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Abstract: Simulation optimization problems with stochastic constraints are optimization problems 
with deterministic cost functions subject to stochastic constraints. Solving the considered problem 
by traditional optimization approaches is time-consuming if the search space is large. In this work, 
an approach integration of beluga whale optimization and ordinal optimization is presented to re-
solve the considered problem in a relatively short time frame. The proposed approach is composed 
of three levels: emulator, diversification, and intensification. Firstly, the polynomial chaos expansion 
is treated as an emulator to evaluate a design. Secondly, the improved beluga whale optimization is 
proposed to seek N candidates from the whole search space. Eventually, the advanced optimal com-
putational effort allocation is adopted to determine a superior design from the N candidates. The 
proposed approach is utilized to seek the optimal number of service providers for minimizing staff-
ing costs while delivering a specific level of care in emergency department healthcare. A practical 
example of an emergency department with six cases is used to verify the proposed approach. The 
CPU time consumes less than one minute for six cases, which demonstrates that the proposed ap-
proach can meet the requirement of real-time application. In addition, the proposed approach is 
compared to five heuristic methods. Empirical tests indicate the efficiency and robustness of the 
proposed approach. 

Keywords: beluga whale optimization; ordinal optimization; polynomial chaos expansion; optimal 
computational effort allocation; emergency department healthcare; average waiting time 
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1. Introduction 
Simulation optimization problems with stochastic constraints (SOPSC) are optimiza-

tion problems that optimize a deterministic cost function subject to stochastic constraints 
on the variables [1]. Such problems become more and more popular over the years in 
many practical applications, such as dynamic production/inventory lot-sizing problems, 
power transmission grid reliability problems, signaling-regulatory pathway inference 
problems, and staffing optimization of emergency department healthcare. The SOPSC be-
long to the class NP-hard, and their suboptimal designs are usually difficult to solve in a 
reasonable time [2,3]. 

The SOPSC are difficult to solve because of the three challenges, (i) a large search 
space, (ii) ensuring that all constraints are met, and (iii) accurately estimating a stochastic 
constraint is time-consuming. The ordinal optimization (OO) theory [4,5] has emerged as 
an efficient technique to handle issues (i) to (iii) simultaneously. Instead of insisting on 
picking the best design, OO theory focuses on seeking good enough designs and de-
creases the simulation time significantly. OO theory can seek good enough solutions with 
high probability through relatively short simulations. The OO theory attempts to resolve 
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the difficulties by employing the following two ideas. (i) The order of a design is more 
resilient against noise than the value of a design. (ii) Since seeking the best design is com-
putationally expensive, it would be wiser to concentrate on good enough designs. The OO 
theory has been applied successfully to many situations, including routing optimization 
in queueing networks [6], staff optimization in multi-skill call centers [7], job-shop sched-
uling [8], and optimization of shortcuts in the sorting conveyor system [9]. 

Although the OO theory can expedite the search process by quickly narrowing down 
the search space, the stochastic constraints still significantly influence the computing effi-
ciency. To decrease the computational time of SOPSC, an algorithm that integrates beluga 
whale optimization and ordinal optimization (BWOO) is presented to seek a superior de-
sign within a short time frame. The BWOO comprises three phases: emulator, diversifica-
tion, and intensification. First of all, the polynomial chaos expansion (PCE) [10,11] is 
treated as an emulator to evaluate a design. Secondly, an improved beluga whale optimi-
zation (IBWO) is proposed to seek N candidates from the whole search space. Then, an 
advanced optimal computational effort allocation (AOCBA) is adopted to determine a su-
perior design from the N candidates. These three phases significantly decrease the com-
puting time to solve the SOPSC. 

Instead of handling an approximated mathematical model, the optimal staffing cost 
in emergency department healthcare can be modeled as a SOPSC. Next, the BWOO is uti-
lized to seek the number of staff for minimizing staffing costs while delivering a specific 
level of care. The target of this SOPSC is to determine the optimal number of service pro-
viders to minimize staffing costs while delivering a specific level of care. The contribution 
of the paper is twofold. First, we develop a BWOO algorithm to seek a superior design of 
a SOPSC which is short of structural information in a relatively short period. Second, the 
BWOO algorithm is utilized to determine the optimal staffing cost in emergency depart-
ment healthcare. The application of the BWOO algorithm is not confined to the SOPSC. 
The proposed approach can also be utilized to solve computationally expensive simula-
tion optimization problems, discrete probabilistic bicriteria optimization problems, prob-
abilistic constrained simulation optimization problems, and combinatorial stochastic sim-
ulation optimization problems. 

The remainder of the paper develops as follows. Section 2 introduces the related 
works of SOPSC. Section 3 illustrates the BWOO algorithm to seek a superior design of a 
SOPSC. Section 4 introduces the optimal staffing cost in emergency department 
healthcare, which can be modeled as a SOPSC. Then, the BWOO algorithm is utilized to 
solve this SOPSC. Section 5 is the comparative analysis of the experimental verification. 
Finally, the conclusion and further research are presented in Section 6. 

2. Literature Review 
Popular approaches which are frequently employed to solve SOPSC include the sam-

ple path approach, stochastic approximation, and sample average approximation. The 
sample path approach approximates the output through the average sample observations 
using a common sequence of random numbers. The stochastic approximation approach 
approximates the output in an environment where the output is unknown and direct ob-
servations are corrupted by noise [12]. The sample average approximation approach uses 
an approximation scheme by sample averages and replication over several iterations [13]. 
However, slow convergence rate and trapping in local minima are two drawbacks of the 
three approaches. 

