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Abstract: Semantic segmentation, as the pixel level classification with dividing an image into multiple
blocks based on the similarities and differences of categories (i.e., assigning each pixel in the image
to a class label), is an important task in computer vision. Combining RGB and Depth information
can improve the performance of semantic segmentation. However, there is still a problem of the
way to deeply integrate RGB and Depth. In this paper, we propose a cross-modal feature fusion
RGB-D semantic segmentation model based on ConvNeXt, which uses ConvNeXt as the skeleton
network and embeds a cross-modal feature fusion module (CMFFM). The CMFFM designs feature
channel-wise and spectral-wise fusion, which can realize the deeply feature fusion of RGB and Depth.
The in-depth multi-modal feature fusion in multiple stages improves the performance of the model.
Experiments are performed on the public dataset of SUN-RGBD, showing the best segmentation
by our proposed model ConvNeXt-CMFFM with the highest mIoU score of 53.5% among the nine
comparative models. The outstanding performance of ConvNeXt-CMFFM is also achieved on our
self-built dataset of RICE-RGBD with the highest mIoU score and pixel accuracy among the three
comparative datasets. The ablation experiment on our rice dataset shows that compared with
ConvNeXt (without CMFFM), the mIoU score of ConvNext-CMFFM is increased from 71.5% to 74.8%
and its pixel accuracy is increased from 86.2% to 88.3%, indicating the effectiveness of the added
feature fusion module in improving segmentation performance. This study shows the feasibility of
the practical application of the proposed model in agriculture.

Keywords: RGB-D semantic segmentation; feature fusion; multi-modality

MSC: 68T07

1. Introduction

Semantic segmentation is an important task in computer vision and its purpose is to
divide the input image into multiple regions with coherent semantic meaning to complete
pixel-dense scene understanding for many real-world applications, such as autonomous
driving [1], robot navigation [2] and so on. In recent years, with the rapid development of
deep learning [3–7], pixel-based semantic segmentation of RGB images has received more
and more attention and has achieved remarkable progress in segmentation accuracy [6,7].
However, due to the characteristics of RGB images, current deep semantic segmentation
models cannot always extract correct features in some specific cases. For example, when two
objects have similar colors or textures, it is hard to differentiate between them through pure
RGB image. In order to solve these problems, some researchers use additional information
to assist in semantic segmentation.

In recent years, with the rapid development of RGB-D sensors, in addition to RGB
information, Depth information can also be acquired. Depth data can show the structure
and geometric information of objects in the scene and can be used as supplementary data
for the simultaneous RGB data so as to obtain richer features such as color, texture and
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shape, and improve the accuracy of semantic segmentation. Many works have proved that
spatial information is very helpful for improving the accuracy of semantic segmentation,
and affirmed the effectiveness of learning from complementary patterns. With the rapid
development of convolutional neural networks (CNN or ConvNet), researchers have
proposed various CNN-based methods to use Depth information for RGB-D segmentation.
In segmentation tasks, two mainstream designs have been widely used, namely single-
stream design and two-stream design. In a single-stream design, Depth information is
simply spliced directly with RGB at the input end to form a 4-channel (RGB-D) input
or a 6-channel (RGB-HHA where HHA is encoded from Depth referring to dispersion,
height above ground and normal angle) input, and then a single CNN module is used for
further processing. However, RGB and Depth are fundamentally different. RGB values
capture photometric appearance attributes in projected image space, while Depth represents
geometric attributes. Although adjacent pixels are close to each other on the image plane,
they are not necessarily geometrically coherent in a 3D space. Therefore, simply stitching
RGB and Depth cannot fully explore the correlation between RGB and Depth images. In
a dual stream design, the architecture uses parallel encoders, and RGB and Depth are
processed using separate streams. However, most studies have focused on designing
frameworks for processing RGB and Depth images, ignoring the complementarity of
features between RGB and Depth, resulting in excessive reliance on individual learning
streams, resulting in the increase in computational costs. Of course, this also leads to
insufficient feature fusion between RGB and Depth images, resulting in low segmentation
accuracy. In this article, considering early feature fusion and supplementation of RGB and
Depth images, we propose a cross-modal feature fusion RGB-D semantic segmentation
model based on ConvNeXt [8]. By adding cross-modal feature fusion modules after
different levels, more sufficient complementarity and fusion of RGB and Depth features
were achieved and the accuracy of RGB-D semantic segmentation was improved. The main
contributions of this article are as follows.

