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Abstract: Multi-area power systems (MAPSs) are highly complex non-linear systems facing a fun-
damental issue in real-world engineering problems called frequency stability problems (FSP). This
paper develops an enhanced slime mold optimization algorithm (ESMOA) to optimize the tuning
parameters for a cascaded proportional derivative-proportional integral (PD-PI) controller. The novel
ESMOA proposal includes a new system that combines basic SMO, chaotic dynamics, and an elite
group. The motion update incorporates the chaotic technique, and the exploitation procedure is
enhanced by searching for a select group rather than merely the best solution overall. The proposed
cascaded PD-PI controller based on the ESMOA is employed for solving the FSP in MAPSs with
two area non-reheat thermal systems to keep the balance between the electrical power load and the
generation and provide power system security, reliability, and quality. The proposed cascaded PD-PI
controller based on the ESMOA is evaluated using time domain simulation to minimize the integral
time-multiplied absolute error (ITAE). It is evaluated in four different test situations with various sets
of perturbations. For tuning the cascaded PD-PI controller, the proposed ESMOA is compared to
the golden search optimizer (GSO) and circle optimizer (CO), where the proposed ESMOA provides
the best performance. Furthermore, the findings of the proposed cascaded PD-PI controller based
on the ESMOA outperform previous published PID and PI controllers adjusted using numerous
contemporary techniques.

Keywords: load frequency control; cascaded proportional derivative-proportional integral (PD-PI)
controller; slime mold optimization algorithm; PID controller

MSC: 93C10

1. Introduction

A continuous production of electrical energy, supplied by power-generating plants,
has grown into a requirement for modernized life and the industrial progress of countries. A
stable power network can endure interruptions, fluctuations, and changing consumer needs.
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If the electrical network becomes unstable, load shedding might be activated, leading to
blackouts in the worst-case scenario. Loads in electrical networks are particularly uncertain
and variable due to changes in load demand, which causes the network frequency and tie-
line transfer power to deviate from the nominal levels [1,2]. Power networks are typically
integrated with several power-generating areas to deliver electricity to high-demand zones.
A disruption in one location may impact the other related power systems [3]. The primary
purpose of multi-area power systems (MAPSs) aims at balancing supply and connected
loads, which is an important challenge to managing the continual growth in demand and
the peculiarities of the MAPSs system, which incorporates a diversity of power station
types [4]. As a result, a power network operator’s primary priority is maintaining the
frequency of a power system. Area generation control (AGC) can be designed to restore
the system to its steady state by regulating the generator output power and preserving a
balance between power production and load requirements [5,6]. This problem becomes
more and more critical with the integration of renewable sources [7], flexible alternating
current devices [8], high voltage direct current grids [9], batteries [10], automatic voltage
regulators [11], etc.

In MAPSs, frequency stability or load frequency control (LFC) is the process that keeps
the frequency inside nominal boundaries when the load demand changes. LFC is critical to
power system stability because it preserves power balancing across linked regions despite
varying loading situations. When the system’s loading surpasses or drops short of the gen-
erator’s power, the system’s frequency will become unbalanced and surpass the threshold
limitations. An automatic control action is performed to preserve the nominal frequency
by initiating load shedding or activating protection relays that disconnect generators from
the network [12,13]. The frequency of undershoots, overshoots, and settling time must be
maintained at a minimum to guarantee dependable power system operation, which may
be accomplished by installing external controllers [14].

Over many years, there have been substantial efforts to run numerous optimization
techniques to improve the controllers’ configurations, while metaheuristic approaches may
manage technological obstacles, including complexity, non-linearities, and uncertainties.
As a result, the genetic algorithm (GA) was utilized to improve the settings of AGC in
a two-area power network having non-reheat thermal generating plants [15]. Although
the GA seems relatively robust owing to a more significant standard error of the derived
fitness scores, it has been integrated with the Taguchi approach to design the employed
AGC via optimally estimating the corresponding gains [15]. In [16], a particle swarm
optimization (PSO) containing a constricting component and a craziness-based PSO were
utilized to improve the undershoot, overshoot, and settling time of transient response.
Furthermore, the differential evolution (DE) approach was employed to update the PI
controller in a connected power system to overcome the frequency stability issue [17].
In [18], a flower pollination optimization algorithm (FPOA) was performed in MAPSs to
design a proportional-integral-derivative (PID) controller that makes use of spontaneous
flower pollinating types. A bacterial foraging method was integrated PSO-dependent
on the PI controller for handling the LFC of interconnected MAPSs under standard and
customized fitness functions, including two regions of non-reheat thermal systems [19].
In [20], an adaptive sliding mode control mechanism was developed and used for the LFC
to withstand unmodeled dynamics, parametric fluctuation, and external disturbances. It
also reduces chattering and is used in the LFC regulation based on the power system’s
diverse areas. Ref. [21] describes grey wolf optimizing implementations for AGC in three
MAPSs with and without solar thermal power plants. Furthermore, in [22], the cuckoo
search approach was used to solve the LFC problem in three-area connected systems by
optimizing the PI controller and the integral plus the double derivative controller based on
two degrees of freedom [23].

