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Abstract: When an individual with confirmed or suspected COVID-19 is quarantined or isolated, the
virus can linger for up to an hour in the air. We developed a mathematical model for COVID-19 by
adding the point where a person becomes infectious and begins to show symptoms of COVID-19 after
being exposed to an infected environment or the surrounding air. It was proven that the proposed
stochastic COVID-19 model is biologically well-justifiable by showing the existence, uniqueness, and
positivity of the solution. We also explored the model for a unique global solution and derived the
necessary conditions for the persistence and extinction of the COVID-19 epidemic. For the persistence
of the disease, we observed that R0

s > 1, and it was noticed that, for Rs < 1, the COVID-19 infection
will tend to eliminate itself from the population. Supplementary graphs representing the solutions
of the model were produced to justify the obtained results based on the analysis. This study has
the potential to establish a strong theoretical basis for the understanding of infectious diseases that
re-emerge frequently. Our work was also intended to provide general techniques for developing the
Lyapunov functions that will help the readers explore the stationary distribution of stochastic models
having perturbations of the nonlinear type in particular.

Keywords: stochastic model; air; environmental noise; persistence; numerical simulation

MSC: 15B51; 26A18; 37H05

1. Introduction

The pathogen SARS-CoV-2 is responsible for the spread of COVID-19, and it is an
infectious illness characterized by its genetic material enveloped by a lipid and protein
outer layer. The membrane consists of structures (spike proteins) that allow the virus
to associate with human tissues throughout infection. Due to the numerous factors that
influence the efficiency of environmental transfer, the incidence rate of SARS-CoV-2 fomite
transfer is reported to be low when contrasted with direct interaction, airborne, or droplet
transmission [1,2]. When an individual with confirmed or suspected COVID-19 is quar-
antined or isolated, the virus can linger for up to an hour in the air. The time for which a
virus continues to remain suspended and contagious is determined by a variety of factors,
which include viral load in airborne droplets or tiny particles, surfaces and air disturbances,
temperature, airflow, and humidity [3–5]. Individuals can become infected with severe
acute respiratory disease by contacting surfaces. Based on available epidemiological studies
and ecological transmission factors, the risk of severe acute respiratory syndrome spread-
ing through surface transmission is believed to be moderate and not the typical route of
transmission. Individuals become infected with SARS-CoV-2 primarily through contact
with the virus-carrying droplets in the air [6–8].

Numerous mathematical models for showing the transmission behavior of COVID-19
have been investigated, and the readers are suggested to see [9–12]. Plenty of COVID-19’s
mathematical problems have been built assuming the natural and discrete pattern of the

Mathematics 2023, 11, 1806. https://doi.org/10.3390/math11081806 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11081806
https://doi.org/10.3390/math11081806
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1261-0418
https://orcid.org/0000-0003-0463-0360
https://doi.org/10.3390/math11081806
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11081806?type=check_update&version=1


Mathematics 2023, 11, 1806 2 of 18

problems, with some constraints to depict the true evaluation of the underlying epidemics.
Contemporary calculus provides a valuable tool for providing patterns and extra outcomes
of the diseases that are required for understanding the hidden insights of mathemati-
cal models, in particular in the planning and control of infectious diseases. Equations
involving the non-integer-order derivatives have memory appropriateness, and such equa-
tions provide an excellent situation for depicting the real scenario of infectious diseases.
Arbitrary-order differential equations are often found to be useful in many situations, as
they also possess interesting properties.

It is strongly advised to use mathematical modeling tools when investigating the
spreading mechanism and controlling epidemics [12–16], and one can notice that tools of
fractional differential equations are applicable in various branches of science [17–19]. In
depicting the evolutionary history of infectious disease, differential equations can find a
balance between biological rationality and the power of their connection with the data.
The COVID-19 models developed thus far, from epidemics to population densities, have
shown a diverse range of patterns. Climate sources of noise are consistently the most-
essential components of physical mechanisms and biological systems. It is observed
that, like other diseases, the variations in the pattern has a considerable impact on the
spread and emergence of COVID-19; for instance, see [20]. Due to the unpredictability
in the interactions and other known features of the human population, the emergence of
epidemics, its growth, and its spread in the population are also unpredictable. It is well
justified and proven that the environmental variations influence the state of the infectious
disease, and up to great extent, these variations makes the epidemic unpredictable.

The distribution and persistence of infectious diseases are significantly influenced by
the alterations of environmental factors. Epidemiological studies consider the randomness
of variables and of crucial parameters because it reflects the actual dynamic nature of an
infection. Although the variations are random in nature, they must be strongly autocorre-
lated. Furthermore, the perturbations can be determined analytically by using the related
problem’s density function of probabilities [21–24]. There are two fundamental approaches
for formulating epidemic models: the deterministic and the stochastic approach. When
it comes to modeling biological phenomena, stochastic models are preferred over deter-
ministic models because they have the potential to provide a higher level of realism than
deterministic systems [24–27]. SDEs can be used to generate a distribution of the expected
outcome(s), such as the density of the infective class at a time t. In addition, a stochastic
model can generate more valuable output results compared to a deterministic model when
simulated multiple times, unlike a deterministic model that produces a single result re-
gardless of the number of experiments conducted. Several deterministic epidemiological
studies have been presented to explain the dynamics of the highly contagious COVID-19;
for instance, see [28,29].

In this paper, we suggest an epidemic model based on a stochastic approach to mod-
eling to try to explain the dynamic behavior of the COVID-19 epidemic, especially its
long-term behavior. The entire human population was divided into four distinct compart-
ments, and one class was reserved for the virus that spreads COVID-19. These disjoint
compartments were: the susceptibles, infectives, quarantined, recovered, and the virus
compartment, which persists in the air, on human bodies, and on surfaces, and their sizes
are denoted by S(t), I(t), Q(t), R(t), and C(t). These compartments are connected with
one another according to the features of the disease, and ecological noise sources were taken
into account. More specifically, we introduced the time interval between when a person
becomes contagious and when he/she begins to exhibit COVID-19 signs and symptoms.

The paper is structured as follows. In Section 2, we formulate the COVID-19 model
based on the underlying assumptions. Section 3 proves the equilibria of the deterministic
model and its corresponding basic reproduction number. Section 4 discusses the existence
of the one and only positive global solution. In Sections 5 and 6, we develop the necessary
and sufficient conditions for the persistence and extinction of the disease. In Section 7, the
theoretical results are experimentally verified and graphically presented. Section 8 contains
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a detailed analysis of the study, and the conclusion and suggestions for further research are
presented.