(1) A cross-modal RGB feature and deep feature fusion module is proposed. Through
cross-modal information interaction, the generalization ability of the model is improved, and
the inference ability of the model is also improved through the cross-attention mechanism.

(2) An RGB-D semantic segmentation model based on ConvNext’s parallel dual two-
branch structure is constructed, which can maintain the strong feature extraction capabilities
of the RGB and Depth branches by cross-modal feature fusion and effectively integrate and
fuse RGB and Depth features. This model exhibits better segmentation performance for
large datasets.

2. Related Work

In earlier studies, researchers manually customized the fusion features of RGB-D. In
recent years, RGB-D semantic segmentation methods based on deep learning have domi-
nated the mainstream due to the great advantage of deep learning in the ability to extract
features [9–22]. ACNet [9] proposed a channel attention module to fuse RGB features
and Depth features. The authors of references [10,11] used three channels of horizontal
parallax, ground height, angle and gravity to HHA encode Depth images, and this method
of processing Depth information has been widely used in later algorithms. FuseNet [12]
introduced a fuse layer to embed Depth features into RGB features. The authors of refer-
ences [13,14] proposed an efficient feature fusion module for objects containing different
levels of information by adopting multimodal feature fusion and multi-level feature refine-
ment to capture RGB-D features. LSD-GF [15] introduced a gated fusion layer to adjust the
RGB and Depth contributions on each pixel. Depth-aware convolution and pooling were
achieved by integrating geometric information into RGB features [16]. CFN [17] utilized
Depth information to segment an image into layers representing similar visual features.
SCN [18] utilized Depth data to flexibly select useful contextual information for image
regions where different objects coexist. J. McCormac et al. [19] superimposed RGB and
Depth features into four channels to improve semantic segmentation.
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The two-stream structures became the mainstream framework for future RGB-D se-
mantic segmentation due to the high efficiency and variability. Qi et al. [20] introduced
a 3D graph neural network to model accurate context through geometric cues provided
by the Depth data. Zhang et al. [21] proposed a novel Task-Recursive Learning (TRL)
framework to jointly and recurrently conduct three representative tasks containing depth
estimation, surface normal prediction and semantic segmentation. Zhou et al. [22] pro-
posed a pattern-structure diffusion (PSD) framework to mine and propagate task-specific
and task-across pattern structures in the task-level space for joint depth estimation, seg-
mentation and surface normal prediction. Since RGB-D contains the information of two
different modes, the fusion of RGB and Depth information becomes an effective method
to improve the accuracy of semantic segmentation [23–28]. Fan et al. [23] constructed an
encoder network with two ConvNext-T backplates for each of RGB and Depth, and a
decoder network composed of multi-scale supervision and multi-granularity segmentation
branches to achieve scene segmentation at different scales. Yang et al. [24] proposed a new
framework, MGCNet, that guides the fusion of patterns through differential exploration
to reduce collaborative conflicts. In the decoder, a gating feature was proposed to avoid
the exclusion of inter-layer information and capture contextual information adequately.
Bai et al. [28] proposed a two-branch network called the differential convolution attention
network (DCANet), which composed of a pixel differential convolution attention and a
set differential convolution attention, and was used to fuse local and global information of
two-mode data. Wu et al. [29] proposed a new framework for integrating Depth informa-
tion into RGB CNN to guide feature extraction on RGB images. Some researchers focus on
3D scene completion, using deep learning methods and RGB-D data to achieve semantic
segmentation and complete of three-dimensional scenes [30–32]. These semantic segmenta-
tion networks open up new ways to accurately extract Depth information. However, the
difficult problem of ways to fully integrate RGB-D information persist. We can conclude
that the key challenge of RGB-D semantic segmentation is how to identify the difference
between RGB features and Depth features and integrate them effectively and use them to
achieve higher segmentation accuracy.