Heuristic algorithms are existing techniques used to solve SOPSC, including tabu 
search (TS) [14], simulated annealing (SA) [15], genetic algorithm (GA) [16], particle 
swarm optimization (PSO) [17], differential evolution (DE) [18], biogeography-based op-
timization (BBO) [19], and social network optimization (SNO) [20]. However, heuristics 
methods lack the power and flexibility to create ongoing optimal designs. Swarm intelli-
gence (SI) algorithms have fast developed in recent years and applied to solve SOPSC [21]. 
SI algorithms are inspired by swarms that frequently occur in the real world such as bird 
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flocks, fish schools, and the colony of social insects. The recent novel SI algorithms include 
golden jackal optimization (GJO) [22], starling murmuration optimizer (SMO) [23], white 
shark optimizer (WSO) [24], dandelion optimizer (DO) [25], search in forest optimizer 
(SIFO) [26], snake optimizer (SO) [27], and beluga whale optimization (BWO) [28]. SI al-
gorithms are proven to perform better than conventional optimization approaches and are 
widely applied in many fields. 

BWO is a revolutionary nature-inspired scheme that simulates the attacking and 
feeding behaviors of beluga whales in nature [28]. The BWO has obvious advantages such 
as better stability, stronger search ability, higher convergence accuracy, and faster conver-
gence speed. However, BWO has a lack of diversity, which could lead to being trapped in 
local optimum and premature convergence. To overcome this drawback, the proposed 
IBWO is developed to accelerate the search process, improve the learning approach, and 
increase the variety and strengthen the consistency of the chosen candidates. 

The optimal staffing costs in the emergency department healthcare can be formulated 
as a SOPSC. Over the years, common solution approaches for solving the optimal number 
of staff include the greedy approach, exhaustive search, branch, and bound method, ap-
proximate dynamic programming method, and heuristic algorithms [29]. The greedy ap-
proach employs the problem-solving heuristic of selecting the design that is optimal lo-
cally at each stage in the pursuit of the global optimum [30]. An exhaustive search is 
simply a brute-force approach to the considered problem. The branch and bound scheme 
partitions the feasible design space into smaller subsets of designs. However, it is neces-
sary to search all the design spaces if the worst-case occurs. The approximate dynamic 
programming technique has a complicated design process, which results in a long com-
puting time [31]. Recently, heuristic algorithms are faster and provide near-optimal de-
signs. However, heuristic algorithms still get stuck in being premature and always fall 
into the local optimum. An intelligent inventory model is proposed to find the optimal 
service strategy based on the variable conditions along with the optimal quantity and re-
order level of the inventory policy [32]. Table 1 shows the research gaps and contributions 
of the previous author(s). 

Table 1. Research gaps and contributions of the previous author(s). 

Authors Method Category Objectives 
Geiersbach et al. 
[12] 

Stochastic approximation Gradient-
based 

Constrained optimization 

Zhou et al. [13] Sample average approxi-
mation 

Gradient-
based Constrained optimization 

Yu et al. [14] Tabu search Human 
Combinatorial optimiza-
tion 

Cheng [15] Simulated annealing Physics Numerical optimization 
Zhang et al. [16] Genetic algorithm Evolutionary Global optimization 

Xu et al. [17] Particle swarm optimiza-
tion 

Swarm Global optimization 

Wang et al. [18] Differential evolution Evolutionary Global optimization 
Daneshyar & Char-
kari [19] 

Biogeography-based opti-
mization Swarm Global optimization 

Beccaria et al. [20] Social network optimiza-
tion 

Human Combinatorial optimiza-
tion 

Chopraa & Ansarib 
[22] 

Golden jackal optimization Swarm Global optimization 

Zamani et al. [23] 
Starling murmuration opti-
mizer Swarm Global optimization 

Braik et al. [24] White shark optimizer Swarm Global optimization 
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Zhao et al. [25] Dandelion optimizer Swarm Global optimization 
Ahwazian et al. 
[26] 

Search in forest optimizer Swarm Global optimization 

Hashim & Hussien 
[27] Snake optimizer Swarm Global optimization 

Zhong et al. [28] Beluga whale optimization Swarm Global optimization 

Sasanfar et al. [29] Exhaustive search Other 
Combinatorial optimiza-
tion 

Wang et al. [30] Greedy approach Other Combinatorial optimiza-
tion 

Meng et al. [31] Approximate dynamic pro-
gramming 

Gradient-
based 

Combinatorial optimiza-
tion 

3. Integrating Beluga Whale Optimization and Ordinal Optimization 
3.1. Mathematical Formulation 

The SOPSC has the following two challenges, (i) the search space often lacks struc-
tural information to identify the optimal design, and (ii) because of the randomness of the 
constraints, the feasibility of a design cannot certainly be known. The SOPSC are typically 
shown below. 

min ( )h x  (1) 

subject to [ ( )] , 1, ,i iE g d i I≤ =x  , (2) 

≤ ≤Y x U . (3) 

where 1 J[ , , ]Tx x=x    depicts a design vector, ( )h x   denotes the deterministic cost 

function, [ ( )]iE g x  depicts the expectation of the ith constrained function, id  depicts 

pre-specified requirement values, I depicts the number of constraints, 1 J[ , , ]TY Y=Y 
 

and 1 J[ , , ]TU U=U 
 denote the lower and upper bounds, respectively. 

Sufficient replications must be executed to achieve an exact evaluation of [ ( )]iE g x . 
However, executing an infinitely long simulation is impossible. Therefore, the following 
sample mean is an alternative formula to estimate [ ( )]iE g x . 