2. Model’s Formulation

We developed a mathematical model for COVID-19 by adding the time period in which
an individual is infected and the development of symptoms. Further, the study included
some environmental fluctuations such as the surfaces and air, humidity, temperature,
and ventilation. The proposed model is a susceptible–infectious–quarantined–recovered
model in the human population, and further, the model assumes the density of virus that
causes COVID-19. Each compartment’s size in the human population is mathematically
represented as S(t), I(t), Q(t), and R(t) at any time t, and it shows the amount of the
susceptible, infected, quarantined, and recovered populations. In addition, the symbol C(t)
stands for the disturbance of the surfaces and air, humidity, temperature, and ventilation.
The recruitment into the population is described by the positive constant Π, and it will
be added into the susceptible compartment. The natural removal rate from the human
population is denoted by µ, and it is constant for all the compartments. The vulnerable
population will catch COVID-19 at a rate of βC(t). The term β assumes positive real values,
and biologically, it shows the rate of ingestion due to the COVID-19 virus in the disturbances
of the surfaces and air, humidity, ventilation, etc. After completing the infectious period,
an individual may recover, and after the recovery, he or she may lose immunity at a rate of
ω. Thus, ωR(t) is the number of recovered people that will move to the vulnerable class in
a unit of time. Infectious persons can agree to be quarantined for a certain duration of time.
Throughout that time, individuals are detached from the population and given appropriate
medicines at a low frequency δ. The quarantined people will tend to recover at a rate ε, and
thus, εQ(t) individuals will move to the recovered compartment. The death rates associated
with COVID-19 in the infected and quarantined classes are, respectively, α1 and α2. When
an individual becomes infected with the COVID-19 virus, he or she will contribute to the
virus concentration at the rate η within a unit of time. At the same time, the virus density
level could decrease at a rate d, which usually occurs due to the mortality of the virus.
Besides this, we imposed the following assumptions while formulating the model:

A1: It was assumed that µ, Λ, β, η1, κ, d, and η2 are greater than zero, whereas the parame-
ters δ, ω, ε, α1, and α2 are nonnegative.

A2: Within a given time period, the value of the parameter c represents the average size
of the contacts.

A3: Each compartmental unit (SIQ and R) in the human population has an equal chance
of moving to another group. Similarly, the virus can move from the infected human
compartments to the virus concentration C class. In other words, the random variable
determines the probabilities of progressing among groups, and the predictive time
being spent in a group can be calculated by taking into account the inverse of that
component in a probability function.

A4: Assume that the population is closed and remains constant over time. This means,
the model represents the spread of the disease within a confined population.

A5: If the population is flexible, an additional shift coefficient must be included in the
model to take into consideration discharges, the recruitment of new susceptibles, and
deaths. To preserve the endemic situation in a community, one needs to consider a
population where inflows and outflows are assumed.

A6: Persons in the R class already have completed their intervention, are immune, and
thus, resistant to COVID-19. We presumed that almost no immune person died as a
result of COVID-19. In this light, it is reasonable to assume that both vulnerable and
immune people die at the natural mortality rate µ. Our belief is that only individuals
who are contagious, untreated, and displaying symptoms or who are undergoing
treatment are susceptible to fatal outcomes from the disease.
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These hypotheses were transformed into the mathematical equations shown below:

dS
dt

= Π− βC(t)S(t)
N(t) + ωR(t)− µS(t),

dI
dt

=
βC(t)S(t)

N(t) − (α1 + µ + δ)I(t),

dQ
dt

= δI(t)− (α2 + µ + ε)Q(t),

dR
dt

= εQ(t)− (µ + ω)R(t),

dC
dt

= ηI(t)− dC(t).

(1)

We developed a flow diagram for System (1), which is shown in Figure 1.
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Π
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βCS(t)
N

ω

δ

ε

d

µ

η

α1 + µ
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Figure 1: The detailed flowcharts of COVID-19 disease transmission of system (1).

5

Figure 1. The detailed flowchart of the COVID-19 disease transmission of System (1).

In order to include the environmental fluctuations in Model (1), we shall consider
the standard Brownian motions Wi(t) for i = 1, 2, 3, 4, 5 having the property of Wi(0) = 0.
Associated with these motions, we have the positive real numbers ξ1, ξ2, ξ3, ξ4, ξ5, which
physically describes the respective intensities of the noises. With these notions, we have
the stochastic model of the form:
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dS =

[
Π− βC(t)S(t)

N(t) + ωR(t)− µS(t)
]

dt + ξ1S(t)dW1(t),

dI =
[

βC(t)S(t)
N(t) − (α1 + µ + δ)I(t)

]
dt + ξ2I(t)dW2(t),

dQ =

[
δI(t)− (α2 + µ + ε)Q(t)

]
dt + ξ3Q(t)dW3(t),

dR =

[
εQ(t)− (µ + ω)R(t)

]
dt + ξ4R(t)dW4(t),

dC =

[
ηI(t)− dC(t)

]
dt + γ5B1(t)dW5(t),

(2)

A flow diagram for System (2) was created and is presented in Figure 2.
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Figure 2: The detailed flowcharts of cholera disease transmission of system (2).
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Figure 2. The detailed flowchart of the cholera disease transmission of System (2).

Keeping in view Model (2), we particularly intended to address the following claims:

Q1: The stochastic noises affect the dynamics of COVID-19 to a great extent.
Q2: The contaminated surfaces and air, humidity, temperature, and ventilation play a

significant role in the spreading of the disease.
Q3: A criterion exists that guarantees the eradication of the infection.
Q4: By describing the dynamics of the disease via the proposed model, the disease may

also persist in the population when the parameters obey some pre-defined rule.
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3. Deterministic Model Analysis

In this section, our aim was to demonstrate the validity of Model (1) by proving
that the system’s solution remains nonnegative for any set of nonnegative initial data.
Furthermore, we provide the expression for endemic and disease-free equilibria, as well
as determined the threshold parameter (R0), called the basic reproduction number. After
linearizing the model, we can obtain several significant results to test the stability of the
equilibrium points. For future use, we present the following notations:

a1 = δ + α1 + µ,

a2 = ε + α2 + µ,

a3 = ω + µ,

ρ1 = Πηa2a3 + d(a1a2a3 − δε),

D̄ = a1a2a3µ + β(a1a2a3 − δεω),

A = a1a2a3,

Ã = a1a2a3 − δεω.

