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[T I N

Abstract: The laminar movement in an expanding and contracting permeable pipe or surface has
recently attracted the attention of many scholars owing to its application in engineering and biological
processes. The objective of the current study is to examine the influence of chemical processes on
magnetized nanofluid flow over extending or shrinking permeable pipes with a heat reservoir. The
flow equations are renovated into first ODEs by introducing the new variable and then numerically
solved by RK4 with a shooting procedure. The effect of emerging factors on the flow features is
observed using graphs and elaborated in detail. From the analysis, the temperature is raised when
the heat source is increased in both cases of wall expansion or contraction but declines in the case of
heat sinks. In the case of a heat source, the temperature rises as the Hartmann and Prandtl numbers
are enhanced, but in the case of a heat sink, the temperature falls. In the presence of heat sinks
and injections, when the thermophoresis factor is increased, the concentration of nanoparticles is
increased in both wall expansion and contractions. In both situations of wall extension or contraction,
along with injection, the concentration of nanoparticles is a decreasing function of Nb, while the
concentration of nanoparticles is an increasing function in the case of a heat source. Additionally, for
the confirmation of the RK4 code, the total average square residue error and average square residue
error are also presented. For the stability analysis, the current work is compared with published
work, and excellent agreement is established. The novelty of the present study is to investigate the
effect of chemical reaction on magnetized nanofluid flow over extending and shrinking porous pipes
with heat generation and absorption.

Keywords: RK4 and HAM; expanding/contracting pipe; heat generation/absorption; total and
average square residue errors; stability analysis; nanofluid flow; chemical reaction

MSC: 76D05; 76-10

1. Introduction

The establishment of nanofluid innovation is a crucial field of research in physics, in-
dustry, mathematics, and chemical science. For the majority of applications with a practical
purpose, designers and scientists work to successfully communicate sufficient knowledge
of the heat transfer mechanism in nanofluids. Nanofluids are essential in a variety of
applications, such as heat exchangers, freezers, hybrid-driven motors, food processing,
and chips. The term “nanofluid” was originally used by Choi et al. [1]. Nanoparticles
are now the subject of major scientific investigation because of their many applications in
biological, optical, and electrical areas. They may be discovered in nanometals [2-7] and
graphite, as well as oxides, carbides, nitrides, and metals such as copper and aluminum.
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Buongiorno investigated the diffusion of heat in nanofluids (NFs) [8]. Moreover, Buon-
giorno [9] concluded that Brownian and thermophoresis diffusion would be important
when turbulent impacts are absent. The unsteady BLF over a flowing sheet was examined
by Rosca et al. [10] using Buongiorno’s model. Kuznetsov et al. [11] studied the significance
of bioconvection on MHD tangent hyperbolic nanofluid flow of irregular thickness across a
slender elastic surface. The micropolar dusty fluid with coriolis force effects on dynamics
of MHD rotating fluid when lorentz force is significant by Lou et al. [12]. The magnetic BLF
toward an extended sheet, including nanoparticles, was examined analytically by Mustafa
etal. [13] using HAM. Alsaedi et al. [14] have achieved an analytical solution for the SPF
when the heat source passes via a convective sheet. Chamkha et al. [15] studied the convec-
tive BLF of NFs approaching a vertical sheet. Malvandi et al. [16] discussed NFFs (nanofluid
flows) employing a vertical pipe, utilizing Buongiomo’s model (BM). Across a vertical tube,
Akbari et al. [17] examined a fully evolved NFE. Ellahi [18] found a mathematical solution
for the magnetic and changing viscosity viscous fluid within a pipe. An MHD NFF, incor-
porating the slip impact at the border, was seen by Uddin et al. [19] across the extended
sheet. To explore the BLF traveling via a vertical stretched channel, Xu et al. [20] and Malik
etal. [21] studied the BM and Casson nanofluids, respectively. The nonlinear movements of
axisymmetric ternary hybrid nanofluids in a thermally radiated expanding or contracting
permeable Darcy Walls with different shapes and densities using simple linear regression
by Raju et al. [22]. Further examined were the Brownian and thermophoresis variables.
Ramesh et al. [23] developed a flow of hybrid CNTs past a rotating sphere subjected to
thermal radiation and thermophoretic particle deposition. Presently, Srinivas et al. [24] have
researched the MHD flow of NFs in a permeability-expanding pipe. Hedayati et al. [25]
very recently investigated titania water-related nanofluids across a ferromagnetic vertical
cylindrical conduit. Malvandi et al. [26] also looked at a alumina water-based nanofluid
across a vertical channel using the Lorentz force effect. Chemical engineering, metallurgy,
radioactive nuclear safety, photovoltaic collectors, and other nanotechnology and scien-
tific fields have been shown to significantly impact heat transport [27-29]. The impact
of chemical efficiency on blood flow using Walter’s B model across a tapered artery was
taken into consideration by Nadeem et al. [30]. Hayat et al.’s [31] examined Maxwell fluids’
biochemical processes. Abdul et al. [32] examined the chemical reactions taking place over a
stretchy sheet that was saturated with nanofluids, utilizing the BLE. Kameswaran et al. [33]
investigated uniform and heterogeneous chemical reactions across a porous stretching
surface. The MHD laminar BLF, with a slip impact over a stretched permeable surface with
chemical reactions, was numerically explored by Uddin et al. [34]. For free convection flow
(FCF) across a horizontal surface containing nanofluids, an analytical solution was discov-
ered [35]. Recently, Srinivas et al. [36] examined a viscoelastic fluid across a chemically
stretched pipe. Uddin et al. [37] investigated the MHD FCBLF with NF chemical reactivity
via a vertical surface. The laminar movement in an escalating or shrinking permeable pipe
or surface has recently attracted the curiosity of many scholars owing to its application
in engineering and biological developments, for example, in the transportation of natural
fluids through stretching vessels, the synchronous rhythm of absorbent diaphragms, the
respirational system, and the deterioration of the red-hot sheet in rock-solid engines [38-40].
The thermal flux and heat transfer have been studied by many researchers (see [41-45]). The
unsteady fluid flow over semi-infinite stretching pipes with a heat source was examined
by Boutros et al. [46] via the Lie group approach. Zeeshan [47] investigated the energy
activation analysis for Maxwell fluid comprising molybdenum disulfide and graphene
nanoparticles in engine-based fluid, enclosing the effect of isothermal wall temperature.
Rasheed et al. [48] scrutinized the movement of micropolar fluid over an extended surface
with thermal radiation influence. Zeeshan et al. [49] obtained the numerical solution for
entropy generation by scrutinizing the second-order nanofluid’s thin film flow with error
and stability analyses. Recently, the influence of heat and transfer analyses of nanofluids
over a horizontal surface with thermal and magnetic field effects was investigated by
Zeeshan et al. [50]. Raza et al. [51] investigated the movement of MHD Casson liquid over