3. Method
3.1. Framework Overview

In this paper, a cross-modal feature fusion RGB-D semantic segmentation model based
on ConvNeXt is proposed. The framework of the model is shown in Figure 1. We employ
two parallel RGB branches and a Depth branch to extract features from RGB and Depth
images. At the same time, the cross-modal feature fusion module is used to supplement
the features of RGB and Depth branch, that is, the features of different modalities are
supplemented by this module, and then the supplemented features are fused to achieve
cross-modal feature fusion.
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The encoder is used to extract RGB and Depth features at different levels, and then
the decoder is used to convert the feature maps at different levels into the final semantic
map. In order to improve the special utilization of different levels, we introduce multi-level
feature supplement in the decoder and use the fused features in different levels in the
encoder as the supplement to improve the robustness of the model. The model encoder
consists of 4 stages. Later, cross-modal feature fusion module (CMFFM), which is presented
in Section 3.3, is embedded in each stage, the RGB features and Depth features are sent to
the next layer through the CMFFM, and the fusion features of RGB and Depth are sent to
the decoder for feature supplementation. In Figure 1, the functions of downsampling and
upsampling are to resize the image size. For example, the “1/4” in encoder and decoder
part means the spatial size is reduced and enlarged to 1/4 and 4 times of the original
size, respectively.

3.2. ConvNeXt

Since the proposal of VIT [33], it has rapidly replaced the convolutional network as the
state-of-the-art image classification model. Using Transformer as the backbone network and
introducing convolutional neural networks (ConvNet) enables Transformer to be applied
in a variety of visual tasks, such as object detection, semantic segmentation, etc. ConvNeXt
builds a network entirely composed of standard ConvNet modules based on the design
of VIT and ResNet, which is superior to Transformer in accuracy and scalability while
maintaining the simplicity and efficiency of standard ConvNet. The network structure of
ConvNeXt consists of four layers shown in Figure 2. Layers 1, 2, and 4 contain three basic
blocks, and Layer 3 contains 27 basic blocks. Each basic block contains three convolutional
layers, and the Gaussian Error Linear Unit (GELU) [34] activation function and the simpler
Layer Normalization (LN) [35] are used in each basic block. RGB image and Depth image
are input through their respective branches in the model (Figure 1). After passing through
the 1st downsampling layer, the RGB data and Depth data have the same data shape with
192 channels through the convolution operation (in Figure 2), and then the 192-channelled
data are sent to Layer 1 for processing, and after the fusion module (i.e., CMFFM) of Layer
1, the data is sent to Layer 2 (for further downsampling) and the decoder modular (for
upsampling with feature supplement) at the same time, then to Layers 3 and 4. Each Layer
is connected by the downsampling layer.
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3.3. Cross-Modal Feature Fusion Module (CMFFM)

We propose a cross-modal feature fusion module (CMFFM) to fuse RGB and Depth
features, as shown in Figure 3. In order to improve the extraction and fusion capabilities
of the multimodal features of the model, CMFFM processes the input data from RGB
and depth features. For the input RGB feature, FRGB ∈ RH×W×C and the Depth feature
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FDepth ∈ RH×W×C, global max pooling and global average pooling are adopted along the
channel-wise phase to retain more information, and finally four result vectors are obtained.
Connecting vectors YRGB ∈ R2C and YDepth ∈ R2C are obtained by the RGB and the Depth
feature, respectively. After MLP operations on YRGB and YDepth, respectively, the weights
WC

RGB ∈ R2C and WC
Depth ∈ R2C are obtained through the Sigmoid function to split WC

RGB

into WC1
RGB ∈ RC and WC2

RGB ∈ RC and split WC
Depth into WC1

Depth ∈ RC and WC2
Depth ∈ RC.

WC1
RGB, WC2

RGB = Fsplit(Sigmoid(MLP(YRGB)))

WC1
Depth, WC2

Depth = Fsplit

(
Sigmoid

(
MLP

(
YDepth

))) , (1)

where Fsplit means to split a vector into two vectors. The weights FC
RGB ∈ RH×W×C and

FC
Depth ∈ RH×W×C of the RGB modality and the Depth modality in the channel-wise phase

are calculated by the following formulas:

FC
RGB = λC1WC1

RGB ∗ FRGB + λC2WC2
RGB ∗ FDepth

FC
Depth = λC1WC1

Depth ∗ FDepth + λC2WC2
Depth ∗ FRGB

, (2)

where ∗ represents multiplication, λC1 and λC2 are hyperparameters, which are both set to
0.5 in this paper. In the spatial-wise phase, FRGB and FDepth are connected, and after two
convolution layers with a convolution kernel of 1 × 1 and a RELU function, the Sigmoid
function is used to obtain the feature map Z ∈ RH×W×2, and then split it into two weight
maps WS