(3)

Equilibria and the Term R0

In order to find the equilibria of the model, we considered the time-absent problem.
That is, we assumed those values of the state variables for which the system exhibits no
change with respect to time. In the present case, our state variables satisfy

dS
dt

=
dI
dt

=
dQ
dt

=
dR
dt

=
dC
dt

= 0, (4)

and solving this set of equations yields the constant function(s). It is worth mentioning that
the delay terms have no effect on these constant solutions; therefore, the proposed model
has a disease-free fixed point similar to [30] and is given by

E0 =
(
S0, I0,Q0,R0,C0

)
=

(
Π
µ

, 0, 0, 0, 0
)

. (5)

Following the same process, we have an expression for the threshold parameter as

R0 =
βΠη

µd(δ + α1 + µ)
. (6)

Moreover, when R0 > 1, the model has an endemic fixed point, which is given by

E∗ = (S∗, I∗,Q∗,R∗,C∗), (7)

where

S∗ = a1ρ

η1η2D̄
,

I∗ = βΠa2a3(R0 − 1)
R0D̄

,

Q∗ = βΠa3δ(R0 − 1)
R0D̄

,

R∗ = βΠδε(R0 − 1)
R0D̄

,

C∗ = βΠηa2a3(R0 − 1)
R0D̄d

(8)



Mathematics 2023, 11, 1806 7 of 18

4. Stochastic Model Analysis

This section investigates the uniqueness and existence of the solutions, the asymptotic
behavioral patterns, the extinction situations, and the stationary distribution of an ergodic
nature in the stochastic system.

Positive Global Solution of the Model

The initial and critical inquiry when examining the dynamic characteristics of a model
is to check whether a global solution of the proposed system is possible or not. Furthermore,
for a model that describes the dynamics of a population, the appearance of its solution’s
values is of significant concern. In this section, we established that the solution of Model (2)
is global and nonnegative. It is well recognized that, regardless of the specified initial
condition, the co-efficient of a stochastic equation must satisfy the linearly increasing
condition, as well as the local Lipschitz characteristic in order to have a unique solution
(that is, no outburst in a specified interval).

Theorem 1. Model (2) will have a unique solution (S(t), I(t),Q(t),R(t),C(t)) subject to any
initial values of the state variables from R5

+ and t ≥ 0. In addition, this solution will remain in R5
+

with probability one.

Proof. By referencing the fact that (S(0), I(0),Q(0),R(0),C(0)) ∈ R5
+ and from the lo-

cally Lipschitzness of the terms, the underlying problem has a unique local solution
(S,V1,V2,E, I,R) over the interval [0, τe). Here, τe ≥ 0 represents the physical expulsion
time, and for a detail explanation, we recommend the readers see [31,32]. The subsequent
step is to prove that this solution is indeed global, which requires demonstrating that a.s.
τe = ∞. Initially, we must show that the solution does not become unbounded within a
finite time. To do so, let us choose a sufficiently large positive real number k0 such that the
problem’s solution lies in the interval [ 1

k0
, k0]. We define the following term and assumed

that k ≥ k0:

τk = in f {t ∈ [0, τe) :
1
k
≥ min{S(t), I(t),Q(t),R(t),C(t)} or

k ≤ max{S(t), I(t),Q(t),R(t),B(t),C(t)}.
(9)

Suppose inf ∅ = ∞ whenever ∅ is an empty set. It is easy to show that τk in-
creases if we let the term k increase. By letting k tend to ∞ and, hence, τk approach
τ∞, it follows that τe → ∞. Therefore, demonstrating that τ∞ approaches infinity a.s.
ensures that τe also approaches infinity. Establishing all these facts guarantees that
(S(t), I(t),Q(t),R(t),C(t)) ∈ R5

+ for any time t ≥ 0. Let us consider the case where
τe 6= ∞. In that scenario, there should exist a nonnegative real number T and ε ∈ (0, 1)
such that:

ε < P{τ∞ ≤ T}. (10)

Hence, for k0 ≤ k1, we have

P{T ≥ τk} ≥ ε, ∀ k1 ≤ k.

Before moving further, consider the following Lyapunov function:

V = (S− 1− logS) + (I − log I− 1) + (Q− logQ− 1) + (R− logR− 1)

+ (C− logC− 1),
(11)

By considering the well-known Itô formula, letting k0 ≤ k and assume a very large
positive value of T, Relation (11) becomes

dV(S, I,Q,R,C) = LV(S, I,Q,R,C)dt + ξ1(S− 1)dW1(t) + ξ2(I− 1)dW2(t)

+ ξ3(Q− 1)dW3(t) + ξ3(R− 1)dW4(t) + ξ5(C− 1)dW5(t).
(12)
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In Equation (12), the LV operator is from R5
+ → R+ and is given by

LV =

(
1− 1

S

)(
Π− βCS

N + ωR− µS
)
+

1
2

ξ1
2

+

(
1 +

1
I

)(
βCS
N − (α1 + µ + δ)I

)
+

1
2

ξ2
2

+

(
1− 1

Q

)(
δI− (α2 + µ + ε)Q

)
+

1
2

ξ3
2 +

(
1− 1

R

)(
εQ− (µ + ω)R

)
+

1
2

ξ4
2

+

(
1− 1

C

)(
ηI− dC

)
+

1
2

ξ5
2,

= Π− βCS
N + ωR− µS− Π

S +
βB2
N − ωR

S + µ +
βCS
N − (α1 + µ + δ)I

− βCS
NI + (α1 + µ + δ) + δI− (α2 + µ + ε)Q− δ

Q − (α2 + µ + ε)

+ εQ− (µ + ω)R− εQ
R − (µ + ω) + ηI− dC− ηI

C + d

+
ξ1

2 + ξ2
2 + ξ3

2 + ξ4
2 + ξ5

2

2
,

≤ Π + µ + (α1 + µ + δ) + (α2 + µ + ε) + (µ + ω) + ηI+ d

+
ξ1

2 + ξ2
2 + ξ3

2 + ξ4
2 + ξ5

2

2
,

(13)

Furthermore, we know that S+ I+Q+R ≤ 1; thus,

LV ≤ Π + 4µ + α1δ + α2 + ε + ω + η + d +
ξ1

2 + ξ2
2 + ξ3

2 + ξ4
2 + ξ5

2

2
= K. (14)

The remainder of the proof is similar to that of Theorem 2.1 in [27]. Therefore, it is
easy for the reader to follow the outcome, and as a result, it is omitted.