Mathematics 2023, 11, 1844

30f17

a porous sheet with extended and stationary walls. Khan et al. [52] obtained the exact
solution of a Casson model movement situated with dust particles through a stretching
surface enclosing the Lorentz forces. Similarly, Chabani et al. [53] numerically investigated
a magnetized hybrid nanofluid over a porous trapezoidal inclusion.

The above study reveals that no effort towards the influence of chemical processes
on magnetohydrodynamic NFFs over a stretchable permeable pipe enclosing the effect
of a heat reservoir has been scrutinized so far. Such deliberation has a significant value
in science and engineering study, including chips, refrigerators, hybrid powered motors,
food improvement, heat exchangers, and so on. Keeping the overhead observations in
view, the purpose of the recent study is to observe the inspiration of chemical processes
on magnetized nanofluid flows over extending or shrinking permeable pipes with a heat
reservoir. The flow characteristics are renovated into first ODEs by introducing the new
variable and then numerically elucidated using the Runge-Kutta fourth-order method
with a shooting technique [54]. The effect of emerging parameters on the flow features is
observed using graphs and elaborated in detail. Additionally, the confirmation of RK4 is
compared with HAM. For the stability analysis, the current work is likened to the available
literature, and exceptional correlation is established.

2. Formulation of the Problem

The unsteady NFF of an electrically conducting fluid in a semi-infinite length over an
equally porous pipe is considered. The pipe has at a radius, #(t). The wall is the function
of time f that is expanding and shrinking with time. Figure 1 demonstrates the geometry of
the present problem, in which its origin is taken at the center of the pipe, where z-axis is
parallel to the wall and 7 is normal to the wall.