In [24], a self-adapted multi-population elitist (SAMPE) JAYA compared the optimiz-
ing method that was developed for PID controller design as an upgraded JAYA variant
to control the LFC in connected two non-reheat thermal MAPSs optimally. In a two-area
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connected MAPS, a PID controller based on the optimization approach was used to mini-
mize a single-objective target, including numerous ITAE performance indicators [25]. A
teaching learning-based optimizing technique was utilized to adequately design a fuzzy
PID controller to manage the undershoot, overshoot, and settling time [26]. Ref. [27] com-
bines an advanced type II fuzzified PID controller with a water cycle algorithm (WCA)
and applies it to a MAPS with generation rate limits. To tackle LFC regulation in MAPSs,
Ref. [28] created a cascaded PI-PI and PD with filter-PI utilizing the coyote optimization
technique. In [29], the bees optimization approach (BOA) was used to optimize the settings
of a fuzzed PID comprising a derivative filter, which was then applied to a dual area-linked
power system. In [30], a gravitational search method was combined with the firefly op-
timizing technique to enhance controller setting adjustment and was used in a two-area
hydrothermal power system. In [31], the arithmetic optimization approach (AOA) was
used to fine-tune a fuzzy-PID controller while accounting for the influence of the high
voltage direct current link to overcome the drawbacks of AC transmission.

The slime mold optimization algorithm (SMOA) is an evolutionary approach gener-
ated by the propagating and foraging behavior of slime mold, which was reported in 2020
by Li et al. [27]. The SMOA features a distinctive conceptual model, highly efficient out-
comes, a gradient-free and simple coding structure that mimics the positive and negative
feedbacks of slime mold propagating waves. It is effectively employed for a variety of
practical and industrial optimization problems, including engineering design problems [31],
load estimation of water resources [30], parameter estimations of fuel cells [29], parameter
identification of photovoltaic modules [32,33], optimal power flow [34,35], and emission
economic dispatch [36]. The SMOA still has some drawbacks, including low computing
accuracy and a premature convergence speed on selected benchmark problems [30]. As a
result, in this research, an ESMOA is presented for addressing engineering issues using
chaotic dynamics and an elite group. The suggested ESMOA makes two changes to the
conventional SMOA to improve its performance. Initially, an elite group is established
to save the best solutions for every repetition to improve the exploitative-seeking tactic.
Secondly, to improve the exploratory seeking tactic, a logistic mapping with a chaotic
tendency is devised to improve the search in extremely random environments. To address
the FSP of MAPSs, a cascaded PD-PI controller is optimized utilizing an upgraded ESMOA
with two area non-reheat thermal systems. It is evaluated to minimize the ITAE using
time domain simulation. The proposed cascaded PD-PI controller based on the ESMOA is
evaluated in four test situations with various sets of perturbations. The proposed ESMOA
is compared to the golden search optimizer (GSO) [37] and circle optimizer (CO) [38] for
adjusting the cascaded PD-PI controller, with the suggested ESMOA providing the best
performance. Furthermore, the suggested cascaded PD-PI controller based on the ESMOA
outperforms previously reported PID and PI controllers modified with various modern
approaches. The following are the primary contributions proposed in this paper:

� The frequency stability of MAPSs is addressed via an innovative cascaded PD-PI
controller via ESMOA.

� With SMOA, an elite group and chaotic logistic mapping emerge to produce a novel
ESMOA with better performance than recent GSO and CO algorithms.

� The ESMOA has more reliability than contemporary GSO and CO algorithms in
designing the cascaded PD-PI controller.

� The proposed PD-PI controller based on the ESMOA outperforms previously reported
PID and PI controllers using modern methods.

The following is the structure of the presented article. Section 2 describes the pro-
posed cascaded PD-PI controller and the FSP of MAPSs. Section 3 offers the proposed
ESMOA and its stages. Section 4 includes the results and discussion, and Section 5 shows
the conclusions.
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2. Problem Formulation
MAPS Model

In this study, the MAPS includes two non-reheat thermal turbine generators and
employs the proposed cascaded PD-PI controller based on the ESMOA in each area, as
depicted in Figure 1. As shown, for each area, the key components are the speed-regulating
device, turbine, and generator, as mentioned in Refs. [39,40]. The change in the power
demands (∆PD1 and ∆PD2), the change in the tie-line power transfer (∆PTIE), and the
governor controller signals (u1 and u2) handle the inputs. At the same time, the frequency
deviations in each area (∆f 1 and ∆f 2) and the control errors (ACE1 and ACE2) represent the
outputs [25]. ∆Pg is the change (per unit (p.u)) in the governor valve position; ∆Pt represents
the power changes (p.u) in turbine output; T12 refers to the synchronized coefficient between
the two areas; ∆f indicates the frequency change (Hz) in the power system; B indicates the
frequency bias; and R refers to the governor speed droop characteristics. In Figure 1, Tg1,
Tg2, Tt1, Tt2, TP1, and TP2 indicate the time constants (in a sec) of the governor, the turbine,
and the power system, respectively, of both areas. KP1 and KP2 are the power system gains
of the two areas, respectively. R1 and R2 represent the governor speed regulation constants.