1

1( ) ( ), 1, ,
L

i ig g i I
L =

= =∑x x




 (4) 

where L depicts the amount of replications, and ( )ig x  represents the estimation of the 

 th replication. When the number of replications increases, the sample mean ( )ig x  will 
have a preferable estimation of [ ( )]iE g x . That is, a larger value of L is more closely ap-
proximate [ ( )]iE g x . 

Since the constraints are usually soft ones, the SOPSC is imposed by adding an extra 
penalty [33]. An infeasible design is penalized so that its chance of survival is much de-
creased as compared to a feasible design. 

1
min ( ) ( )  ( )

I

i
i

f h x peη
=

= + × ∑x x  (5) 

where η  depicts a penalty factor,  ( )f x  depicts a penalized cost function, and ( )ipe x  
represents the quadratic penalty function. 
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The penalty factor is usually a positive constant that is large enough to enlarge the 
penalty function whenever a constraint is violated. Let aL  represent the sufficient large 

value of L , and the exact evaluation of (4) is calculated using aL L= . For simplicity, we 

let  ( )af x  indicate the penalized cost function of x  through exact evaluation. 
The OO theory [4] elaborates that orders of designs are still retained even though 

they are evaluated by a crude model. Therefore, the PCE emulator is utilized to estimate 
a design more quickly. Thus, the IBWO cooperated with the PCE emulator is employed 
to look for N candidates from the whole search space. 

3.2. Polynomial Chaos Expansion 
The emulator is an important and growing field of research that signifies a major 

achievement in surrogate modeling, including the support vector regression [34], multi-
variate adaptive regression splines [35], extreme learning machines [36], regularized min-
imal-energy tensor-product splines [37], and polynomial chaos expansions (PCE) [10,11]. 
Among them, PCE builds a polynomial approximation of a model whose inputs are ran-
dom variables. There are three advantages of PCE: (i) it allows for uncertainty quantifica-
tion of input parameters, (ii) it can be evaluated much faster than the stochastic response 
itself, and (iii) its exact analytical expression. PCE has been widely adopted in various 
applications, including curve fitting, forecasting, prediction, and function approximation 
[10]. Therefore, the PCE emulator is used to quickly evaluate a design. The PCE with sec-
ond-order chaos polynomial factor is composed of three layers as shown in Figure 1. 

...

∑

1

2

3

P

1( )Φ x
1w

2 ( )Φ x

3 ( )Φ x

P ( )Φ x

2w

3w

Pw

1x

1
( )

P

p p
p

w
=

Φ∑ x

H0

H1

H2

H0

H1

H2

H0

H1

H2

2x

Jx

......

 
Figure 1. Framework of a PCE with second-order chaos polynomial factor. 

The PCE utilizes orthogonal polynomials as a basis for the fitting of response outputs 
based on a probabilistic data set. We randomly sample Π   x  ’s from search space and 

evaluate ˆ ( )aF x  using exact evaluation, where ˆ= µ
σ
−xx  are the normal standard of x , 

and µ and σ represent the mean and standard deviation, respectively. We represent these 
Π  sampled designs as ( ˆ ˆ,  ( )i a iFx x ). The PCE can approximate ˆ( )F x  using sums of 
orthonormal polynomials. 
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P

p p
p

F w
=

= Φ∑x x  (7) 

where P denotes the quantity of PCE terms; pw   are the expansion coefficients; and 

ˆ( )pΦ x   are multivariate orthogonal polynomial basis functions, which are built as a 
product of univariate polynomials as follows. 

( )
1

ˆ ˆ( )
K

p p k
k

x H x
=

Φ = ∏  (8) 

where K is the dimension of a multivariate orthogonal polynomial, which is obtained by 
the input data through the Hermite polynomials ( )pH ⋅ . These data points of ˆ( )p xΦ  
can be extracted from the input variables in the modeling process through the Hermite 
polynomials. For example, if P = 2, 0 ˆ( ) 1H x =  , 1 ˆ ˆ( )H x x=  , and 2

2 ˆ ˆ( ) 1H x x= −  . The 
least-square-minimization method is used to determine the expansion coefficients pw , 

1,...,p P= . 

1 1
1T T

ˆ( )

ˆ( )

a

P a

w F

w F

−

Π

   
    =     
      

x
Φ Φ Φ

x
 

 (9) 

The setting of Π  must be larger than the setting of P, i.e., Π  > P. The matrix Φ  
is determined as follows. 

1 1 2 1 1

1 2

ˆ ˆ ˆ( ) ( ) ( )
=

ˆ ˆ ˆ( ) ( ) ( )

P

PΠ Π Π

Φ Φ Φ 
 
 
 Φ Φ Φ 

x x x
Φ

x x x



  



 (10) 

The PCE is trained offline to significantly decrease the computing burden. After train-
ing the PCE, the model can be generalized with a new design x  to predict ˆ( )F x . 

3.3. Improved Beluga Whale Optimization 
In the diversification phase, we can adapt state-of-the-art optimization techniques 

with the assistance of the PCE to look for N  candidates from the whole search space. 
Since the BWO explores several regions at the same time, it is more suitable for the specific 
requirements. In essence, BWO uses the following three behaviors: pair swim, prey, and 
whale fall. The pair swims behavior is corresponding to exploration. Beluga whales en-
gage in social interactions under different postures, such as two beluga whales swimming 
in close pairs in a synchronized or mirrored manner. The preying behavior is correspond-
ing to exploitation. Beluga whales cooperatively feed and move based on the location of 
nearby companions. Beluga whales prey by sharing each other’s location information, 
considering the top candidates and others. Exploration is related to global search as well 
as exploitation is related to local search. In the first one, we are interested in exploring the 
search space looking for good solutions, whereas, in the second one, we want to refine the 
solution and try to avoid big jumps in the search space. The whale fall is corresponding 
to imitating small changes in the groups. During the migration and foraging, some beluga 
whales do not survive and fall into the depths of the ocean. 