RGB and WS
Depth. The calculation formulas for the weights FS

RGB ∈ RH×W×C and

FS
Depth ∈ RH×W×C in the spatial-wise phase are calculated as follows:

Z = Conv1×1

(
RELU

(
Conv1×1

(
FRGB

∣∣∣∣∣∣FDepth

)))
, (3)

WS
RGB, WS

Depth = Fsplit(Sigmoid(Z)), (4)

FS
RGB = WS

RGB ∗ FRGB
FS

Depth = WS
Depth ∗ FDepth

, (5)

where |.| represents the connection operation, Conv1×1 is the convolution operation
with the convolution kernel of 1 × 1. The final RGB feature output Fout

RGB ∈ RH×W×C,
Depth feature output Fout

Depth ∈ RH×W×C and fusion feature output FFusion ∈ RH×W×C are
calculated as follows:

Fout
RGB = FRGB + λCFC

RGB + λSFS
RGB

Fout
Depth = FDepth + λCFC

Depth + λSFS
DEpth

, (6)

FFusion = Conv1×1

(
RELU

(
Conv1×1

(
Fout

RGB

∣∣∣∣∣∣Fout
Depth

)))
+ Conv1×1

(
Fout

RGB

∣∣∣∣∣∣Fout
Depth

)
. (7)
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After CMFFM, Fout
RGB and Fout

Depth are used as the input of the next layer again, and
FFusion is sent to the decoder as a supplementary feature of the features of different levels in
the decoder.

4. Results
4.1. Experimental Parameters and Evaluation Indexes

Because the deep neural network training process has many iterations and a large
number of matrix operations and requires a large amount of computing resources, the high-
performance graphics processing unit (GPUs) is indispensable. In this experiment, NVIDIA
GeForce RTX 3090 is used with graphics memory of 24 GB. The CPU model is Intel(R)
Core (TM) i9-10900K (3.70 GHz) with the memory size of 128 GB. The operating system is
Ubuntu20.04, and the model was implemented using PyTorch deep learning framework,
while CUDA Toolkit 11.1 and CUDNN V8.0.4 are used for computation acceleration.
Anaconda3.6 and Python are used as the development environment and programming
language for the model. In our model, the weights for all layers of the network are
initialized to a commonly normal distribution with the mean of 0, the variance of 0.01 and
the deviation of 0. The two parameters λC1 and λC2 in Equation (2) are both initialized to 0.5.
The two parameters λC and λS of Equation (6) are both initialized to 0.5. In model training,
two public datasets (NYUDv2 and SUN-RGBD) and a self-built Rice-RGB-D dataset are
used. For public datasets, the size of the images, which are input to the model, is 480× 640,
and for the rice dataset, the size is 512× 160. Adam is used as the optimizer with a learning
rate of 2× 10−5 and weight decay of 5× 10−4. We adopt a poly learning rate schedule with
factor (1− iter/itermax)

0.9 and use cross-entropy as the loss function, which is defined as

Loss = − 1
n∑

x

[
ylny′ + (1− y)ln

(
1− y′

)]
, (8)

where y and y′ denote the expected and actual output. We use the batch size of eight and
epoch of 200 to train on all datasets. Experimental operation parameters are shown in
Table 1.
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Table 1. Running parameter table.

Parameter Values

Operating system Ubuntu20.04
CPU Intel(R) Core (TM) i9-10900K (3.70 GHz)
GPU GeForce RTX 3090

Development environment Anaconda3.6
Framework Pytorch1.8

Input size
NYUDv2 480 × 640

SUN-RGBD 480 × 640
RICE-RGBD 512 × 160

Learning Rate 2 × 10−5

Batch size 8
Epoch 200

To evaluate the performance of the different methods, we use prevailing Pixel Accuracy
(Pixel Acc.) and mean Intersection over Union (mIoU) as evaluation indicators, which are
defined as [36]

Pixel Acc. = ∑
i

nii
s

, (9)

mIoU =
1
nc

∑
i

nii

(s i − nii + ∑
j

nji
) , (10)

where nji is the number of pixels with ground-truth class j predicted as class i (when j equals
to i, nji = nii), nc is the total number of classes, si is the number of pixels with ground truth
class i, and s is the total number of all pixels.