The input signals to the controllers are the respective area control errors (ACE1 and
ACE2) from

ACE1 = ∆PTIE + B1 × ∆ f1 (1)

ACE2 = a12 × ∆PTIE + B2 × ∆ f2 (2)

With two control loops, the cascaded controller prevents perturbation from expanding
to adjacent system parts [41]. As illustrated in Figure 2, the cascaded controller has two
control loops (master and slave). The master one represents the outer loop. It contains
the process output y(s) that will be influenced by the master control. The load disturbance
∆PD(s) influences the power system GPS(s) gain, indicating the outer process.
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PD-PI controller integration with the non-reheat thermal turbine generators and power system.

The master loop formula is as follows:

y(s) = GPS(s)×O1(s) + ∆PD(s) (3)

where O1(s) is the incoming signal to GPS(s), which is also y2(s) as the process output of
the slave loop. CPD(s) is the outer loop controller responsible for y(s) in order to obtain F(s)
which is the reference signal. The slave, or inner loop, represents the internal process gain
GTH(s). It can be mathematically defined as follows:

y2(s) = GTH(s)×O2(s) (4)

where O2(s) denotes the internal process’s input signal. The inner loop controller is known
as CPI(s). That loop considers the impact of the internal process’s gain adjustments.

The cascade controller’s whole transfer function may be represented as follows:

y(s) = TF1(s)× F(s)− TF2(s)× ∆PD(s) (5)

TF1(s) =
(

GPS(s)GTH(s)CPD(s)CPI(s)
1 + GTH(s)CPI(s) + GPS(s)GTH(s)CPD(s)CPI(s)

)
(6)

TF2(s) =
(

GPS(s)
1 + GTH(s)CPI(s) + GPS(s)GTH(s)CPD(s)CPI(s)

)
(7)

As a result, the goal function (OF) is used to disclose the system’s needs and constraints
to build the proposed cascaded PD-PI controller as effectively as is feasible. Under normal
conditions, each area would follow its load, and in the event of a load interruption, the
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power exchange between areas would be swiftly recovered to its intended value. A time-
domain objective function is adjusted utilizing integral criteria as follows:

OF = ITAE =

tsim∫
0

(|∆ f1|+ |∆ f2|+ |∆PTIE|)× t× dt (8)

Furthermore, OF can be readily upgraded to minimize the peak overshoots of fre-
quency fluctuations across each area and in tie-line power transmission. This adaptation
evolves due to attaining a suitable damping ratio to offer a specific degree of stability [43].
The problem constraints are the boundaries of the controller component settings. Thus, the
design task could be represented as the following optimization aspect.

Min OF (9)

Subject to
For the proposed cascaded PD-PI controller,

Kp1Area,Min ≤ Kp1Area ≤ Kp1Area,Max, Area = 1 or 2 (10)

KdArea,Min ≤ KdArea ≤ KdArea,Max, Area = 1 or 2 (11)

Kp2Area,Min ≤ Kp2Area ≤ Kp2Area,Max, Area = 1 or 2 (12)

KiArea,Min ≤ KiArea ≤ KiArea,Max, Area = 1 or 2 (13)

nArea,Min ≤ nArea ≤ nArea,Max, Area = 1 or 2 (14)

The subscripts “min” and “max” represent each region’s lowest and highest quantities
of each control variable. The comparative amounts are set to be 0 and 3, and the filter
parameter n is between 0 and 500 [43].

3. Enhanced Slime Mold Optimization Algorithm

The SMOA offers a unique computing approach that uses dynamic weighting to mimic
the mechanisms that cause positive and negative reactions in the slime mold propagating
waves to form the optimum path for attaching food [27,34]. The SMOA population is
initially generated in the space with dimension (d):

Vk(0) = Vmin + rand(0, 1)·[Vmax −Vmin] k = 1 : NK (15)

where Vmin and Vmax represent the minimum and maximum bounds of everyone’s control
variable, and NK is the number of individuals in the population.