;o

a &(t) Tw; Cw

L

Z
T B 0
Figure 1. Geometrical presentation of the problem.
The central equations are under these presumptions [16-22]:
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where z and r represent directions, and u, v represent the components of the velocity. The
fluid density is pf, thermal diffusivity is B, time is ¢, kinematic viscosity is v, dimensional
pressure is p, magnetic field strength is By, and electrical conductivity is o, C, represents
the specific heat, the average (mean) temperature is T);, Brownian and thermophoretic
diffusion coefficients are D and Dr, respectively, and T and C stand for temperature and
(vCp),
(Pcn)f
chemical reaction rate (k < 0 for a generative reaction (GR), k > 0 for a destructive reaction
(DR), and k = 0 for no reaction).
The pertinent boundary constraints are

nanoparticle concentration, respectively; T = , while k represents the first-order

u=0, v=—-vy=-A4, T=T, C=Cy r=a(t) (6)
ou oT oC

5—0, U—O, a—o, g—Oatr—O (7)

u=0, v=0atz=0. (8)

The wall permeability is represented by the A (injection/suction coefficient) in Equation (6),
where Ty, Cyy are the wall’s temperature and concentration, respectively.
Add a stream function that meets the continuity requirement in Equation (1)

Y =vzf(y,t) )
where the dimensionless radial location is represented by 7 = 7. You can write the radial
and axial velocity components as

U= 1%71/1 _ szvz(’%t)
r or a2y
S 12y _ v (10
T roz an

One may obtain this by replacing Equation (10) with Equations (2) and (3) after
removing pressure.

12 fopgyy + (17> = 207) fygy + (a® +3) fyy — (“’7 + %)fn + £ = 1fufyn +1f Fyy

2 (11)
3ffuy 3 ffy = My —nfy) = S ), =0

where M = % is the Hartmann number (HN), and yu is the viscosity. The non-

dimensional wall dilation rate is defined as a« = % , being positive for extension and
negative for shrinkage. The associated boundary constraints from Equations (6) through (8)

convert into
fOH =0 FLD <R fillH)=0
. J ,
tm 5245 = @2

R = B = Aa defines the permeation Reynolds number (PRN) as follows: R is
positive for inoculation but negative for suction, as you can see. By separately applying the
transformations outlined by Si et al. [9] and Uchida and Aoki [7], a comparable solution
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with regard to both time and space may be created. It follows that (%) = 0 for constant «
n
and f = f(#). To fulfil this requirement, the expansion ratio’s a value must be determined

by the beginning value.

aid  apd a a
W= — = 20%0 _ constant or 70 = — (13)
v v ao

where gy, 4y define the initial radius and growth rate correspondingly. By integrating
Equation (13) with regard to time, the temporal similarity transformation may be accom-

plished. The outcome is
a
— = \/1+ 2vatay . 14
0 + 2vata (14)

It is demonstrated that the injection coefficient A is constant since v, = Ad may be used
to calculate an equation for the injection velocity. It is evident from Equations (13) and (14),

do 0 (0) / -2
— = =/142vata, ~. 15
a Zhu(t) 0 ( )

PF" a2 fr P f) — 2P 3 f = 3F b f? = 3nff 3 g
—|—3172ffm o 172f/f// _ M2(773f// _ ;72f/) =0.

These boundary constraints are

f(0, t)=0, f(1, t)=0, f(1)=R, lim<f/) =0. (17)

n—=0\ 1

One can normalize Equations (10), (16), and (17) by inputting Equation (18) and

1,

ignoring the “*”; we get
u v z
47 = —, U = 25, v = 57 z = &y f‘ == —=. (18)

Pf A a(nf R fr =t f) =2 £ 3nfr = 3f' +qRFZ =SyRFf g,
3Rff' +3°Rff" —n*f'f — M2 (i f" — ") = 0.
Y
f(0)=0, f(0)=0, f(1)=1, lim () =0. (20)
n—=0\ %
It should be noticed that Equation (19) describes the situation that Majdalani et al. [13]
have outlined when « = 0 and M = 0 exist. The relationship between the temperature and
the concentration in the pipe is as follows:

T = To+ (Tw — To)0(17), C = Co+ (Cw — Co)p(n), (21)

where Ty and Cy are the reference temperatures and concentrations of nanoparticles at the
center. From Equation (21), the dimensionless temperature and nanoparticle concentration are

T—T C—-GCy
= = . 22
0 Ty — Ty’ Cw—Co @2)
Equation (21) is substituted into Equations (4) and (5) to get
70" + aPry®0' + RPrfo’' + Nby6'¢’ + Ntyy6'> +6' + QPryf = 0 (23)

t t
n¢" + aPLePrn?¢’ + RLePrf¢’ + 17%9” + %9’ +¢' + yLePrygp — LePrKin =0 (24)
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with the boundary constraints