5. Extinction

When modeling the dynamical aspects of an epidemic disease, it is essential to ex-
amine the conditions under which the epidemic will be eliminated or disappear from the
population. In this section, we illustrate that, for sufficient intensity of white noise, solution
of System (2) will surely approach zero. Let us define the following:

〈B(t)〉 = 1
t

∫ t

0
B(s)ds.

Lemma 1 ([33,34]). (Strong law) Let {Z}0≤t = Z be continuous and real-valued along with local
martingale, which approaches zero as t→ 0, then

lim
t→∞

〈
Z,Z

〉
t = ∞, a.s., ⇒ lim

t→∞

Zt〈
Z,Z

〉
t
= 0, a.s.

lim
t→∞

sup

〈
Z,Z

〉
t

t
< 0, a.s., ⇒ lim

t→∞

Zt

t
= 0, a.s.

(15)

Lemma 2. Consider a solution of System (2) of the form (S, I,Q,R,C) subject to the initial
conditions (S(0), I(0),Q(0),R(0),C(0)) in the space R5

+. Then,

lim sup
t→∞

lnS(t)
t

= 0, lim sup
t→∞

ln I(t)
t

= 0, lim sup
t→∞

lnQ(t)
t

= 0,

lim sup
t→∞

lnR(t)
t

= 0, lim sup
t→∞

lnC(t)
t

= 0, a.s. (16)
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Furthermore, if µ >
ξ2

1∨ξ2
2∨ξ2

3∨ξ2
4

2 and d >
ξ2

5
2 , then

lim
t→∞

∫ t
0 S(s)dW1(s)

t
= 0, lim

t→∞

∫ t
0 I(u)dW2(u)

t
= 0, lim

t→∞

∫ t
0 Q(u)dW3(u)

t
= 0,

lim
t→∞

∫ t
0 R(s)dW4(s)

t
= 0, lim

t→∞

∫ t
0 C(s)dW5(s)

t
= 0, a.s. (17)

Then, the solution of (2) is

lim sup
t→∞

S(t) = Π
µ

,

lim sup
t→∞

I(t) = 0,

lim sup
t→∞

Q(t) = 0,

lim sup
t→∞

R(t) = 0,

lim sup
t→∞

C(t) = 0, a.s.

(18)

To prove Lemma 2, we followed an almost similar procedure as performed in the
proof of Lemmas 2.1 and 2.2 carried out in the work of Zhao [33], and therefore, the proof
is left for the readers.

In order to formulate the extinction theory for System (2), we begin by defining the
threshold value Rs for the stochastic model, given by:

Rs =
βη

d
(

α1 + µ + δ +
ξ2

2
2

)
Theorem 2. Consider a solution of System (2) of the form (S, I,Q,R,C) subject to the initial state
of the population (S, I,Q,R,C)(0) in the space R5

+. Then, for 1 > Rs, the corresponding solution
of Model (2) will satisfy the following:

lim
t→∞

〈
S(t)

〉
=

Π
µ

, a.s,

lim
t→∞

〈
I(t)

〉
= 0, a.s,

lim
t→∞

〈
Q(t)

〉
= 0, a.s,

lim
t→∞

〈
R(t)

〉
= 0, a.s,

lim
t→∞

〈
C(t)

〉
= 0, a.s,

(19)

and this indicates that COVID-19 will surely be eliminated from the community.

Proof. The following relations could be easily obtained if one integrates System (2) in the
interval [0, t]:
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1
t
(S(t)− S(0)) = Π− β

〈
C
〉〈
S
〉〈

N
〉 + ω

〈
R
〉
− µ

〈
S
〉
+

ξ1
∫ t

0 S(r)dW1(r)
t

,

1
t
(I(t)− I(0)) =

β
〈
C
〉〈
S
〉〈

N
〉 − (α1 + µ + δ)

〈
I
〉
+

ξ2
∫ t

0 I(r)W2(r)
t

,

1
t
(Q(t)−Q(0)) = δ

〈
I
〉
− (α2 + µ + ε)

〈
Q
〉
+

ξ3
∫ t

0 Q(r)dW3(r)
t

,

1
t
(R(t)−R(0)) = ε

〈
Q
〉
− (µ + ω)

〈
R
〉
+

ξ4
∫ t

0 R(r)dW4(r)
t

,

1
t
(C(t)−C(0)) = η

〈
I
〉
− d
〈
C
〉
+

ξ5
∫ t

0 C(r)dW5(r)
t

,

(20)

The last equation of Model (20) gives the following:

〈
C
〉
=

η

d
〈
I
〉
− 1

d

(
C(t)−C(0)

t

)
+

ξ5

d

(∫ t
0 C(r)dW5(r)

t

)
,

=
η

d
〈
I
〉
+Z1(t),

(21)

where

Z1(t) = −
1
d

(
C(t)−C(0)

t

)
+

ξ5

d

(∫ t
0 W(r)dW5(r)

t

)
. (22)

The Itô formula and the 2nd equation of system (2) will give us

d log I =
[

βCS
IN − (α1 + µ + δ)− ξ2

2
2

]
dt + ξ2dW2(t),

≤
[

βC
I − (α1 + µ + δ +

ξ2
2

2
)

]
dt + ξ2dW2(t).

(23)

Taking the integral of Expression (23) into the interval [0, t] and multiplying the
resultant relation by t−1, we have

log I− logI(0)
t

≤
[

β
〈
C
〉〈

I
〉 − (α1 + µ + δ +

ξ2
2

2
)

]
+

ξ2dW2(t)
t

, (24)

If we substitute the relations (21) in Equation (24), we have

logI(t)
t
≤
[

β( η
d
〈
I
〉
+Z1(t))〈
I
〉 − (α1 + µ + δ +

ξ2
2

2
)

]
+

logI(0)
t

+
ξ2dW2(t)

t
,

≤
[ βη

d
〈
I
〉〈

I
〉 − (α1 + µ + δ +

ξ2
2

2
)

]
+

βZ1(t)〈
I
〉 +

logI(0)
t

+
ξ2dW2(t)

t
,

=

[
βη

d
− (α1 + µ + δ +

ξ2
2

2
)

]
+

βZ1(t)〈
I
〉 +

logI(0)
t

+
ξ2dW2(t)

t
.