Considering that slime mold could follow food based on the fragrance in the air, this
behavior may be expressed as follows:

Vk(t + 1) =
{

Vb(t) + υ1 × (W ×Vr1(t)−Vr2(t)) Pv > r
υ2 ×Vk(t) Pv ≤ r

k = 1 : NK (16)

where t represents the current iteration, Vk represents the slime mold position, Vb represents
the place having the highest smell concentrations, and Vr1 and Vr2 represent two options
picked randomly within the population. The slime mold selection behavior is represented
by two components, υ1, and υ2, where υ2 decreases linearly from 1 to 0. W is the searching
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agent’s weight, whereas r is a randomized number between [0, 1]. The Pv formula looks
like this:

Pv = tanh|OF(k)−OFB|k = 1 : NK (17)

where OF(k) is the current individual’s objective rating, OFB is the finest global objective
value across the iterations, and υ1: can be represented as follows:

υ1 = [−arctanh
(

1− 2
MT

)
, arctanh

(
1− 2

MT

)
] (18)

where MT is the maximal length of iterations. The weight W is as follows:

W(Indsm(k)) =

1 + r· log
(

OFB−OF(k)
OFB−OFW + 1

)
, condition

1 + r· log
(

OFB−OF(k)
OFB−OFW + 1

)
, others

k = 1 : NK (19)

The first part of the population is represented by condition, while r provides a stochastic
number between [0, 1]. OFW is the worst objective value obtained in the current iteration,
and Indsm denotes the sorted sequence of objective scores as follows:

Indsm = sort(OF) (20)

The second step numerically simulates slime mold venous tissue organization contrac-
tion during seeking. The slime mold’s seeking activities might vary depending on the kind
of food it consumes. The specific technique for altering the placement of the slime mold
consists of the following:

Vk(t + 1) =


Vmin + rand(0, 1)× [Vmax −Vmin]

Vb(It) + υ1 × (W ×Vr1(t)−Vr2(t))
υ2 ×Vk(t)

rand < z
Pv > r
Pv ≤ r

(21)

where rand and r represent arbitrary numbers between 0 and 1. z represents a factor that
defines how effectively a matching mechanism would investigate and utilize data, with
different values employed depending on the scenario.

Two adjustments have enhanced the SMOA’s performance. An enhanced version
(ESMOA) with chaotic dynamics and an elite group is used to increase the effectiveness of
the original SMOA. An elite group of five members is constructed and refreshed to save
the four finest members in every iteration to improve the exploitative seeking function, in
addition to the average individual, as follows:

Vk(t + 1) = VElite(t) + υ1 × (W ×Vr1(t)−Vr2(t)) i f Pv > r (22)

where VElite(t) = rand
(
[Vb1; Vb2; Vb3; Vb4; VAvg]

)
(23)

As a result, the exploitative-seeking mode is permitted in various desired directions.
A logistic mapping with a chaotic tendency is additionally intended to promote the search
in a strongly random environment to improve the exploratory seeking characteristic [44].
Depending on it, the chaotic logistic mapping produces a generated vector (Cm) as follows:

Cmk(t + 1) = 4Cmk(t)(Cmk(t)− 1)) (24)

where Cm(0) = rand(1, dim) (25)
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According to this approach, that vector is built in each cycle for each control variable.
As a result, the standard SMOA upgrading technique has been changed, and the slime
mold’s new locations have been modified as follows:

Vk(t + 1) =


Vmin + rand(0, 1)× [Vmax −Vmin]

YElitist(t) + υ1 × (−Vr2(t) + W ×Vr1(t))
Cmk × υ2 ×Vk(t)

rand < z
Pr > r
Pr ≤ r

(26)

Figure 3 depicts the proposed ESMOA’s key phases centered on chaotic dynamics and
an elite group algorithm.
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4. Simulation Results and Discussions

This section is divided into two sections. Section 4.1 explores several applications of
the proposed ESMOA on different numerical benchmarks compared to the original version
of the SMOA. Additionally, the GSO and CO are applied at the same base for examining
the comparison with recently applied techniques. Section 4.2 explores the applicability of
the proposed ESMOA for the optimal design of cascaded PD-PI controllers for enhancing
frequency stability in multi-area power systems.

4.1. Applications on Different Numerical Benchmarks

At first, the proposed ESMOA, the original version of SMOA, GSO, and CO are
applied to several applications of the different numerical benchmarks. Because of its
incredible complexity, CEC’17 is regarded as a problematic testbed and is, thus, used to
evaluate the quality of the suggested ESMOA. The suggested ESMOA is tried on CEC’17
functions with ten dimensions. The CEC’17 test suite consists of 28 standard functions,
with F2 removed [45]. It consists of four groups of functions: unimodal (F1 and F3), multi-
modal (F4–F10), hybrid (F11–F20), and combination functions. (F21–F29). The capacity to
escape local areas is evaluated using multi-modal functions. While composite functions
approximating real-world optimization problems with highly dynamic search spaces are
used to explore the trade-off regarding the search algorithms’ exploitation and exploratory
skills. The comparative algorithms are applied with 30 search agents and 500 iterations to
guarantee fair comparison. Their convergence features for the 28 benchmark functions are
displayed in Figure 4, while their outcomes are tabulated in Tables 1 and 2, respectively, in
terms of the best, mean, worst, and standard deviations.
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Table 1. Best and mean of the comparative algorithms for the 28 benchmark functions.