4.2. Public Datasets

We conduct experiments on two public benchmark datasets: NYUDv2 [37], SUN-
RGBD [38]. The NYUDv2 dataset contains 1449 RGB-D images of 40 classes, of which
795 are used for training and the remaining 654 are used for testing. The SUN-RGBD
dataset has 37 categories and contains 10,335 RGB-D images (5285 for training and 5050
for testing). In the experiment, the data processing includes adjusting resolution, data
enhancement, data labeling and data normalization. We adjust all RGB images, Depth
images and ground real images to a high spatial resolution of 480 × 640. During training,
we use data enhancement to improve data diversity including random scaling, cropping
and flipping to the inputs of RGB image and Depth image, respectively. For RGB images,
we further enhance them by applying random hue, brightness, and saturation adjustments.
The RGB images and Depth images are normalized to 0–1.

During the experiment, we use the same experimental conditions to repeat the experi-
ment for five times to ensure the validity of the evaluation results. The experimental results
are the average of five replicates. Through the experiments on NYUDv2 and SUN-RGBD
datasets, it can be observed from Tables 2 and 3 that our proposed model achieves good
results. For example, the application of our model on the NYUDv2 dataset shows the mIoU
of 51.9% (the third out of the nine comparable models) and the pixel accuracy of 76.8% (the
fourth out of the nine models). The application of our model on the SUN-RGBD dataset
shows the mIoU (53.5%) is the best among the nine comparative models and the pixel
accuracy (82.5%) is the third out of the nine models.
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Table 2. Comparison with the state-of-the-art models on the NYUDv2 dataset (the top ones are
marked in bold).

Method mIoU (%) Pixel Acc. (%)

3DGNN [20] 43.1 -
Kong et al. [39] 44.5 72.1

RAFNet [40] 47.5 73.8
ACNet [9] 48.3 -

CANet [41] 51.2 76.6
NANet [36] 51.4 77.1

DCANet [28] 53.3 78.2
MGCNet [24] 54.5 78.7

ConvNeXt-CMFFM 51.9 76.8

Table 3. Comparison with the state-of-the-art models on the SUN-RGBD dataset (the top ones are
marked in bold).

Method mIoU (%) Pixel Acc. (%)

3DGNN [20] 45.9 -
Kong et al. [39] 45.1 80.3

RAFNet [40] 47.2 81.3
ACNet [9] 48.1 -

CANet [41] 48.1 81.6
NANet [36] 48.8 82.3

DCANet [28] 49.6 82.6
MGCNet [24] 51.5 86.5

ConvNeXt-CMFFM 53.5 82.5

Figure 4 shows the segmentation results of our model on NYUDv2 dataset (three
indoor scenes including wall, chairs, sofa, clothes and so on in different colors), from which
it can be observed that our model can well segment various objects in the scenes with the
good segment effect close to the truth.
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4.3. Our Rice Dataset

At the same time, we conduct practical application tests on the self-built RICE-RGBD
image dataset, which contains two types of data, namely RGB-D data of single rice plant
and whole rice cluster, as shown in Figure 5. There are 10,000 RICE-RGBD images in total
in the dataset, with 6000 for training and 4000 for testing. Similar to the public dataset, the
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data processing includes adjusting resolution, data enhancement, data labeling and data
normalization. We adjust all RGB images, Depth images and ground real images to a high
spatial resolution of 512 × 160. During training, we us data enhancement to improve data
diversity including random scaling, cropping and flipping to the inputs of RGB image and
Depth image, respectively. For RGB images, we further enhance them by applying random
hue, brightness and saturation adjustments. Both the RGB images and Depth images are
normalized to 0–1. The ground real images of our rice dataset are labeled. As can be seen
from the Figure 5, ConvNeXt-CMFFM is able to well segment the spike and straw of rice.
This experiment shows that our model can be well used in practical agricultural application.
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4.4. Ablation Study

To further illustrate the validity of our proposed CMFFM, we compared the mIoU
and Pixel Acc. metrics of ConvNext with and without the CMFFM on three datasets and
the results are shown in Table 4. It shows that ConvNext-CMFFM performs better than
ConvNeXt on the three datasets. Specifically, for our rice dataset, compared with ConvNeXt
(without CMFFM), the mIoU score of ConvNext-CMFFM is increased from 71.5% to 74.8%
and its pixel accuracy is increased from 86.2% to 88.3%. This indicates that CMFFM fusion
of data features of different modes can help the model extract more important data features,
improve the generalization ability and inference ability of the model, and further promote
the segmentation performance of the model.