(25)

Moreover, the functions Mi(t) = ξi
t
∫ t

0 gidWi(t), where i = 1, 2, · · · 5 and g1 = S,
g2 = I, g3 = Q, g4 = R, g5 = C, are the functions of the local martingale types and Mi(0).
By applying the limit t→ ∞ and using Lemma (2), we have

lim
t→∞

sup
1
t
Zi(t) = 0. (26)
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By following the same techniques, it is easy to show that limt→∞ supZ1(t) = 0. Further,
by considering the case of Rs < 1, Relation (25) takes the form:

lim
t→∞

sup
logI(t)

t
≤
(

α1 + µ + δ +
ξ2

2
2

)(
Rs − 1

)
< 0 a.s. (27)

As a consequence of Relation (27), we have

0 = lim
t→∞

〈
I
〉
, a.s. (28)

By putting Equation (28) into Relation (21) and keeping in view limt→∞ supZ1(t) = 0
and limt→∞ supZ2(t) = 0, we obtain

lim
t→∞

〈
C
〉
= 0, a.s, (29)

Now, for the third equation of Model (20), we have

〈
Q
〉
=

1
(α2 + ε + µ)

[
δ
〈
I
〉
− Q(t)−Q(0)

t
+

ξ3
∫ t

0 Q(r)dW3(r)
t

]
, (30)

Utilizing Relation (28) in the equations (30), as well as using the fact limt→∞ supZ3(t) = 0,
we obtain

lim
t→∞

〈
Q
〉
= 0, a.s. (31)

In a similar way, we can obtain

lim
t→∞

〈
R(t)

〉
= 0, a.s. (32)

Finally, we focused on the top equation in Model (20). By integrating this equation
over the interval [0, t], multiplying the outcome by t−1, and substituting the expressions (29)
and (32), we obtain

S(t)− S(0)
t

= Π− β
〈
C
〉〈
S
〉〈

N
〉 + ω

〈
R
〉
− µ

〈
S
〉
+

ξ1
∫ t

0 S(r)dW1(r)
t

,

〈
S
〉
=

Π
d
− 1

d

[
β
〈
C
〉〈
S
〉〈

N
〉 + ω

〈
R
〉
+

ξ1
∫ t

0 S(r)dW1(r)
t

]
.

(33)

This gives us

lim
t→∞

〈
S
〉
=

Π
µ

a.s. (34)

This completes the proof.

6. Persistence of Model (2)

In this section of the manuscript, the authors aimed to demonstrate the persistence of
the infection through System (2).

Definition 1 ([34]). The proposed problem (2) will exhibit persistence only if

lim inf
t→∞

1
t

∫ t

0
(C)(r)dr > 0 a.s. (35)
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Theorem 3. If Rs
0 = βη

(α1+µ+δ+
ξ2

2
2 )(d+ ξ5

2
2 )

, then for initial data

(S(0), I(0),Q(t0),R(0),C(t)) ∈ R5
+, the disease C(t) has the axiom:

lim inf
t→∞

〈
C(t)

〉
≥

3(µ + ξ1
2

2 )

[
3

√
βη

(α1+µ+δ+
ξ2

2
2 )(d+ ξ5

2
2 )
− 1
]

β
, a.s., (36)

In the situation of Rs
0 > 1, COVID-19 will be a part of the population.

Proof. Let define
M1 = −lnS− G1lnI− G2lnC, (37)

where G1 and G2, are real numbers and must be calculated at later stages. By using the
formula of Itô, we may write

dM1 = LM1 − ξ1dW1(t)− G1ξ2dW2(t)− G2ξ5dW5(t) (38)

LH1 = −Π
S +

βC
N −

ωR
S + µ +

ξ1
2

2
− G1βCS

NI + K1(α1 + µ + δ) +
G1ξ2

2

2
− G2ηI

C + G2d +
G2ξ5

2

2
,

≤ βC+ (µ +
ξ1

2

2
)− G1βCS

I + G1(α1 + µ + δ) +
G1ξ2

2

2
− G2ηI

C + G2d +
G2ξ5

2

2
,

(39)

let

G1(α1 + µ + δ +
ξ2

2

2
) = (µ +

ξ1
2

2
), G2(d +

ξ5
2

2
) = (µ +

ξ1
2

2
). (40)

LM1 ≤ −3 3

√
(

Π
S )(

G1βC
I )(

G2ηI
C ) + 3(µ +

ξ1
2

2
) + βC,

= −3 3

√√√√(
(µ + ξ1

2

2 )3βη

(α1 + µ + δ + ξ2
2

2 )(d + ξ5
2

2 )
+ 3(µ +

ξ1
2

2
) + βC,

= −3(µ +
ξ1

2

2
)

[
3

√
(

βη

(α1 + µ + δ + ξ2
2

2 )(d + ξ5
2

2 )
− 1
]
+ βC.

(41)

By plugging Relation (41) into Equation (38) and taking the integral of Expression (38),
we obtain

M1(S(t), I(t),C(t))−M1(S(0), I(0),C(0))
t

≤ −3(µ +
ξ1

2

2
)

[√
βη

(α1 + µ + δ + ξ2
2

2 )(d + ξ5
2

2 )
− 1
]
+ β

〈
C
〉

− ξ1dW1(t)
t

− G1ξ2dW2(t)
t

− G2γ5dW5(t)
t

.

≤ −3(µ +
ξ1

2

2
)

[√
βη

(α1 + µ + δ + ξ2
2

2 )(d + ξ5
2

2 )
− 1
]
+ β

〈
C
〉
+ Φ(t),

(42)

where Φ(t) = − ξ1dW1(t)
t − G1ξ2dW2(t)

t − G2γ5dW5(t)
t . By following Lemma 1, the following

result was obtained:

lim
t→∞

Ψ(t) = 0, (43)
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Consequently, Relation (42) gives the following:

〈
C
〉
≥

3(µ + ξ1
2

2 )

[√
( βη

(α1+µ+δ+
ξ2

2
2 )(d+ ξ5

2
2 )
− 1
]

β
− 1

β
Φ(t)

+
1
β

(
M1(S(t), I(t),C(t))−M1(S(0), I(0),C(0))

t

)
.