The proposed IBWO has three algorithmic parameters, including a balance factor be-
tween exploration and exploitation (Bf), the probability of whale fall (Wf), and the jump 
strength of Levy flight (Cf). BWO has a lack of diversity, which could lead to being trapped 
in local optimum and premature convergence. To overcome these drawbacks, the three 
algorithmic parameters Bf, Wf, and Cf are iteratively modified to intensify exploration in 
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the former process and exploitation in the latter process. The variation of Bf decreases ex-
ponentially with increased iterations. A large Bf focuses on finding promising regions at 
the beginning, then a small Bf focuses on searching near already found promising designs 
near the end. The variation of Wf  and Cf are also exponentially decreased as iterations 
increase to strengthen exploitation. 

The following notations are used in IBWO. Ψ   depicts the number of beluga 
whales, maxt   denotes the maximum number of iterations, T

,1 ,[ , , ]t t t
i i i Jx x=x 

  and 
T

,1 ,[ , , ]t t t
i i i Jr r=r 

 are the positions of the ith beluga whale and a randomly selected beluga 

whale at iteration t, respectively, and * * * T
1[ , , ]Jx x=x 

 is the position of the elite beluga 
whale. _ min _ max[ , ]t

f f fB B B∈  , _ min _ max[ , ]t
f f fW W W∈  , and _ min _ max[ , ]t

f f fC C C∈   depict 
the balance factor Bf, probability Wf, and jump strength Cf at iteration t, respectively, where 

_ minfB , _ minfW , _ minfC  are lower bound, and _ maxfB , _ maxfW , _ maxfC  are upper bound. 
The details of the IBWO algorithm are explained as follows (Algorithm 1). 

Algorithm 1: The IBWO 
Step 1: Configuration of parameters 
Set parameters to Ψ , _ minfB , _ maxfB , _ minfW , _ maxfW , _ minfC , _ maxfC , and 

maxt . Create an index variable t  and initialize it to 0. 
Step 2: Initialize the population 
Initialization of a population with Ψ  beluga whales. 

0 [0,1] ( )i rand= + × −  x Y U Y , Ψ= ,...,1i .                   (11) 

where ]1,0[rand  is a random number in the range 0 to 1, and Y and U represent the 
lower and upper bounds, respectively. 
Step 3: Ranking 

(a) Compute   ( )t
if x  of every beluga whale cooperated with PCE, Ψ= ,...,1i . 

(b) Sort the Ψ  beluga whales on the basis of their fitness from the least to the 

biggest, then determine the elite *x . 
Step 4: Modify three algorithmic parameters 

( ) _ min
_ min _ max _ min

_ max max

B
B B B B exp ln

B
ft

f f f f
f

t
t

  
= + − × ×      

        (12) 

W t
 f  =  W f_max  × exp(  W

W
f_max

 f_min max

t
t

− × )          (13) 

_ max
_ min _ max _ min

_ min max

( ) 1 exp 1ft
f f f f

f

C tC C C C
C t

   
= + − × − × −        

       (14) 

Step 5: Exploration and exploitation 
If B >0.5t

f , perform exploration. 

, , ,1
,

, , ,

( ) (1 [0,1]) sin(2 [0,1]),
, 1, ,

( ) (1 [0,1]) cos(2 [0,1]),

t t t
i p r q i pt

i j t t t
i p r q i p

x x x rand rand j even
x i

x x x rand rand j odd
π
π

+  + − × + × ⋅ == = Ψ + − × + × ⋅ =


 (15) 

where r is an arbitrarily chosen beluga whale, p and q are random numbers selected 
from J-dimension, when +1

,
t
i j jx Y< , set +1

, =t
i j jx Y , and when +1

, >t
i j jx U , set +1

, =t
i j jx U . 

Else if B 0.5t
f ≤ , perform exploitation. 

1 *
 [0,1] [0,1] ( ), 1, ,t t t t t

i i f F r irand rand C L i+ = ⋅ − ⋅ + ⋅ ⋅ − = Ψx x x x x  .     (16) 
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where r is an arbitrarily chosen beluga whale, *x  is the elite beluga whale,  
t
fC  de-

notes the jump strength of Levy flight, and LF denotes the following Levy flight func-
tion, 

( ) ( )

( )( )

1
β

F 1 β-1
β 2

Γ 1+β sin πβ 2uL = 0.05    ( )
v Γ 1+β 2 β 2

×
× ×

× ×

            (17) 

where u and v indicate the mean and standard derivation in Gauss distribution with u 
= 0, Γ denotes the Gamma function, and β = 1.5 is a default value. When +1

,
t
i j jx Y< , set 

+1
, =t

i j jx Y , and when +1
, >t

i j jx U , set +1
, =t

i j jx U . 

Step 6. Whale fall 
If B Wt t

f f≤ , 

max
2

1 [0,1] [0,1] [0,1] ( ) e , 1, ,
t
f

tW
tt t t

i i rrand rand rand i
− Ψ ×

+ = ⋅ − ⋅ + ⋅ − ⋅ = Ψx x x U V 
. (18) 

where r is a randomly selected beluga whale. When +1
,

t
i j jx Y< , set +1

, =t
i j jx Y , and when 

+1
, >t

i j jx U , set +1
, =t

i j jx U . 