0'(0)=0,0(1)=1, ¢'(0) =0, ¢(1) =1. (25)
_ _ IDp(Cu—Co) _ ID1(Tw—Ty) _ B _ Qe
Here Pr = %, Nb = — 5 Nt = T, Le = D5 Q = (pc‘;)fv, and

2
v = le” represent the Prandtl number, Brownian motion, the thermophoresis factor, the

Lewis number, the sink /heat source (i.e., Q < 0 for a heat sink and Q > 0 for a heat source),
kC0u2

and the chemical reaction factor, respectively, and K; = TCorcy)

3. Numerical Procedure and Convergence

The scheme of Equations (23)—(25) is solved by RK4. For this solution, Equations (23) and (25)
are first transformed to the conventional first ODEs by introducing new variables and then
solved numerically by keeping step size A = 0.01 and obtaining the convergence criteria
up to 10~°. For endorsement of the consequences, the HAM is also functional, and brilliant
settlement is originated as shown in (Figure 2). The procedure of the numerical method is
given in (Figure 3). Detailed information on this method is given in [31]. Additionally, the
current effort is likened to the previous and brilliant settlement originated, as revealed in
Tables 1 and 2.

8(n)

~ HAM v ~ HAM

= Numerical

= Numerical

(7) (7)
Figure 2. Assessment of RK4 and HAM for 6(%) and ¢(77) .

Boundary Value problem

I

Initial Value problem

A 4
Assign missing initial approximate
value

Solve initial value problem
With Shooting method

|

Calculate boundary residual

.4

If boundary residuals
are less then error — Initial estimates are

tolerance NO Modified by
Newton's Method

l Yes

Figure 3. Flow chart of the numerical algorithm.
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Table 1. Variation of radial velocity in the suction case for the viscous fluid; M = 0, R = —50.
4 1 Srinivas et al. [49] 25th—Order Approximation
3 0.92763 —1.1398871 —1.147523
2 0.99429 —1.166290 —1.166291
0 0.87134 —1.179535 —1.179537
-3 0.87134 —1.182623 —1.182623
-2 0.87134 —1.187371 —1.187371
Table 2. Variation of radial velocity in the suction case for the viscous fluid; M = 0, R = —100.
4 n Srinivas et al. [49] 25th—Order Approximation
3 0.97289 —1.173991 —1.176380
2 0.97134 —1.176393 —1.178475
0 0.87134 —1.177947 —1.179692
-3 0.87134 —1.178881 —1.178881
-2 0.87134 —1.179290 —1.179290

4. Stability Analysis

The numerical solution has been obtained for the nonlinear differential equation for
the temperature and concentration profiles. For the stability analysis of the mathematical
problem, the present work is compared with the published work. Tables 1 and 2 show
that for up to 25 orders of approximation, the comparison of the present work and the
published work reported by Srinivas et al. [49] shows excellent agreement.

5. Error Explanation

For most linear first-order differential equations, the RK4 approach yields solutions
that are typically trustworthy. Significant errors are quite improbable, but that is because
the conclusions are based on computer sampling and error calculations. Examining results
using a solution that is derived with working precision that is higher than the Machine
Precise standard is often helpful. The RK4 method is used to compute the answer to the
issue with the usual work precision, and the same method is used to calculate the error
with working precision-22. As errors are often rather small, it is useful to evaluate them on
a logarithmic scale. The following graphs show the incorrect solutions we generated for
the various physical parameters utilized in the model.

We initially conducted an error evaluation to check the validity of the process before
establishing any physical predictions. This is the purpose for the creation of Figures 4-7.
The minimum mistake 10730 of the RK4 program is corrected during the solution by
using the ND-Solve Mathematica package to reduce the overall average squared residual
error (ASRE). We initially modified the thermal radiation factor R; and fixed Gr = Gm =1,
Pr=5 Q=03 Ec=04, Sc =0.2, and Sc = 1.5 to observe the error for numerous
orders of approximation. The greatest ASRE at various interpolation orders is shown in
Figures 4 and 5.