(44)

Referring to Lemma 2 and Equation (43), the superior limit of Relation (44) yields

lim inf
t→∞

〈
C
〉
≥

3(µ + ξ1
2

2 )

[
3

√
βη

(α1+µ+δ+
ξ2

2
2 )(d+ ξ5

2
2 )
− 1
]

β
, a.s, (45)

and subsequently, the proof of Theorem 3 has been completed.

7. Numerical Simulations and Discussions

Model simulation is meant to validate the model’s projections or the hypothetical
conclusion of the research in real-world scenarios, which is particularly important when
modeling biological processes. In this part of the manuscript, the researchers strove to
approximate the solutions of Model (2) by using classic computational methods that are
rapidly convergent. The results of the significant proportion of the work that was based
on the qualitative study were quantitatively validated. We quantitatively verified the
theoretical predictions by using the standard RK-4 technique.

In order to obtain meaningful biological interpretations and quantitatively validate the
abstract concepts, it is necessary to acquire the actual parameter values used in Model (2).
In Examples 1 and 2, we presumed two sets of parameter values for this goal, and the initial
sizes of the human populations and the concentration of the COVID-19 viruses are also
presented. In each case, the simulation took place in the interval of time from 0 to 250.

We established Theorem 2 specifically considering the stochastic stability theory,
which demonstrates that, under Rs < 1, the disease will seem to be eradicated outside the
community no matter what the initial sizes of the states are. Furthermore, the theorem
indicates that COVID-19 will be surely eradicated from the population. Figure 3 shows
that the graphs of the stochastic solutions will reach the infection-free equilibrium within a
finite time period, confirming the theoretical results.

Likewise, Theorem 3 guarantees the virus’s pervasiveness in the community under
some reasonable condition(s). By using the data from Example 2, we calculated the thresh-
old, Rs

0, and noticed that the value exceeded unity. Figure 4 depicts the simulated findings
of the model predicated in light of the corresponding theorems. The figure indicates that
the disease will continue to exist within the population, and it also illustrates the phe-
nomenon of persistence demonstrated by Model (2). This proves Theorem 3’s judgments
for the underlying deterministic model (1). Whenever the threshold of the corresponding
stochastic model is greater than 1, the solution curves of the SDE model (2) go up and
down all around the nonzero equilibrium point. As a result, efforts should concentrate on
implementing effective prevention programs against the various variants to control the
spread of multiple strains and the shedding of the virus in the community.
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Figure 3: Solution of model (2) and integral curves of the underlying deterministic system.

7.1 The impact of β on the stochastic system (2)

Let us consider β = 0.009 and initial condition S(0) = 60, I(0) = 40, Q(0) = 30, R(0) = 50, C(0) =
300 with different stochastic noises ξ1 = 0.40, ξ2 = 0.45, ξ3 = 0.30, ξ4 = 0.35, ξ5 = 0.45 and the
remianing values are kept the same that was used in generating Figure 4. Figure 5 depicts the
relevant partial solutions I, C, and the mean infection proportional cure of stochastic system (2)
with its associated deterministic model. It is evident that as the random variability of individuals
in the I and C classes increases, all infected individuals will eventually disappear from the popu-
lation within a finite period of time. This suggests that by limiting the value of β, we can regulate
and avoid COVID-19 in the long term. Assuming that the stochastic disturbances are significant
enough and the transmission coefficients are decreased, the disease can be eliminated.
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by model (2)
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Figure 3. Solution of Model (2) and integral curves of the underlying deterministic system.

Example 1. To simulate the model, we let the values of the parameters be as follows: ω = 0.09,
Π = 0.12, β = 0.002, µ = 0.005, α1 = 0.2, η = 0.004, δ = 0.005, and d = 0.05, where the
initial size of each compartment was S(0) = 60, I(0) = 50,Q(0) = 30,R(0) = 50,C(0) = 40.
Similarly, the intensities of the white noises were: ξ1 = 0.55, ξ2 = 0.25, ξ3 = 0.25, ξ4 = 0.33,
ξ5 = 0.55. Using all these model parameters, we determined Rs, which was found to be somewhere
between zero and one. As a result, Theorem 2’s assumption was satisfied, and the element of the
solution to the proposed system adhered to the following assertions:

lim
t→∞

sup
logI(t)

t
≤ 0, a.s.

lim
t→∞

sup
logC(t)

t
≤ 0, a.s.

Biologically, these relations describe the eradication of COVID-19 from the population, and
numerically, this was confirmed via Figure 3. As a direct consequence, the acquired results of the
analysis on extinction are accurate and reliable.

Example 2. Here, the values of the parameters are given by: ω = 0.07, Π = 2.12, β = 0.008,
µ = 0.001, α1 = 0.2, η = 0.004, δ = 0.005, and d = 0.08. In the same way, we have the initial
size of each compartment as: S(0) = 80, I(0) = 50,Q(0) = 0,R(0) = 10,C(0) = 10, whereas
the intensities are given by ξ1 = 0.50, ξ2 = 0.35, ξ3 = 0.70, ξ4 = 0.50, ξ5 = 0.41. Based on
this information, we calculated the value of Rs

0, which was found to be higher than 1. We also
investigated whether the model parameters in this example satisfy the assumption of Theorem 3. The
model’s solution was approximated using this example, and the results are shown in the diagram
in Figure 4. The figure demonstrates that the virus is likely to persist in the community, and the
system will have a steady-state distribution in this scenario.

The Impact of β on the Stochastic System (2)

Let us consider β = 0.009 and initial condition S(0) = 60, I(0) = 40,Q(0) = 30,
R(0) = 50,C(0) = 300 with different stochastic noises ξ1 = 0.40, ξ2 = 0.45, ξ3 = 0.30,
ξ4 = 0.35, ξ5 = 0.45, and the remaining values were kept the same as used to generate
Figure 4. Figure 5 depicts the relevant partial solutions I,C, and the mean infection
proportional cure of the stochastic system (2) with its associated deterministic model. It was
evident that, as the random variability of individuals in the I and C classes increased, all
infected individuals would eventually disappear from the population within a finite period
of time. This suggests that, by limiting the value of β, we can regulate and avoid COVID-19
in the long term. Assuming that the stochastic disturbances are significant enough and the
transmission coefficients are decreased, the disease can be eliminated.
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Figure 4. Prediction of Model (2) and integral curves of the underlying deterministic system.
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7.1 The impact of β on the stochastic system (2)

Let us consider β = 0.009 and initial condition S(0) = 60, I(0) = 40, Q(0) = 30, R(0) = 50, C(0) =
300 with different stochastic noises ξ1 = 0.40, ξ2 = 0.45, ξ3 = 0.30, ξ4 = 0.35, ξ5 = 0.45 and the
remianing values are kept the same that was used in generating Figure 4. Figure 5 depicts the
relevant partial solutions I, C, and the mean infection proportional cure of stochastic system (2)
with its associated deterministic model. It is evident that as the random variability of individuals
in the I and C classes increases, all infected individuals will eventually disappear from the popu-
lation within a finite period of time. This suggests that by limiting the value of β, we can regulate
and avoid COVID-19 in the long term. Assuming that the stochastic disturbances are significant
enough and the transmission coefficients are decreased, the disease can be eliminated.
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Figure 5. The figure depicts the impact of β on the transmission dynamics of I(t) and C(t) predicted
by Model (2).

