan
numbers of the second kind C(a, b; n) by finding an integral representation of the generating
function Ga,b(x) in Equation (15), which gives a solution to the second problem posed in
Equation (16).

Theorem 2. The principal branch of the generating function Ga,b(z) for a ≥ 0 and b > 0 can be
represented by

Ga,b(z) =
1

a +
√

b− z
=

1
π

∫ ∞

0

√
t

a2 + t
1

b + t− z
d t, z ∈ C \ [b, ∞). (23)

Consequently, generalized Catalan numbers of the second kind C(a, b; n) for a ≥ 0 and b > 0 can
be represented by

C(a, b; n) =
1
π

∫ ∞

0

√
t

a2 + t
1

(b + t)n+1 d t, n ≥ 0. (24)

Proof. Let
F(z) =

1

a + exp ln(−z)
2

, z ∈ C \ [0, ∞), arg z ∈ (0, 2π),

where i =
√
−1 is the imaginary unit and arg z stands for the principal value of the

argument of z. By virtue of Cauchy’s integral formula (p. 113 of Reference [31]) in the
theory of complex functions, for any fixed point z0 = x0 + i y0 ∈ C \ [0, ∞), we have

F(z0) =
1

2π i

∫
L

F(ξ)
ξ − z0

d ξ,

where L is a positively oriented contour L(r, R) in C \ [0, ∞), as shown in Figure 1, satisfying

(1) 0 < r < |z0| < R;
(2) L(r, R) consists of the half circle z = r ei θ for θ ∈

[
π
2 , 3π

2
]
;

(3) L(r, R) consists of the line segments z = x ± i r for x ∈ (0, R(r)], where R(r) =√
R2 − r2 ;

(4) L(r, R) consists of the circular arc z = R ei θ for

θ ∈
(

arctan
r

R(r)
, 2π − arctan

r
R(r)

)
;

(5) the line segments z = x ± i r for x ∈ (0, R(r)] cut the circle |z| = R at the points
R(r)± i r and R(r)→ R as r → 0+.

The integral on the circular arc z = R ei θ equals

1
2π i

∫ 2π−arcsin[r/R(r)]

arcsin[r/R(r)]

R i ei θ(
R ei θ −z0

)[
a + exp ln(−R ei θ)

2
] d θ

=
1

2π

∫ 2π−arcsin[r/R(r)]

arcsin[r/R(r)]

1(
1− z0

R ei θ

)[
a + exp ln(−R ei θ)

2
] d θ

=
1

2π

∫ 2π−arcsin[r/R(r)]

arcsin[r/R(r)]

1(
1− z0

R ei θ

)[
a + exp ln R+i arg(−R ei θ)

2
] d θ

→ 0

uniformly as R→ ∞.
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Figure 1. The positively oriented contour L(r, R) in C \ [0, ∞).

The integral on the half circle z = r ei θ for θ ∈
[

π
2 , 3π

2
]

is

− 1
2π i

∫ 3π/2

π/2

r i ei θ(
r ei θ −z0

)[
a + exp ln(−r ei θ)

2
] d θ

= − 1
2π

∫ 3π/2

π/2

r ei θ

r ei θ −z0

1

a + exp ln(−r ei θ)
2

d θ

= − 1
2π

∫ 3π/2

π/2

r ei θ

r ei θ −z0

1

a + exp ln r+i arg(−r ei θ)
2

d θ

= − 1
2π

∫ 3π/2

π/2

r ei θ

r ei θ −z0

1

a +
√

r exp i arg(−r ei θ)
2

d θ

→ 0

uniformly as r → 0+.
Since

F(x + i r) =
1

a + exp ln(−x−r i)
2

=
1

a + exp ln
√

x2+r2 +i[arctan(r/x)−π]
2

=
1

a + 4
√

x2 + r2
[
cos arctan(r/x)−π

2 + i sin arctan(r/x)−π
2

]
=

1

a + 4
√

x2 + r2
[
sin arctan(r/x)

2 − i cos arctan(r/x)
2

]
=

1

a + 4
√

x2 + r2 sin arctan(r/x)
2 − i 4

√
x2 + r2 cos arctan(r/x)

2
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=
a + 4
√

x2 + r2 sin arctan(r/x)
2 + i 4

√
x2 + r2 cos arctan(r/x)

2[
a + 4
√

x2 + r2 sin arctan(r/x)
2

]2
+
[ 4
√

x2 + r2 cos arctan(r/x)
2

]2
→ a + i

√
x

a2 + x

as r → 0+ and F(z) = F(z̄), the integral on the line segments z = x± i r for x ∈ (0, R(r)] is
equal to