In Figure 4, it is seen that for « = —1, total ASRE and ASRE are decreasing as
the order of approximation increases. Additionally, for « = 0.1, the error is streakily
decreasing compared to the cases for & = 0.8, as exposed in Figure 5. By changing the
magnetic parameter of M = 0 and M = 0.1, setting Gr = Grm =2, Pr =3, Q = 0.5,
Ec=0.1, Prm = 0.5, and Sc = 0.7, similarly distinct plots are given in Figures 6 and 7,
respectively. Averaged squared residual errors and total averaged squared residual errors
both decrease for « = 0.1, 0.8and M =0, 0.1 as the order of approximation increases. It
is also observed that for « = M = 0.1 the error streakily reduces, as related to the cases for
« = 0.8 and M = 0.1 and shown in Figures 6 and 7.
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6. Analysis and Discussion

This section examines the consequence of several physical factors on the flow charac-
teristics, such as the Nusselt number, Sherwood number, non-dimensional temperature,
and nanoparticle concentration. Figures 8-21 provide a graphic representation of the
outcomes against 0 < # < 1. The effect of numerous factors such as the thermophoresis
factor Nt, the heat source/sink factor Q, the wall extension ratio, the Hartmann number
M, the Prandtl number Pr, the Brownian motion factor Nb and the permeation parame-
ter R, the Lewis number Le, and the chemical reaction parameter are discussed in detail.
For a better understanding of the physical interpretation of the physical parameters, we
chose Pr = 6, Nb = Nt = 0.3, Le = 0.6, Q = 0.3, 7+ = 0.5, and M = 0.1. It should be
emphasized that the variables Nb and Nt describe the magnitudes of Brownian move-
ment and thermophoresis impacts, respectively. The greater quantities of Nb and Nt have
stronger consequences. Hence, Nb and Nt can have any value between 0 < Nb < oo.
Figures 8a, 9, 10, 11, 12, 13 and 14b illustrate the influence of various parameters, including
the sink parameter or heat source, the Brownian motion factor, the thermophoresis factor,
the ratio of the wall extension, the Hartmann number, the permeation Reynolds factor, and
the Prandtl number, on the temperature field. The effects of the Brownian factor on the
temperature field for both situations of injection, including wall extension and shrinking,
are exposed in Figure 8a,b. It is noted that the temperature rises in injection with wall
expansion and contraction by enhancing Nb for Q < 0. In the injection situation, the con-
centration of nanoparticles migrates from the wall to the liquid, which causes a considerable
rise in the temperature field. For Q > 0, the opposite behavior is observed. Figure 9a,b
illustrates how the heat source/sink parameter affects the temperature in the circumstances
of both injections, combined with wall shrinking and expansion. It is observed that the heat
source raises the temperature in both situations of injection, along with wall contraction
and moderation, but a heat sink lowers it. The influence of the thermophoresis factor on
energy is depicted in Figure 10a,b for the injection situation, along with wall extension
and contraction. For a certain rise in Nt, it is observed that the temperature is enhanced.
Figure 11a,b show the relationship between temperature and the wall expansion ratio.
In the event of wall extension, regardless of injection or suction, if it increases « in the
presence of a heat generation (i.e., Q < 0), then the temperature increases; if || grows in
the case of wall shrinkage, then the temperature decreases. However, in the event of a heat
source, the behavior is the opposite (for Q > 0). The influence of the Harmann number
(HN) on the temperature field is shown in Figure 12a,b. It has been noted that nanofluids
exhibit similar properties to ordinary fluids in terms of temperature regarding the Harmann
number. As Ha grows, the temperature rises in the existence of a heat source for both the
expansion and contraction of the wall. In a heat sink, the reverse observation is observed.
Figure 13a,b explore the effect of the Prandtl number on the temperature. It is essential to
remember that the Prandtl number describes liquid metals and oils. Larger values of Pr
are associated with high viscosity oils, whereas smaller values of Pr define liquid metals
with low viscosity and thermal conductivity. Here, Pr = 7114, 4, and 21 corresponds to
water, water at 4 °C, and human blood, individually. It is clear that in both scenarios of
wall expansion and contraction associated with inoculation, the temperature falls as Pr
grows (i.e., rising thermal diffusivity) in the existence of a heat sink, but it improves in the
context of a heat source. The relationship between the permeation Reynolds number and
the temperature is seen in Figure 14a,b. It has been found that the boundary layer thickness
reduces with increasing injection, and as a consequence, the temperature declines in both
scenarios of injection, together with wall extension and contraction. The reverse effect is
observed in the case of suction, along with wall extension and contraction.
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Figure 15a,b, Figures 16-18 show the influence of the Lewis number, the wall expansion
ratio, thermophoresis, Brownian motion, and the chemical factor on the concentration of
nanoparticles. Figure 15a,b demonstrate that the concentration field declines with the
growing amount of Nb in the occurrence of a heat sink, but the opposite trend is observed
in the existence of heat generation and destruction for wall extension and shrinkage. The
consequence of the thermophoresis factor on the concentration of nanoparticles is shown
in Figure 16a,b. It is evident that for both developments of wall extension and shrinkage
with injection, nanoparticle concentration is increased with increasing Nt in the existence
of a heat sink. From a physical standpoint, a larger mass flux is produced by a rise in
the thermophoresis parameter due to the temperature difference; as a consequence, the
concentration enhances. In the manifestation of a heat source, the reverse behavior is
examined in the same figure. Figure 17a,b exhibit the influence of a chemical factor, v,
on the concentration field, where the parameter is negative for a generative reaction and
positive for a destructive reaction. It is noted that for an increment in -, there is a drop
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in nanoparticle concentration in the case of the destructive chemical process parameter
(v > 0). Additionally, in the event of a generative chemical process (v < 0), the behavior
is the opposite. Figure 18a,b show how the Lewis quantity Le effects ¢. It is obvious
that the function ¢ is a shrinking function of Le. When the values of the Lewis number
are increased, the concentration of mass transfer is increased, which lowers nanoparticle
concentration. The effect of the wall extension ratio « on ¢ is seen in Figure 19. When «
increases, the nanoparticle concentration enhances for wall expansion in the occurrence of
injection, although for the situation of wall contraction, it decreases as |a| increases.