8. Concluding Remarks and Future Directions

In this manuscript, the researchers investigated a new dynamic model for the spread
of the COVID-19 epidemic, which is produced by the virus persisting in the air and surfaces
due to ventilation, temperature, and humidity. It was proven that the proposed stochastic
COVID-19 model was biologically justified by showing the existence, uniqueness, and
positivity of the solution. It was explored whether the model had a global unique solution.
We derived sufficient results both for the persistence and extinction of COVID-19. It was
observed that, for R0

s > 1, the persistence of the disease occurred, and it was found that,
if Rs < 1, the COVID-19 infection would eventually be eliminated from the population.
Supplementary graphs were represented, which showed the behavior of the solutions to the
model, in particular the long-term behavior. This research could provide a solid theoretical
foundation for a profound comprehension of prolonged contagious diseases. Our work
was also intended to provide general techniques for developing the Lyapunov functions
that will help the readers explore the stationary distribution of stochastic models having
perturbations of the nonlinear type in particular.

COVID-19’s propagation via contaminated surfaces and the air is restricted by ventila-
tion, humidity, and temperature, which were observed to be more pertinent than human-
to-human COVID-19 transfer. Nevertheless, the investigators suggested that, in order to
significantly reduce the risk, all of these elements should be monitored simultaneously. In
future work, the authors hope to incorporate more appropriate characteristics of COVID-19
into the model, such as age and spatial effects. It is also being considered to incorporate
various uptake functions into the frameworks in the coming years.

Author Contributions: Methodology, X.L.; Software, X.L. and A.D.; Investigation, X.L. and A.K.;
Data curation, A.K.; Writing—original draft, X.L. and A.D.; Writing—review & editing, A.D.; Project
administration, A.K. and A.D.; Funding acquisition, A.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was sponsored by the Guangzhou Government Project under Grant No.
62216235 and the National Natural Science Foundation of China (Grant No. 622260-1).

Data Availability Statement: Because no new data were produced nor processed in this study, data
sharing is not applicable to this publication.

Conflicts of Interest: The authors declare that there are no conflict of interest.



Mathematics 2023, 11, 1806 17 of 18

References
1. Meyerowitz, E.A.; Richterman, A.; Gandhi, R.T.; Sax, P.E. Transmission of SARS-CoV-2: A review of viral, host, and environmental

factors. Ann. Intern. Med. 2020, 174, 69–79. [CrossRef]
2. Kampf, G.; Brüggemann, Y.; Kaba, H.; Steinmann, J.; Pfaender, S.; Scheithauer, S.; Steinmann, E. Potential sources, modes of

transmission and effectiveness of prevention measures against SARS-CoV-2. J. Hosp. Infect. 2020, 106, 678–697. [CrossRef]
[PubMed]

3. Corsi, R.L.; Siegel, J.A.; Chiang, C. Particle resuspension during the use of vacuum cleaners on residential carpet. J. Occup.
Environ. Hyg. 2008, 5, 232–238. [CrossRef]

4. Jones, R.M.; Brosseau, L.M. Aerosol transmission of infectious disease. J. Occup. Environ. Med. 2015, 57, 501–508. [CrossRef]
[PubMed]

5. Zheng, S.; Zhang, J.; Mou, J.; Du, W.; Yu, Y.; Wang, L. The influence of relative humidity and ground material on indoor
walking-induced particle resuspension. J. Environ. Sci. Health 2019, 54, 104. [CrossRef] [PubMed]

6. Bae, S.; Shin, H.; Koo, H.; Lee, S.; Yang, J.; Yon, D.K. Asymptomatic transmission of SARS-CoV-2 on evacuation flight. Emerg.
Infect. Dis. 2020, 26, 2705–2708. [CrossRef] [PubMed]

7. Xie, C.; Zhao, H.; Li, K.; Zhang, Z.; Lu, X.; Peng, H.; Wang, D.; Chen, J.; Zhang, X.; Wu, D.; et al. The evidence of indirect
transmission of SARS-CoV-2 reported in Guangzhou, China. BMC Public Health 2020, 20, 1202. [CrossRef] [PubMed]

8. Pitol, A.K.; Julian, T.R. Community transmission of SARS-CoV-2 by fomites: Risks and risk reduction strategies. Environ. Sci.
Technol. Lett. 2020, 8, 263–269. [CrossRef]

9. Win, Z.T.; Eissa, M.A.; Tian, B. Stochastic epidemic model for COVID-19 transmission under intervention strategies in China.
Mathematics 2022, 10, 3119. [CrossRef]

10. Din, A.; Li, Y.; Khan, T.; Zaman, G. Mathematical analysis of spread and control of the novel corona virus (COVID-19) in China.
Chaos Solitons Fractals 2020, 141, 110286. [CrossRef]

11. Ghostine, R.; Gharamti, M.; Hassrouny, S.; Hoteit, I. An extended SEIR model with vaccination for forecasting the COVID-19
pandemic in Saudi Arabia using an ensemble Kalman filter. Mathematics 2021, 9, 636. [CrossRef]

12. Tanimoto, J. Sociophysics Approach to Epidemics; Springer: Singapore, 2021; Volume 23, pp. 153–169.
13. Xia, C.Y.; Sun, S.W.; Liu, Z.X.; Chen, Z.Q.; Yuan, Z.Z. Epidemics of SIRS model with nonuniform transmission on scale-free

networks. Int. J. Mod. Phys. 2009, 23, 2203–2213. [CrossRef]
14. Fang, J.; Qian, Z.-S.; Chu, Y.-M.; Rahman, M. On nonlinear evolution model for drinking behavior under Caputo-Fabrizio

derivative. J. Appl. Anal. Comput. 2022, 12, 790–806.
15. Hailemariam Hntsa, K.; Kahsay, B.N. Analysis of cholera epidemic controlling using mathematical modeling. Int. J. Math. Math.