Function
Name

Best Mean

Proposed
ESMOA

Original
SMOA GSO CO Proposed

ESMOA
Original
SMOA GSO CO

F1 100.38 115.64 48,532.00 130,840.00 3042.80 4047.10 132,910.00 389,590.00

F2 300.00 300.00 862.84 3631.00 300.09 300.05 14,241.00 7192.00

F3 400.01 400.05 404.19 501.24 405.41 407.54 506.25 714.73

F4 505.97 503.98 519.12 551.75 515.62 514.89 561.92 579.45

F5 600.04 600.08 614.06 633.65 600.09 600.17 645.26 646.92

F6 712.85 715.20 739.97 771.23 724.81 725.50 789.00 796.06

F7 806.97 804.98 816.01 833.54 814.53 816.62 846.86 850.81

F8 900.00 900.00 1007.40 1049.20 900.00 900.25 1631.00 1403.00

F9 1165.30 1168.70 1621.20 1898.30 1462.20 1511.80 2610.20 2727.50

F10 1101.00 1103.40 1116.00 1233.00 1112.40 1137.80 2006.00 1659.30

F11 3253.40 5561.40 3612.70 1,662,800.00 21,345.00 207,930.00 248,790.00 131,410.00

F12 1319.60 1465.10 1679.70 190,570.00 2161.80 8132.90 108,430.00 329,250.00

F13 1434.10 1435.00 1446.60 1740.20 1764.30 1929.00 3889.00 5668.90

F14 1504.70 1522.30 1713.10 3271.00 4320.80 3349.90 18,439.00 11,877.00

F15 1601.80 1602.10 1675.80 1775.30 1646.50 1663.50 2083.80 2070.70

F16 1705.50 1721.00 1750.60 1774.90 1730.10 1747.10 1889.90 1811.90

F17 2166.90 3473.40 1949.00 326,110.00 24,256.00 19,428.00 502,870.00 75,619.00

F18 1915.70 1908.00 1935.80 5104.50 3553.30 5501.10 726,860.00 229,180.00

F19 2004.00 2005.30 2068.10 2161.40 2021.80 2030.30 2268.90 2250.60

F20 2200.00 2202.80 2204.60 2220.40 2313.90 2304.40 2341.70 2329.20

F21 2300.50 2241.00 2308.10 2436.00 2301.90 2298.10 2417.30 2632.50

F22 2607.40 2612.40 2625.10 2621.30 2616.50 2619.50 2718.90 2687.20

F23 2735.40 2734.70 2524.40 2608.40 2751.00 2751.60 2822.50 2792.70

F24 2897.80 2898.20 2901.50 2971.10 2917.80 2922.20 2971.40 3155.50

F25 2800.20 2816.00 2848.80 3166.90 2953.30 3022.60 3667.10 3494.10

F26 3089.00 3089.00 3103.70 3105.40 3091.00 3090.50 3174.10 3154.90

F27 3166.50 3167.50 3176.30 3341.20 3342.20 3320.00 3478.50 3587.20

F28 3134.40 3134.40 3189.20 3171.20 3180.70 3186.20 3384.80 3422.50

From both tables, the proposed ESMOA shows great effectiveness and robustness over
the original SMOA, GSO, and CO. Compared to the original SMOA, the proposed ESMOA
shows superiority in 78.57%, 67.86%, 96.43%, and 96.43% of the benchmark functions
regarding the best, mean, worst, and standard deviations of the obtained fitness. Compared
to the GSO, the proposed ESMOA shows superiority in 92.86%, 100%, 100%, and 100% of
the benchmark functions regarding the best, mean, worst, and standard deviations of the
obtained fitness. Compared to the CO, the proposed ESMOA shows superiority in 96.43%,
100%, 100%, and 100% of the benchmark functions regarding the best, mean, worst, and
standard deviations of the obtained fitness.
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Table 2. Worst and standard deviations of the comparative algorithms for the 28 benchmark functions.