1
2π i

[∫ R(r)

0

F(x + i r)
x + i r− z0

d x +
∫ 0

R(r)

F(x− i r)
x− i r− z0

d x

]

=
1

2π i

∫ R(r)

0

(x− i r− z0)F(x + i r)− (x + i r− z0)F(x− i r)
(x + i r− z0)(x− i r− z0)

d x

=
1

2π i

∫ R(r)

0

(x− z0)[F(x + i r)− F(x− i r)]− i r[F(x + i r) + F(x− i r)]
(x + i r− z0)(x− i r− z0)

d x

=
1

2π i

∫ R(r)

0

(x− z0)
[
F(x + i r)− F

(
x + i r

)]
− i r

[
F(x + i r) + F

(
x + i r

)]
(x + i r− z0)(x− i r− z0)

d x

=
1

2π i

∫ R(r)

0

(x− z0)
[
F(x + i r)− F(x + i r)

]
− i r

[
F(x + i r) + F(x + i r)

]
(x + i r− z0)(x− i r− z0)

d x

=
1

2π i

∫ R(r)

0

(x− z0)[2i=(F(x + i r))]− i r[2<(F(x + i r))]
(x + i r− z0)(x− i r− z0)

d x

→ 1
2π i

∫ ∞

0

2i
x− z0

√
x

a2 + x
d x, r → 0+, R→ ∞

=
1
π

∫ ∞

0

√
x

(a2 + x)(x− z0)
d x.

Consequently, it follows that

1

a + exp ln(−z0)
2

=
1
π

∫ ∞

0

√
x

(a2 + x)(x− z0)
d x (25)

for any z0 ∈ C \ [0, ∞) and arg z0 ∈ (0, 2π). Due to the point z0 in Equation (25) being
arbitrary, the integral Formula (25) can be rearranged as

F(z) =
1

a + exp ln(−z)
2

=
1
π

∫ ∞

0

√
x

(a2 + x)(x− z)
d x (26)

for z ∈ C \ [0, ∞) and arg z ∈ (0, 2π).
Let

f (z) =
1

a + exp ln(b−z)
2

, z ∈ C \ [b, ∞), arg(z− b) ∈ (0, 2π).

Then f (z) = F(z− b). Therefore, from Equation (26), it follows that

f (z) =
1

a + exp ln(b−z)
2

=
1
π

∫ ∞

0

√
x

(a2 + x)(b + x− z)
d x

for z ∈ C \ [b, ∞) and arg(z− b) ∈ (0, 2π). The integral representation in Equation (23) is
thus proved.



Mathematics 2023, 11, 1870 10 of 16

Differentiating n ≥ 0 times with respect to z on both sides of Equation (23) and taking
the limit z→ 0 yields

G(n)
a,b (z) =

dn

d zn

(
1

a +
√

b− z

)
=

1
π

∫ ∞

0

√
t

a2 + t
dn

d zn

(
1

b + t− z

)
d t

=
1
π

∫ ∞

0

√
t

a2 + t
n!

(b + t− z)n+1 d t

→ n!
π

∫ ∞

0

√
t

a2 + t
1

(b + t)n+1 d t, z→ 0.

As a result, by virtue of Equation (16), we have

C(a, b; n) =
G(n)

a,b (0)

n!
=

1
π

∫ ∞

0

√
t

a2 + t
1

(b + t)n+1 d t.

The integral representation in Equation (24) for generalized Catalan numbers of the second
kind C(a, b; n) is thus proved. The proof of Theorem 2 is complete.

4. Potential Directions to Further Study

In this section, we will try to point out two potential directions for further study.

4.1. Generalized Catalan Function of the Second Kind

Motivated by the integral representation in Equation (24) for generalized Catalan
numbers of the second kind C(a, b; n), we can consider the function

C(a, b; z) =
1
π

∫ ∞

0

√
t

a2 + t
1

(b + t)z+1 d t, a ≥ 0, b > 0, <(z) ≥ 0 (27)

and call it a generalized Catalan function of the second kind, while calling C(a, b; z) in (6)
generalized Catalan function of the first kind.