Step 7: Replace elitism 
Compute 1( )t

iF +x  and *( )F x  cooperated with PCE and adopt the greedy approach 

between 1t
i
+x  and *x . If 1 *( )< ( )t

iF F+x x , set * 1t
i
+=x x . 

Step 8: Termination 
If maxt t≥ , terminate; else, set 1t t= +  and return to Step 2. 

The IBWO stops after the maxt  iterations have been executed. When the IBWO is sus-
pended, the Ψ   beluga whales are ordered on the basis of their fitness. Although the 
IBWO is designed for continuous variables, a real value can be rounded to the nearest inte-
ger through the bracket function max max

, ,
t t
i j i jz x =   , where max

,
t
i jx ∈ℜ  and max

,
t
i jz Z∈ . Then, 

the prior N  beluga whales are chosen to constitute the candidate subset. 

3.4. Advanced Optimal Computing Budget Allocation 
To increase the computing efficiency of the original OCBA, the AOCBA is utilized to 

determine a superior design from the candidate subset. The AOCBA allocates the compu-
tational effort sequentially to all the competing alternatives based on the means and vari-
ances. In the original OCBA, all replications must be performed at every iteration to cal-
culate the statistics of competing alternatives. The AOCBA just needs to carry out incre-
mental replications every iteration to calculate the statistics of competing alternatives. In 
the AOCBA, more computing budget is allocated to simulating critical alternatives, and 
less is allocated to non-critical alternatives. Emphasizing little critical alternatives not only 
saves computational effort but also reduces the variances of critical alternatives. AOCBA 
is developed to improve the computing efficiency of OO by distributing the computational 
effort reasonably. OO theory allocates identical computational effort to every competing 
alternative, while AOCBA allocates computational effort to a competing alternative based 
on its performance. Thus, AOCBA proposes a way of asymptotically optimal allocation of 
computing budget among competing alternatives. 

The number of incremental replications can be allocated to critical designs through 
the statistics obtained from the N  candidates. Let aC  represent the available computa-
tional effort, 0L  indicate the essential replications allocated to each candidate, and nL  
denote the replications assigned to the n th candidate. A one-time incremental computa-
tional effort, Δ, is provided in every iteration. Typically, the best setting of Δ is problem-
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computational effort to accomplish an unnecessarily high confidence level, while a small 
setting of Δ performs the allocating procedure many times. The AOCBA aims at maxim-
izing the probability of correct selection given that 1 2 N aL L L C+ + + =

 by intelligently 

allocating aC   to 1L  ,…, NL  . The available computational budget aC   is defined as 

a
a

N LC
τ
×

= , where aL  is the replications adopted in the exact evaluation, and τ  de-

picts a speed-up factor [38,39] (Algorithm 2). 

Algorithm 2: The AOCBA 
Step 1. Define the values of 0L , set 0l = , 0

l
nL L= , 1,...,n N= , and calculate the 

available computational effort a
a

N LC
τ
×

=
.
 

Step 2. Add a one-time incremental computing budget ∆  to 
1

N
l
n

n
L

=
∑ , and update the 

replications. 
1

1 1,
( ) / ( )

N N
l l l l l
j n j b n

n n n b
L L θ θ θ+

= = ≠

= + ∆ × +∑ ∑         (19) 

1 1
l

l lb
b jl

j

L Lθ
θ

+ += ×                     (20) 

1 1
l

l ln
n jl

j

L Lθ
θ

+ += ×                     (21) 

where 
2

( )
( )

l l ll
n b jn

l l l l
j j b n

f f
f f

δθ
θ δ

 × −
=   × − 
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b f=  , nx   represents the nth 

candidate, and ( )k nf x  denotes the penalized objective value of nx  at the kth replica-
tion. 
Step 3. Perform incremental replications of 1max[0, ]l l

n nL L+ −  to the nth candidate, and 

calculate the incremental mean ( 1ˆ l
nf

+ ) and incremental standard deviation ( 1ˆl
nδ + ). 
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Step 4. Compute the updated mean ( 1l
nf

+ ) and updated standard deviation ( 1
 
l
nδ + ) of 

the n th candidate for overall replications. 

( )1 1 1
1

1 ˆ( )l l l l l l
n n n n n nl

n

f L f L L f
L

+ + +
+= × + − ×          (24) 

( ) ( ) ( ) ( ) ( )2 222 21 1 1 1 1 1 1
1

1 ˆ ˆˆ( 1) ( ) ( 1)
( 1)

l l l l l l l l l l l l l
n n n n n n n n n n n n nl

n

L f L L L f L L L f
L

δ δ δ+ + + + + + +
+

 = × + − + − + − − − 
−  

(25) 

Step 5. If 
1

N
l
n a

n
L C

=

≥∑ , stop and determine the optimal *x  with the minimum objec-

tive value; else, let 1l l= +  and go to Step 1. 
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3.5. The BWOO Algorithm 
The flowchart of the BWOO algorithm (Algorithm 3) is presented in Figure 2. 

Algorithm 3: The BWOO 
Step 1: Define the values of Ψ , _ minfB , _ maxfB , _ minfW , _ maxfW , _ minfC , _ maxfC , 

maxt , N , aL , 0L , and ∆ . 