Function
Name

Worst Standard Deviation

Proposed
ESMOA

Original
SMOA GSO CO Proposed

ESMOA
Original
SMOA GSO CO

F1 5542.40 12,677.00 28,897.00 92,394.00 1949.30 3400.70 44,212.00 14,445.00

F2 300.39 300.35 78,883.00 10,628.00 0.09 0.08 17,009.00 1924.90

F3 407.21 456.99 1547.10 1006.70 2.11 9.52 190.61 106.96

F4 521.49 530.26 623.22 611.50 3.88 6.32 27.66 11.15

F5 600.12 600.51 678.05 662.27 0.02 0.09 14.44 7.06

F6 731.80 742.81 880.06 818.59 5.11 6.82 29.91 10.39

F7 820.90 829.85 923.48 863.56 4.19 5.58 21.18 5.72

F8 900.00 905.83 4350.50 1677.10 0.00 1.07 577.21 154.49

F9 1679.00 1980.10 3664.50 3020.80 146.27 196.82 486.29 246.06

F10 1124.30 1336.50 17,767.00 3062.20 6.67 62.63 2411.60 352.41

F11 597,810.00 1,267,400.00 2,418,100.00 2,363,500.00 18,966.00 31,202.00 57,591.00 595,460.00

F12 4041.90 32,548.00 270,800.00 186,570.00 647.76 10,628.00 53,603.00 38,638.00

F13 2504.00 8381.60 28,906.00 29,799.00 326.27 1330.90 7451.90 5085.40

F14 7356.10 11,424.00 103,090.00 20,748.00 1898.70 2415.70 25,557.00 3936.90

F15 1731.60 1899.60 2769.80 2283.20 45.34 73.85 226.49 98.50

F16 1747.80 1838.80 2217.90 1850.10 12.03 25.04 107.15 17.22

F17 35,618.00 42,539.00 125,660.00 255,060.00 9720.00 11,108.00 248,740.00 71,446.00

F18 13,985.00 28,127.00 198,640.00 973,510.00 2695.90 7991.50 31,346.00 25,352.00

F19 2036.50 2073.60 2693.20 2386.00 10.30 14.61 117.47 40.63

F20 2328.90 2335.40 2413.90 2413.70 31.07 40.63 53.19 59.64

F21 2302.90 2304.20 3791.10 2979.90 0.65 14.43 246.41 108.66

F22 2623.60 2633.50 2901.10 2755.20 4.60 5.06 56.51 20.75

F23 2762.70 2772.20 2992.40 2923.00 7.40 8.60 97.58 51.44

F24 2947.00 2969.40 3179.20 3382.30 23.58 25.47 56.40 81.43

F25 2999.10 3920.70 4859.70 4128.60 46.95 289.78 582.65 206.69

F26 3092.70 3095.30 3312.60 3219.60 1.18 1.48 50.31 37.80

F27 3411.80 3731.80 4019.00 3750.10 102.46 137.11 212.66 120.79

F28 3235.30 3283.50 3757.00 3663.20 32.19 38.54 135.63 97.90

4.2. Applications for Enhancing Frequency Stability in Multi-Area Power Systems

In this part, the suggested ESMOA (Figure 3) is utilized to minimize the goal function
of ITAE, which is specified in Equation (8). The GSO and CO procedures are also employed
for comparison. The number of iterations is set to 100, while the number of search agents
is 10. Four separate testing cases are run, each having distinct perturbations. The whole
simulation process is carried out in MATLAB. The data from the understudied MAPSs
are similar to those from the references [17,46]. All tests are run with the same number of
function repetitions to provide a fair comparison of the competing approaches. As noted,
four instances are explored based on the positioning of the step change:

• Case 1: Step load disturbance only in area 1.
• Case 2: Step load disturbance only in area 2.
• Case 3: Step load disturbance in areas 1 and 2.
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• Case 4: Step load disturbance only in area 1 considering non-linearities in the
power system.

4.2.1. Application for Case 1

Area 2 remains unaltered in this case, but a 0.1 p.u step load augmentation hike in
area 1 is assessed. The suggested ESMOA (Figure 3), GSO, and CO techniques are applied;
Figure 5 shows the corresponding converging characteristics, and Table 3 summarizes the
simulated data for the investigated ITAE minimizing approaches. The summarized data
accompany the ITAE target scores and the related parameter settings of Kp1, Ki, Kp2, Kd,
and n in each area. As shown, the proposed ESMOA achieves the lowest value regarding
the ITAE objective of 0.023431, where GSO and CO obtain ITAE objective values of 0.023922
and 0.02677, respectively.
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Table 3. Results for Case 1.

Algorithm Proposed
ESMOA GSO CO

Controller
parameters

KP1

Area 1

3 3 3

Ki 1.198019018 1.882598713 1.125704786

KP2 3 3 3

Kd 1.575698137 1.163053801 1.712103293

n 500 198.3903318 500

KP1

Area 2

0.167226621 3 2.477149042

Ki 0.88462493 1.597201322 2.639381164

KP2 2.881063135 0.731447135 3

Kd 3 2.903096059 2.095134679

n 392.6175818 40.09581819 283.8518794

ITAE Value 0.023431548 0.026772795 0.023922459

ITAE improvement percent compared to the
proposed ESMOA - 12.48 2.0521
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Figure 6 also shows the dynamic responses for frequency variations in each region
and tie-line transfer power. As seen in Figure 6, the suggested ESMOA outperforms the
CO and GSO in reducing the objective function. Even though the GSO algorithm delivers
the quickest reaction when approaching the stable region, multiple oscillations are present,
particularly in the frequency deviation in area 2.
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From the reported results, the ESMOA algorithm gives a slightly smaller ITAE value
(0.023431548) compared with that given by the GSO (0.026772795). The decreased amount
represents 12.486% which declares a significant improvement percentage in this case. On
the other side, as shown in Figure 6, the corresponding outputs are reasonably coincident
regarding the change in frequency in area 1 (Figure 6a). However, slight improvement
is shown in the change in frequency in area 2 (Figure 6b). At the same time, significant
mitigation is declared regarding the change in power transfer between the two areas
(Figure 6c).