We can study the generalized Catalan function of the second kind C(a, b; z) as a
function of three variables: a, b, and z. It is easy to see that

dn C(a, b; z)
d bn =

1
π

∫ ∞

0

√
t

a2 + t
dn

d bn

[
1

(b + t)z+1

]
d t

=
1
π

∫ ∞

0

√
t

a2 + t
〈−(z + 1)〉n
(b + t)z+n+1 d t

= (−1)n (z + 1)n

π

∫ ∞

0

√
t

a2 + t
1

(b + t)z+n+1 d t,

where the rising factorial (z)n is defined [27] by

(z)n =
n−1

∏
`=0

(z + `) =

{
z(z + 1) · · · (z + n− 1), n ≥ 1
1, n = 0

which is also known as the Pochhammer symbol or shifted factorial in the theory of
special functions [7,26]. This means that the generalized Catalan function of the second
kind C(a, b; z) is a completely monotonic function [32–34] with respect to b ∈ (0, ∞).
Utilizing complete monotonicity [33–35], we can derive many new analytic properties of
the generalized Catalan function of the second kind C(a, b; z).
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In summation, by employing the integral representation in Equation (27), we believe
that we can discover some new properties of the generalized Catalan function of the second
kind C(a, b; z), of the generalized Catalan numbers of the second kind C(a, b; n), and of the
Catalan numbers Cn. For the sake of the length limit of this paper, we would not like to
study this in further detail here.

4.2. Central Binomial Coefficients

It is known that central binomial coefficients (2n
n ) can be generated by

1√
1− 4x

=
∞

∑
n=0

(
2n
n

)
xn = 1 + 2x + 6x2 + 20x3 + 70x4 + 252x5 + · · · , (28)

It has been an attracting point for mathematicians to study identities involving central
binomial coefficients (2n

n ). For example, we can rewrite (Lemma 3 of Reference [36]) as

n−1

∑
k=0

(
2k
k

)
1

(k + 1)4k = 2
[

1− 1
4n

(
2n
n

)]
and

n−1

∑
k=0

(
2k
k

)
4n−k

n− k
= 2

(
2n
n

) n

∑
k=1

1
2k− 1

.

For more information on results at this point, please refer to References [5,36–46] and
closely related sources therein.

Combining Equation (28) with Equations (16) and (24) yields(
2n
n

)
=

1
n!

lim
x→0

dn

d xn

(
1√

1− 4x

)

=
1
n!

lim
x→0

dn

d xn

1
2

lim
a→0+
b→1/4

1
a +
√

b− x


=

1
n!

1
2

lim
a→0+
b→1/4

lim
x→0

dn

d xn

(
1

a +
√

b− x

)

=
1
2

lim
a→0+
b→1/4

C(a, b; n)

=
1
2

lim
a→0+
b→1/4

1
π

∫ ∞

0

√
t

a2 + t
1

(b + t)n+1 d t

=
1

2π

∫ ∞

0

1√
t

1
(1/4 + t)n+1 d t

=
22n+1

π

∫ ∞

0

1
(1 + t2)n+1 d t.

(29)

The last three integral representations should provide effective tools for further study-
ing central binomial coefficients (2n

n ). These integral representations of central binomial
coefficients (2n

n ) were extended and investigated in Reference [47].

5. Remarks

In this section, we give several remarks on our main results and related things.
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Remark 1. Taking a→ 0+ on both sides of Formula (19) and employing Equation (17) results in

n

∑
k=0

(
n + `− 1

2`

)
(n− `)!(2`− 1)!! = (2n− 1)!!.

Combining Equation (22) with the first equality in Equation (1) gives

n

∑
`=0

(
n + `− 1

2`

)
(n− `)!(2`− 1)!!2` =

n!
n + 1

(
2n
n

)
.

Stimulated by these two identities and Formula (19) in Theorem 1, we would like to ask a question:
can one use a simple quantity to express the sum

n

∑
`=0

(
n + `− 1

2`

)
(n− `)!(2`− 1)!!t`

for t ∈ R \ {0, 1, 2}?
One of anonymous reviewers pointed out that the famous software Wolfram Mathemat-

ica 12 gives

n

∑
`=0

(
n + `− 1

2`

)
(n− `)!(2`− 1)!!t`

=
1− t

(1− t/2)n+1 Γ(n + 1) +
Γ(2n + 1)
Γ(n + 2) 2F1

(
2, 1 + 2n; 2 + n;

t
2

)
,

where the notation 2F1(a, b; c; z) denotes the Gauss hypergeometric function [26,48]. This formula
does not fit for t = 2. For t = 2, the summation can be directly computed.

Remark 2. The double factorials are given by (2n + 1)!! = (2n+1)!
2nn! and (2n)!! = 2nn!. Applica-

tion and simplification gives

C(a, b; n) =
1

4nbn+1/2
(
1 + a/

√
b
)n

Γ(2n− 1)
Γ(n)Γ(n + 1) 2F1

(
2, 1− n; 2− 2n; 1 +

a√
b

)
.

This can be converted into the formula found in Reference [49].