Step 2: Randomly select Π x ’s from the search space, evaluate  ( )af x  using exact 
evaluation, and train the PCE offline using these Π  designs. 
Step 3: Generate Ψ x ’s to be the initial population, then apply the IBWO algorithm to 
those beluga whales that cooperated with PCE. After the IBWO algorithm terminates, 
rank all the final Ψ x ’s based on their approximate fitness from the lowest to the high-
est, and choose the prior N x ’s to construct a candidate subset. 
Step 4: Apply the AOCBA algorithm to the N  candidates and determine the opti-
mum *x , which is the superior design. 
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Figure 2. Flowchart of the BWOO algorithm. 
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4. Optimal Staffing Cost in the Emergency Department Healthcare 
4.1. Emergency Department Healthcare 

Most emergency departments have a recognizable patient arrival pattern, which fol-
lows a process as depicted in Figure 3. The patient flow process is modeled through a 
discrete-event simulation modeling with the following five assumptions. (i) The arrival 
patient to the reception follows a nonstationary Poisson process with a rate of λ(t). (ii) The 
arrival patient to the examination room follows a Poisson process with a constant rate. (iii) 
The routing probabilities of various patients are given at each location. (iv) The number 
of staff at each location decides the allocation of the system. (v) The distribution of service 
time and the rates are given. 
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Figure 3. Patient flow process of an emergency department. 

Now, the optimal staffing cost in the emergency department healthcare is formulated 
as a SOPSC as follows. 

min ( )h x  (26) 

 subject to [ ( )]E g d≤x１１ ,  (27) 

2 2[ ( )]E g d≤x , (28) 

≤ ≤Y x U . (29) 

where 1 5[ , , ]Tx x=x   indicates a design, 1 5~x x  depicts the number of receptionists, 
doctors, laboratory technicians, treatment nurses, and emergency nurses, respectively, 
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[g ( )]E x１  represents the average waiting time of critical patients, d１  is prespecified re-

quirement values of critical patients, 2[ ( )]E g x  represents the average waiting time of 

treatment patients, 2d  is prespecified requirement values of treatment patients, ( )h x  
is the staffing cost, and Y and U denote the lower and upper bounds, respectively. 

The target of the SOPSC is to find the optimal number of staff *x  to minimize staff-
ing cost ( )h x  subject to integrality conditions, two constraints, and limits of staff mem-
bers. The sample mean is one of the most common alternatives to estimate the value of 

[ ( )]iE g x . 

1

1( ) ( ), 1, 2.
L

i ig g i
L =

= =∑x x



 (30) 

where L represents the quantity of replications, and ( )ig x  is the estimation of the  th 
replication. Since the constraints are soft, the penalty function is employed for handling 
the two inequality constraints. 

2

1
min ( ) ( )  ( )i

i
f h x peη

=

= + × ∑x x  (31) 

where η  depicts a penalty factor,  ( )f x  is a penalized cost function, and ( )ipe x  de-
notes the quadratic penalty function. 

( )2

0, ( ) ,
( )   1, 2.

( ) ,else,
i i

i
i i

if g d
pe i

g d

 ≤= =
−

x
x

x
 (32) 

Figure 4 describes the input/output relationship of the emergency department 
healthcare, where x  depicts a design and  ( )f x  depicts the penalized cost function. 
Let aL  indicate the sufficiently large value of L , and the exact evaluation of (31) is de-

fined as aL L= . For simplicity,  ( )af x  is denoted as the penalized cost function of x  
obtained by an exact evaluation. 

L

x ( )f x
Simulation process for 

the emergency 
department healthcare

 

Figure 4. The input/output relationship of the emergency department healthcare. 

4.2. Application of the BWOO Method 
4.2.1. Constitute the Emulator 

Four procedures were utilized for constructing the PCE emulator to evaluate a de-
sign. (i) Arbitrarily chose Π  x ’s from search space and calculate  ( )af x  by exact evalua-

tion, then indicate these Π   designs and their estimations as ix   and ( )a if x  , respec-
tively. (ii) Set the number of PCE terms, i.e., P = 2. (iii) Pre-compute the matrix of multi-
variate orthogonal polynomial basis functions. (iv) Compute the expansion coefficients. 

4.2.2. Construct the Candidate Subset 
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With the assistance of the PCE emulator, N  candidates were selected by the IBWO. 
First of all, Ψ  beluga whales were randomly generated to be the initial population. The 
fitness of a beluga whale was calculated using the PCE emulator. When the IBWO stopped 
after maxt  iterations, the Ψ  beluga whales were sorted based on their fitness. The for-
mer N  beluga whales were selected to constitute the candidate subset. 

4.2.3. Find the Superior Design 
Eventually, the AOCBA method was adopted to seek a superior design from the N  

candidates. In general, the number of N cannot be too large to improve efficiency. On the 
other hand, some outstanding designs will miss when the setting of N is too small. Refer-
ence [38] suggested that a suitable value of 0L  is between 5 to 20, and an appreciate the 
value of ∆  is smaller than 100 but larger than 10% of N. 

5. Practical Applications 
5.1. Practical Example 

A practical example of an emergency department adopted and extended from the 
stochastic resource problem 3 in [40] is used to verify the BWOO method. Because of op-
erating cost considerations, at most 5 receptionists, 7 doctors, 6 laboratory technicians, 8 
treatment nurses, and 10 emergency nurses can be employed. The target is to find how 
many staff members could be employed to minimize staffing costs while delivering a spe-
cific level of care. We assume that receptionists, doctors, laboratory technicians, and both 
treatment nurses and emergency nurses earn $40, $120, $50, and $30, respectively. 