Sci. 2022, 2022, 1–13. [CrossRef]
16. Tahir, K.; Seadawy, A.R.; Zaman, G.; Abdullah, A. Optimal control of the mathematical viral dynamic model of different hepatitis

B infected individuals with numerical simulation. Int. J. Mod. Phys. 2019, 33, 1950310.
17. Saima, R.; Khalid, A.; Karaca, Y. Revisiting fejér–hermite–hadamard type inequalities in fractal domain and applications. Fractals

2022, 2240133.
18. Narges, H.S.; Samei, M.E.; Alzabut, J.; Chu, Y.-M. On multi-step methods for singular fractional q-integro-differential equations.

Open Math. 2021, 19, 1378–1405.
19. Nath, C.A.; Basir, F.A.; Ahmad, B.; Alsaedi, A. A fractional-order compartmental model of vaccination for COVID-19 with the

fear factor. Mathematics 2022, 10, 1451.
20. Anwarud, D.; Khan, A.; Baleanu, D. Stationary distribution and extinction of stochastic coronavirus (COVID-19) epidemic model.

Chaos Solitons Fractals 2020, 139, 110036.
21. Guodong, L.; Qi, H.; Chang, Z.; Meng, X. Asymptotic stability of a stochastic May mutualism system. Comput. Math. Appl. 2020,

79, 735–745.
22. Quan, T.K.; Yin, G. Optimal harvesting strategies for stochastic ecosystems. IET Control Theory Appl. 2017, 11, 2521–2530.
23. Din, A.; Li, Y. Mathematical analysis of a new nonlinear stochastic hepatitis B epidemic model with vaccination effect and a case

study. Eur. Phys. J. Plus 2022, 137, 1–24. [CrossRef] [PubMed]
24. Anwarud, D. The stochastic bifurcation analysis and stochastic delayed optimal control for epidemic model with general incidence

function. Chaos Interdiscip. J. Nonlinear Sci. 2021, 31, 123101.
25. Huo, L.; Dong, Y.; Lin, T. Dynamics of a stochastic rumor propagation model incorporating media coverage and driven by Lévy

noise. Chin. Phys. 2021, 30, 080201. [CrossRef]
26. Ioana, B. Dichotomous Markov noise: Exact results for out-of-equilibrium systems. Int. J. Mod. Phys. 2006, 20, 2825–2888.
27. Din, A.; Li, Y. Stationary distribution extinction and optimal control for the stochastic hepatitis B epidemic model with partial

immunity. Phys. Scr. 2021, 96, 074005. [CrossRef]
28. Andrew, O.; Abbas, M.; Din, A. Global asymptotic stability, extinction and ergodic stationary distribution in a stochastic model

for dual variants of SARS-CoV-2. Math. Comput. Simul. 2023, 204, 302–336.
29. Liu, P.J.; Rahman, M.; Din, A. Fractal fractional based transmission dynamics of COVID-19 epidemic model. Comput. Methods

Biomech. Biomed. Eng. 2022, 25, 1852–1869. [CrossRef] [PubMed]
30. Lemos-Paiao, A.P.; Maurer, H.; Silva, C.J.; Torres, D.F.M. A SIQRB delayed model for cholera and optimal control treatment. Math.

Model. Nat. Phenom. 2022, 17, 25. [CrossRef]

http://doi.org/10.7326/M20-5008
http://dx.doi.org/10.1016/j.jhin.2020.09.022
http://www.ncbi.nlm.nih.gov/pubmed/32956786
http://dx.doi.org/10.1080/15459620801901165
http://dx.doi.org/10.1097/JOM.0000000000000448
http://www.ncbi.nlm.nih.gov/pubmed/25816216
http://dx.doi.org/10.1080/10934529.2019.1644120
http://www.ncbi.nlm.nih.gov/pubmed/31343373
http://dx.doi.org/10.3201/eid2611.203353
http://www.ncbi.nlm.nih.gov/pubmed/32822289
http://dx.doi.org/10.1186/s12889-020-09296-y
http://www.ncbi.nlm.nih.gov/pubmed/32758198
http://dx.doi.org/10.1021/acs.estlett.0c00966
http://dx.doi.org/10.3390/math10173119
http://dx.doi.org/10.1016/j.chaos.2020.110286
http://dx.doi.org/10.3390/math9060636
http://dx.doi.org/10.1142/S021797920905211X
http://dx.doi.org/10.1155/2020/7369204
http://dx.doi.org/10.1140/epjp/s13360-022-02748-x
http://www.ncbi.nlm.nih.gov/pubmed/35542829
http://dx.doi.org/10.1088/1674-1056/ac0423
http://dx.doi.org/10.1088/1402-4896/abfacc
http://dx.doi.org/10.1080/10255842.2022.2040489
http://www.ncbi.nlm.nih.gov/pubmed/35234550
http://dx.doi.org/10.1051/mmnp/2022027


Mathematics 2023, 11, 1806 18 of 18

31. Jin, X.; Jia, J. Qualitative study of a stochastic SIRS epidemic model with information intervention. Phys. Stat. Mech. Appl. 2020,
547, 123866. [CrossRef]

32. Rajasekar, S.P.; Pitchaimani, M. Qualitative analysis of stochastically perturbed SIRS epidemic model with two viruses. Chaos
Solitons Fractals 2019, 118, 207–221. [CrossRef]

33. Kangbo, B.; Zhang, Q. Stationary distribution and extinction of a stochastic SIRS epidemic model with information intervention.
Adv. Differ. Equ. 2017, 2017, 1–19.

34. Zhao, Y.N.; Jiang, D.Q. The threshold of a stochastic SIS epidemic model with vaccination. Appl. Math. Comput. 2014, 243, 718–727.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.physa.2019.123866
http://dx.doi.org/10.1016/j.chaos.2018.11.023
http://dx.doi.org/10.1016/j.amc.2014.05.124

	Introduction
	Model's Formulation
	Deterministic Model Analysis
	Stochastic Model Analysis
	Extinction
	Persistence of Model (2)
	Numerical Simulations and Discussions
	Concluding Remarks and Future Directions
	References