Table 4. Comparison results.

Method Dataset mIoU (%) Pixel Acc. (%)

ConvNeXt-CMFFM
NYUDv2 51.9 76.8
SUN-RGB 53.5 82.5

RICE-RGBD 74.8 88.3

ConvNeXt
NYUDv2 50.2 76.1
SUN-RGB 50.9 79.9

RICE-RGBD 71.5 86.2
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4.5. Discussion

In our model, the CMFFM proposed by us integrates RGB and Depth image features
through channel-wise and spatial-wise phases. Meanwhile, RGB feature and Depth feature
complement each other and participate in the calculation of the next layer of their respective
branches. The ConvNeXt further enhances CNN feature mining capabilities. It can be seen
from the experimental results that the segmentation results of our method on the public
datasets of NYUDv2 and SUN-RGBD are competitive. Through the comparison of ablation
studies, it can be determined that the proposed CMFFM improves the accuracy of model
segmentation, which indicates that our module can realize the deep fusion of RGB features
and Depth features. Furthermore, our proposed CMFFM can also be embedded into other
backbone networks to improve the segmentation accuracy of models.

In addition, it can be seen that on the dataset of NYUDv2, the segmentation accuracy
of our model is lower than that of DCANet and MGCNet, but on SUN-RGBD dataset, the
segmentation accuracy of our model is the best with the highest mIoU. It shows that our
model has better performance on the dataset with more training samples (for example,
10,335 samples of SUN-RGBD dataset) and slightly poor performance on the dataset with
fewer data samples (for example, 1449 samples of NYUDv2). This indicates that although
CMFFM proposed by us can integrate the features of RGB and Depth relatively well, it still
requires a large number of training samples to learn more critical features, and there is still
great room for improvement in the feature fusion of RGB and Depth.

At present, the parameters of our model are 309× 106 and FLOPs are 408× 109, which
can meet the general desktop requirements. The processing speed of the model for a
group of data (including one RGB image and one Depth image) is about 0.03 s, that is,
the processing speed is about 33 frames per second, which can meet the requirements of
common real-time line tasks. However, on embedded devices, the resource requirement
of our model makes it difficult to apply it in embedded devices. Reducing the resource
overhead of our model will be the future improvement goal.

Thus, the limitations of this model can be summarized as follows. First, the proposed
method still needs to be improved for small sample data sets. Second, the two-stream
structure makes the model cost a lot of resources, which limits its ability to be transplanted
to portable embedded platforms. Finally, our method has a high requirement on the quality
of Depth images. When collecting data in actual agricultural scenarios, due to the impact
of equipment and environment, the collected depth information may be missing. At this
point, this model is not sufficient to fuse the features of RGB and depth.

In future work, we will further explore the correlation between RGB and Depth to
achieve a deeper cross-modal feature fusion to employ fewer training samples, learn
more key features and reduce the dependence of the model on data. Meanwhile, we are
considering to design a lightweight framework to reduce the model’s demand for resources
and improve and expand its real-time application performance on embedded system. In
addition, in actual agricultural scenarios, we will also consider using RGB image and the
complementary Depth information to perform the semantic segmentation of RGB-D.

5. Conclusions

In this paper, we propose a cross-modal feature fusion RGB-D semantic segmentation
model based on ConvNeXt to better utilize multi-stage RGB-D features for semantic seg-
mentation. In particular, a novel Cross-modal Feature Fusion Module (CMFFM), embedded
in multiple stages of the model, is able to capture both spatial- and channel-wise features
in RGB-D features at various stages. Extensive experimental results confirm the effective-
ness of our method on the public NYUDv2 and SUN-RGBD datasets. The results on our
self-built rice dataset also confirm the practical agricultural application of our method.
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