The arrival pattern of walk-in patients follows a nonstationary Poisson process based 
on Table 2. The arrival pattern of ambulance patients follows a Poisson process with a 
constant rate of 2 per hour. Distributions of service time at each stage are listed in Table 3. 
The lower and upper bounds are the two parameters in the parentheses of the uniform 
distribution. The min, mode, and max are the three parameters in the parentheses of the 
triangular distribution. We run for 100 more days and adopt a four-day warm-up period. 
We have conducted six cases of different parameters d1 and d2. Parameters d1 and d2 indi-
cate pre-specified requirements of the average waiting time for critical patients and treat-
ments for patients, respectively. The six cases are obtained by permutations using differ-
ent values of d1 (2, 2.5, and 3 h) and d2 (2 and 2.5 h). 

Table 2. Walk-in arrival rates. 

t 0 2 4 6 8 10 12 14 16 18 20 22 
λ(t) 5.25 3.8 3 4.8 7 8.25 9 7.75 7.75 8 6.5 3.25 

Table 3. Service time distributions. 

Location Distribution 
Reception Uni (5,10) 
Extra tests Tri (10,20,30) 

Examination Uni (10,20) 
Re-examination Uni (7,12) 

Treatment  Uni (20,30) 
Emergency Uni (60,120) 

There are 8549 arbitrarily selected designs to train the PCE. The number of samples 
Π  = 8549 was obtained by the sampling size formula using a confidence interval of 1% 
and a confidence level of 95% [41]. The performance of a sample was evaluated by an exact 
evaluation. 
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The penalty factor was 4=10η . A large penalty factor is assured to amplify the pen-
alty function for infeasible designs. The lower and upper bounds were [1,1,1,1,1]T=Y  and 

[5,7,6,8,10]T=U , respectively. Thus, the size of the search space is 77,760. The parameters 
used in IBWO were _ min =0.5fB  , _ max =1fB  , _ min =0.05fW  , _ max =0.3fW  , _ min =0.1fC  , 

_ max =2fC  , max 100t =  , and 40Ψ =  . Various hand-tuned experiments demonstrate that 
IBWO utilizing the above parameters is well-performed. Figure 5 illustrates the curves of 
three factors Bf, Wf, and Cf over 100 iterations. The IBWO explored the search space in 
preceding iterations as well as exploited the certain region in later iterations. The number 
of candidates was N = 10. The parameters used in AOCBA were 0L  =20, ∆  =10 and 

410aL = . The speed-up factor τ  corresponding to N = 10 is 3.4 [38]. Thus, the available 

computing effort aC  was 29,412. 

 
Figure 5. Variations of Bf, Wf, and Cf over iterations. 

Table 4 presents the superior design *x , cost, and CPU times of six cases. For exam-
ple, the optimization model in Case IV gives a design that costs $630 and staff assignment 
as follows: 1 receptionist, 3 doctors, 1 laboratory technician, 3 treatment nurses, and 3 
emergency nurses, such that a limited average waiting time for both critical patients and 
treatment of patients of 2.5 h. Figure 6 displays the convergence curve of the best-so-far 
candidate solution for Case IV. The CPU time consumes less than one minute for six cases, 
which demonstrates that the BWOO can meet the requirement of real-time application. 

Table 4. The superior design *x , cost, and CPU times of six cases. 

Case d1 d2 *x  cost CPU Time (s) 
I 2 2 [3,4,4,3,8]T 1130 57.3 
II 2 2.5 [2,5,1,4,8]T 1090 55.8 
III 2.5 2 [2,3,2,3,6]T 810 56.9 
IV 2.5 2.5 [1,3,1,3,3]T 630 57.2 
V 3 2 [1,3,4,3,6]T 870 55.5 
VI 3 2.5 [1,3,1,2,2]T 570 56.4 
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Figure 6. The convergence curve of the best-so-far candidate solution for Case IV. 

5.2. Performance Comparison 
The BWOO algorithm was compared to five metaheuristic methods for case I: GA 

[14], ant colony optimization (ACO) [42], clonal selection algorithm (CSA) [43], whale op-
timization algorithm (WOA) [44], and equilibrium optimization (EO) [45]. A population 
size of 40, roulette wheel selection, single-point crossover with a crossover probability of 
0.8, and uniform mutation with a mutation rate of 0.02 were adopted in the GA. In the 
employed ACO, a population size of 40, an initial pheromone of 0.1, a global pheromone 
volatile factor of 0.3, the local pheromone evaporation rate of 0.5, the relative importance 
of information with 1, and the control factor between the relative proportion of the exploi-
tation and biased exploration with 0.9 were utilized. A population size of 40, a strength of 
mutation of 10, and a receptor editing rate of 0.05 were adopted in the CSA. In the WOA, 
a population size of 40, and the shape of a logarithmic spiral of 2 were employed. In the 
EO, a population of particles of 40, a generation rate of 0.5, a diversification factor of 3, 
and the exploitation factor of 1 were employed. 

The exact evaluation was used to calculate the objective value for five metaheuristic 
methods. Because of randomness, 30 trials were conducted to verify the reliability of six 
methods. Since the five metaheuristic methods need more computation times to seek the 
optimum, the search processes terminated after they had spent 30 min of computation 
time. Table 5 illustrates the statistical results and average CPU times over 30 trials for 6 
approaches. The averages of the best-so-far objective value obtained by GA, ACO, CSA, 
WOA, and EO were 13.16%, 15.79%, 18.42%, 10.53%, and 11.40% larger than that obtained 
by BWOO, respectively. Experimental results illustrate that the BWOO outperforms five 
metaheuristic methods. 

Table 5. Statistic results and average CPU times of six methods. 