Figure 7 depicts the assessed four measures of the lowest, mean, maximum, and
standard deviation produced by ITAE throughout several independent operations to
provide statistical comparability between CO, GSO, and the suggested ESMOA. This
figure states the recommended ESMOA’s high efficacy and capability compared to CO and
GSO. The suggested ESMOA is used to obtain the smallest measurements, as illustrated. It
finds the smallest minimum, mean, maximum, and standard deviation with 0.023431548,
0.024266891, 0.02780845, and 0.001298062, respectively.
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Table 4 contrasts the efficacy of the proposed ESMOA-based PD-PI controller with
various previously published controlling methods concerning ITAE and settling time.
As shown, the proposed ESMOA-based PD-PI controller obtains the minimum ITAE of
0.02343 where the conventional PI, PI-based-BFOA, PI-based-DE, PI-based-BFOA-PSO,
PI-based-GA, PI-based-FA, PI-based-PSO, PID-based-ARA, PI-based-FA, CO-based PD-PI
controller, and GSO-based PD-PI controller find 3.5795, 1.8379, 0.9911, 1.1865, 2.7475, 0.8695,
1.2142, 0.075401, 0.4714, 0.02392, and 0.02677, respectively. Regarding the lowest ITAE
value, frequency settling time, and tie-line power variations, the proposed ESMOA-based
PD-PI controller beats the other previously published optimization strategies, as shown in
the table.
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Table 4. Comparison of the proposed ESMOA outcomes with other reported results in terms of ITAE
and settling time.

Controller Optimization Technique Reference
Settling Times (s) Objective Value

∆PTIE ∆F2 ∆F1 ITAE

PI Conventional [46] 28.270 45.010 45.00 3.5795

PI BFOA [46] 6.350 7.090 5.520 1.8379

PI DE [17] 5.750 8.160 8.960 0.9911

PI BFOA-PSO [19] 5.730 7.650 7.390 1.1865

PI GA [46] 9.370 11.390 10.590 2.7475

PI Firefly algorithm (FA) [46] 5.620 7.220 7.110 0.8695

PI PSO [19] 5.000 7.820 7.370 1.2142

PID Artificial rabbits’ algorithm (ARA) [40] 3.059294 2.901341 2.195834 0.075401

PID FA [46] 4.780 5.490 4.250 0.4714

PD-PI CO Applied 3.8157 3.1087 1.3395 0.023922459

PD-PI GSO Applied 3.9883 3.7314 1.4118 0.026772795

PD-PI Proposed ESMOA Applied 3.3018 3.1172 1.4202 0.023431548

4.2.2. Application for Case 2

Area 1 remains unaltered in this case, but a 0.1 p.u step load augmentation hike in area
2 is assessed. The suggested ESMOA, GSO, and CO techniques are applied; Figure 8 shows
the corresponding converging characteristics, and Table 5 summarizes the simulated data
for the investigated ITAE minimizing approaches. The summarized data accompany the
ITAE target scores and the related parameter settings of Kp1, Ki, Kp2, Kd, and n in each area.
As shown, the proposed ESMOA achieves the lowest ITAE objective value of 0.023653,
where CO and GSO obtain ITAE objective values of 0.023821 and 0.026281, respectively.
Therefore, the suggested ESMOA improves the ITAE value by 10% compared to GSO and
0.71% compared to CO.
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Table 5. Results for Case 2.

Algorithm Proposed ESMOA GSO CO

Controller
parameters

KP1

Area 1

3 3 3

Ki 2.712281 3 3

KP2 0.019315 3 3

Kd 1.315795 1.217712 2.178291

n 336.0855 282.2859 500

KP1

Area 2

3 3 3

Ki 1.174453 1.893716 1.244513

KP2 3 3 3

Kd 1.644572 1.373006 1.585313

n 489.4933 183.442 471.6436

ITAE Value 0.023653 0.026281 0.023821

ITAE improvement percent compared to the
proposed ESMOA - 9.99 0.7057

Figure 9 also shows the dynamic responses for frequency variations in each region
and tie-line transfer power. As seen in Figure 9, the suggested ESMOA outperforms the
CO and GSO in reducing the objective function. It provides the lowest settling times of
3.0999, 0.92, and 3.6663 s for the deviations in frequency in area 1, frequency in area 2, and
transfer power, respectively. The CO algorithm obtains settling times of 3.1744, 1.3345, and
3.7474 s, while the GSO algorithm attains settling times of 3.5335, 1.5755, and 4.2202 s for
the deviations in frequency in area 1, frequency in area 2, and transfer power, respectively.
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frequency in area 1. (b) Deviation in frequency in area 2. (c) Deviation in transferred power through
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For this case, Figure 10 depicts the assessed four measures of the lowest, mean, max-
imum, and standard deviation of the produced ITAE throughout several independent
operations to provide statistical comparability between CO, GSO, and the suggested ES-
MOA. The suggested ESMOA is used to obtain the smallest measurements, as illustrated.
It finds the smallest minimum, mean, maximum, and standard deviation with 0.023653,
0.02491, 0.027762, and 0.001483, respectively.
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Table 6 contrasts the efficacy of the proposed ESMOA-based PD-PI controller with
various previously published controlling methods concerning ITAE. As shown, the pro-
posed ESMOA-based PD-PI controller obtains the minimum ITAE of 0.023653, while the
conventional PID-based-PSO, PID-based-ARA, PID-based-JAYA, PI-based-DE, PID-based-
SAMPE-JAYA, CO-based PD-PI controller, and GSO-based PD-PI controller find 0.0816,
0.075409, 0.078, 0.082, 0.077, 0.023821, and 0.026281, respectively.
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Table 6. Comparison of the proposed ESMOA outcomes with other reported results in terms of ITAE
for Case 2.