Remark 3. When taking z = x ∈ (−∞, b), the integral formula (23) becomes

1
a +
√

b− x
=

1
π

∫ ∞

0

√
t

a2 + t
1

b + t− x
d t, a ≥ 0, b > 0. (30)

When taking x → b−, the integral in Equation (30) converges. Consequently, the integral represen-
tation in Equation (30) is valid on (−∞, b].

Remark 4. When taking a = 1
2 and b = 1

4 , the integral representations in Equations (23) and (24)
reduce to Equations (12) and (11), respectively.

Remark 5. Combining the explicit formula (19) with the integral representation in Equation (24)
and simplifying leads to

∫ ∞

0

√
t

a2 + t
1

(b + t)n+1 d t =
π

(2n)!!bn+1/2

n

∑
k=0

(
2n− k− 1
2(n− k)

)
k![2(n− k)− 1]!!(

1 + a/
√

b
)k+1

for a ≥ 0, b > 0, and n ≥ 0.
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Remark 6. An anonymous reviewer commented on this paper as follows.
This paper constitutes a further extension of a vast body of work which is aimed at finding

integral representations of various generalizations of Catalan numbers. Let me stress the following
distinction: all the integral representations can be subdivided into two classes:

(a) representations as Hausdorff-type power moments, and
(b) other representations.

For example, Equation (10) for the Catalan numbers belongs to class (a), whereas the three last
equations in (29) belong to the class (b).

It turns out that the integral representations of generalized Catalan numbers as moments [class
(a)] are unique via the Hausdorff theorem, whereas those of class (b) are not unique. Therefore it
seems that the search for unique integral representations is somewhat more relevant than that for the
non-unique ones.

The paper is quite complete and is written in an understandable way.
The papers [50–54] treat the moment representations of several extensions of the Catalan numbers.

Remark 7. An anonymous reviewer commented on this paper as follows.
Let Pn(x) be a family of polynomials defined by P0(x) = 1, Pn(x) = x− u0, and

xPn(x) = Pn+1(x) + unPn(x) + an−1Pn−1(x)

for n ≥ 2, with coefficients an > 0 and bn ∈ R for n ≥ 0. By the Favard theorem, there exists a
probability distribution µ on R such that Pn are orthogonal with respect to µ. In general, this leads to
the theory of orthogonal polynomials. A particular class, when a1 = a2 = . . . and u1 = u2 = . . . ,
depending on four parameters a = a0, b = a1 = a2 = . . . , u = u0, and v = u1 = u2 = . . .
(by affine transformation of the distribution one can assume that a0 = 1 and u0 = 0), has been
studied in References [55–58], particularly in the context of free probability, and the corresponding
probability distributions are now called “Meixner”. The special subclass corresponding to that in
this paper is studied in detail (up to a proper normalization) in Reference [59] (see Corollary 2.2 and
Section 3) from an alternative angle and the coefficients indeed have combinatorial interpretation as
ballot numbers (see [12]); the integral representation is given in Theorem 3.1.

These comments tell us that the main results in this paper are intrinsic, significant, and of deep
backgrounds of combinatorics.

Remark 8. One of anonymous reviewers gave the following critique.
Suppose there is a function ρ(a, b; u) such that

C(a, b; n) =
∫

I
ρ(a, b; u)un d u

for some interval I. Then for z 6∈ I

1
z

∞

∑
p=0

C(a, b; n)
zp =

1
z

Ga,b

(
1
z

)
=
∫

I

ρ(a, b; u)
z− u

d u.

On the other hand, knowledge of the functional form of 1
z Ga,b

( 1
z
)

allows ρ(a, b; u) to be
computed by the inverse Stieltjes transform formula

ρ(a, b; u) = lim
ε→0+

1
2π i

[
1
z

Ga,b

(
1
z

)∣∣∣∣
z=u−ε i

− Ga,b

(
1
z

)∣∣∣∣
z=u+ε i

]
=

1
πx

√
1/x− b

a2 − b + 1/x

supported on x ∈
(
0, 1

b
)
. This gives a more straightforward viewpoint of the results of Theorem 2 in

this paper.

Remark 9. This paper is a revised version of the electronic preprints [60] and a companion of the
paper [61].
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6. Conclusions

In this paper, the authors briefly surveyed several generalizations, such as Equa-
tions (3)–(6) and (9), of the Catalan numbers Cn, analytically generalized the Catalan
numbers Cn as C(a, b; n) by Equations (16) and (27), established an integral representa-
tion (24) of the analytic generalization C(a, b; n) of the Catalan numbers Cn by virtue of
Cauchy’s integral formula in the theory of complex functions.
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