Methods Min. Max. AOV † 
§†AOV 100%

*
−∗

×  S.D. S.E.M. 
Average 

Rank Per-
centage 

Average 
CPU 

Time (s) 
BWOO 1120 1160 1140 0 15 2.73 0.02% 57.6 

GA with exact eval-
uation 

1240 1350 1290 13.16% 50 9.13 4.84% 1797 

ACO with exact 
evaluation 1230 1390 1320 15.79% 85 15.52 5.72% 1800 
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CSA with exact 
evaluation 

1310 1430 1350 18.42% 70 12.78 7.37% 1795 

WOA with exact 
evaluation 1220 1310 1260 10.53% 40 7.30 2.21% 1798 

EO with exact eval-
uation 1240 1340 1270 11.40% 45 8.22 3.95% 1799 

† AOV: average of the best-so-far objective value; § ∗: AOV obtained by BWOO. 

Finally, an analysis concerning rank percentage was conducted to illustrate the rank 
of a superior design in the search space. Because it is impossible to decide the ranks of all 
designs, a representative subset, Ω , is constructed to represent the characteristics of the 
large search space. The rank percentage of a superior design is defined as 100%r

×
Ω

 , 

where r  indicates the rank of a superior design in Ω . Generally, 11,556 designs were 
arbitrarily chosen from the whole search space to constitute the representative subset. The 
objective values of all samples were computed using exact evaluation. The value of Ω  
= 11556 was calculated by the sampling size formula with a confidence interval of 1% and 
a confidence level of 98% [41]. Table 5 also illustrates the average rank percentages result-
ing from 6 methods. The standard error of the mean (S.E.M.) resulting from BWOO was 
2.73. The small S.E.M. illustrates that most of the superior designs resulting from the 
BWOO are fairly close to the optimum over 30 trials. 

6. Conclusions and Outlooks 
To solve the SOPSC in a reasonable time, an algorithm integrating BWO into OO was 

developed. The BWOO composes of three phases: emulator, diversification, and intensifi-
cation. The PCE emulator was efficient in rapidly evaluating a design. The BWOO adopted 
the IBWO for diversification and the AOCBA for intensification. The BWOO was adopted 
for the optimal staffing cost in the emergency department healthcare, which is modeled 
as a SOPSC. A practical emergency department with six cases was utilized to test the 
BWOO algorithm. The CPU time consumes less than one minute for six cases, which 
demonstrates that the BWOO can meet the real-time requirement. The BWOO was com-
pared to five metaheuristic methods—GA, ACO, CSA, WOA, and EO cooperated with an 
exact evaluation. Test results demonstrated that most of the superior designs resulting 
from the BWOO are fairly close to the optimum over 30 trials. Since the BWOO usually 
obtains a near optimum in a reasonable time, the limitation of the proposed method is that 
it does not provide a globally optimal solution. The PCE emulator can be replaced by the 
essential replications 0L   adopted in the AOCBA to resolve this limitation. Futures re-
searches will focus on applying OO to resolve stochastic dominance-constrained optimi-
zation problems, such as risk-averse stochastic optimization problems and conditional 
value-at-risk optimization problems. 
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Nomenclature 

1 J[ , , ]Tx x=x   A design vector 

( )h x  Deterministic cost function 

[ ( )]iE g x  The expectations of the ith constrained function 

I Number of constraints (unit) 

id  Pre-specified requirement values 

1 J[ , , ]TY Y=Y   Lower bound 

1 J[ , , ]TU U=U   Upper bound 

( )ig x  Sample mean 

L Number of replications (unit) 

( )ig x  Estimation of the  th replication 

η  Penalty factor 

 ( )f x  Penalized cost function 

( )ipe x  Quadratic penalty function 

aL  The replications of the exact evaluation (unit) 

 ( )af x  Penalized cost function through an exact evaluation 

P The number of PCE terms (unit) 

pw  Expansion coefficients 

ˆ( )pΦ x  Multivariate orthogonal polynomial basis functions 

( )pH ⋅  Hermite polynomials 

Π  Number of training samples (unit) 

Φ  Mapping vector of the expansion coefficients 
Bf Balance factor between exploration and exploitation 
Wf Probability of whale fall (percentage) 
Cf Jump strength of Levy flight 

Ψ  Total number of beluga whales (unit) 

maxt  Maximum number of iterations (unit) 

T
,1 ,[ , , ]t t t

i i i Jx x=x 
 The position of the ith beluga whale at iteration t 

T
,1 ,[ , , ]t t t

i i i Jr r=r 
 The position of a randomly selected beluga whale at iteration t 

* * * T
1[ , , ]Jx x=x 

 The position of the elite beluga whale 

_ minfB  The lower bound of Bf 

_ maxfB  The upper bound of Bf 
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_ minfW  The lower bound of Wf 

_ maxfW  The upper bound of Wf 

_ minfC  The lower bound of Cf 

_ maxfC  The upper bound of Cf 

LF Levy flight function 

aC  The available computational effort (units) 

N  Number of candidates (unit) 

0L  The essential replications (units) 

nL  The replications allocated to the nth candidate (units) 

Δ A one-time incremental computational effort 
τ  A speed-up factor 

1ˆ l
nf

+  Incremental mean 

1ˆl
nδ +  Incremental standard deviation 

1l
nf

+  Updated mean for overall replications 

1
 
l
nδ +  The updated standard deviation for overall replications 

( )tλ  The arrival interval rate of a patient (1/unit time) 

1 5[ , , ]Tx x=x   A design vector  

[g ( )]E x１  Average waiting time of critical patients (time unit) 

2[ ( )]E g x  Average waiting time of treatment patients (time unit) 

Π  Number of randomly chosen samples (unit) 

Ω  A representative subset 

r  The rank of a superior design in Ω  
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