Figure 20a—c shows the influence of the Brownian and thermophoresis factors on
the Nusselt number Nu against Nt. The Nu at the pipe wall is found to be an increasing
function of Nt. It is evident from Figure 20a that Nu rises when Nb rises near the wall for
Q < 0 but falls in situation Q > 0 (Figure 20b). It is also analyzed from Figure 20c that Nu
rises for a given rise in M at the surface of the wall. Figure 21a,b are plotted to check the
inspiration of the thermophoresis and the Brownian factors versus the Sherwood number
Sh. It is obvious that the Sh rises as Nt at the surface of the wall increases. Figure 21a
witnesses that that Sh reduces as Nb enhances at the wall. Figure 21b shows that Sh declines
for a specified growth in 7y near the wall.

7. Key Notes

In this study, we investigate the influence of chemical reactions and heat reservoirs
on MHD nanofluid flow in a porous expanding or contracting pipe. The characteristics
equation of the flow cylinder coordinates is transformed to an ordinary differential equation
and converted by using suitable transformation and then solved numerically by using the
RK4 method. For the stability analysis, the present work is compared with the previous
work. For the confirmation of the mathematical modeling, the error estimation and the
residue error are also calculated, and it is found that the error is too small, which validates
our solution. The novelty of the present study is to investigate the effect of chemical
reactions on magnetized nanofluid flow over an extending and shrinking porous pipe with
heat generation and absorption; in limiting cases, the present work is compared with the
published work, and outstanding agreement is found.

The following summarizes the key conclusions:

1. It is observed that for both situations of wall extension or contraction with injec-
tion, the temperature is the increasing function of the thermophoresis and Brownian
motion factors.

2. Itis analyzed that the temperature is raised when the heat source is increased in both
cases of wall expansion or contraction but declines in the case of a heat sink.

3. In the case of a heat source, the temperature rises as the Hartmann and Prandtl
numbers are enhanced, but in the case of a heat sink, the temperature falls.

4. In the presence of heat sinks and injections when the thermophoresis factor is in-
creased, the concentration of nanoparticles is increased in both wall expansion
and contraction.

5. Inboth situations of wall expansion or contraction, along with injection, the concen-
tration of nanoparticles is a decreasing function of Nb, while the concentration of
nanoparticles is an increasing function in the case of a heat source.

6. Itisalso observed that ¢ is increased for oy < 0 and decreased for y > 0.
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Nomenclature

u(t) radius of the pipe

A the injection/suction coefficient

By applied magnetic field

C dimensional nanoparticle concentration
Co reference nanoparticle concentration at the center
Cp specific heat at constant pressure

Cuw nanoparticle concentration at the wall
k1 first-order chemical reaction rate

Le Lewis number

M Hartmann number

Nt thermophoresis parameter

Nb Brownian motion parameter

Pr Prandtl number

Q heat source/sink parameter

T,z dimensional cylindrical coordinates

T dimensional temperature

T reference temperature at the center

T mean temperature

T mean fluid temperature

Tw temperature near the wall

u, v velocity components along “r and "z directions respectively
Uw injection/suction velocity

of density of the base fluid

o electrical conductivity

B thermal diffusivity

60 dimensionless temperature

(0Cp) , heat capacity of the nanoparticle

¢ dimensionless concentration
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