Controller Optimization Technique Reference ITAE Objective Value

PID PSO [40] 0.0816

PID ARA [40] 0.075409

PID JAYA [40] 0.078

PID DE [40] 0.082

PID SAMPE-JAYA [40] 0.077

PD-PI CO Applied 0.023821

PD-PI GSO Applied 0.026281

PD-PI Proposed ESMOA Applied 0.023653

4.2.3. Application for Case 3

In areas 1 and 2, a simultaneous 0.1 p.u. step load augmentation hike is assessed for
this case. The suggested ESMOA, GSO, and CO techniques are applied; Figure 11 shows
the corresponding converging characteristics, and Table 7 summarizes the simulated data
for the investigated ITAE minimizing approaches. The summarized data accompany the
ITAE target scores and the related parameter settings of Kp1, Ki, Kp2, Kd, and n in each area.
As shown, the proposed ESMOA achieves the lowest ITAE objective value of 0.04428, while
CO and GSO obtain ITAE objective values of 0.075148 and 0.08294, respectively. Therefore,
the suggested ESMOA improves the ITAE value by 41.1% compared to GSO and 46.61%
compared to CO.

Figure 12 also shows the dynamic responses for frequency variations in each region
and tie-line transfer power. The suggested ESMOA outperforms the CO and GSO in
reducing the objective function. It provides the lowest settling times of 2.5137, 1.5619, and
3.5789 s for the deviations in frequency in areas 1 and 2 and the transfer power, respectively.
The CO algorithm obtains settling times of 3.62, 2.2824, and 5.2696 s. In contrast, the GSO
algorithm attains settling times of 4.0042, 3.227, and 4.9151 s for the deviations in frequency
in area 1, frequency in area 2, and transfer power, respectively.

Table 7. Results for Case 3.

Algorithm Proposed ESMOA GSO CO

Controller
parameters

KP1

Area 1

3 3 3

Ki 1.080022 3 0.719087

KP2 3 3 3

Kd 1.424285 0.908199 2.467428

n 448.7811 202.1082 38.15772

KP1

Area 2

3 3 2.904342

Ki 1.05636 3 0.56298

KP2 3 3 2.893778

Kd 1.551031 0.908199 3

n 474.3045 202.1082 500

ITAE Value 0.044279 0.082937 0.075148

ITAE improvement percent compared to
the proposed ESMOA - 46.611 41.0773
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For this case, Figure 13 depicts the assessed four measures of the lowest, mean, max-
imum, and standard deviation of the produced ITAE throughout several independent
operations to provide statistical comparability between CO, GSO, and the suggested ES-
MOA. The suggested ESMOA is used to obtain the smallest measurements, as illustrated.
It finds the smallest minimum, mean, maximum, and standard deviation with 0.044279,
0.04573, 0.04841, and 0.001272, respectively.
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Table 8 contrasts the efficacy of the proposed ESMOA-based PD-PI controller with
various previously published controlling methods concerning ITAE. As shown, the pro-
posed ESMOA-based PD-PI controller obtains the minimum ITAE of 0.04428, where the
conventional PID-based-PSO, PID-based-ARA, PID-based-JAYA, PI-based-DE, PID-based-
SAMPE-JAYA, CO-based PD-PI controller, and GSO-based PD-PI controller find 0.2354,
0.146308, 0.2272, 0.2021, 0.1726, 0.075148, and 0.082937, respectively.

Table 8. Comparison of the proposed ESMOA outcomes with other reported results in terms of ITAE
for Case 3.

Controller Optimization Technique Reference ITAE Objective Value

PID PSO [40] 0.2354

PID ARA [40] 0.146308

PID JAYA [40] 0.2272

PID DE [40] 0.2021

PID SAMPE-JAYA [40] 0.1726

PD-PI CO Applied 0.075148

PD-PI GSO Applied 0.082937

PD-PI Proposed ESMOA Applied 0.044279

Then, the proposed ESMOA results obtained using the cascaded PD-PI controller are
compared with the other reported results that use different types of controllers, namely, PI
and PID. The parameters of the compared controllers were optimized in previous articles
based on other recent algorithms which simulated several operating scenarios of the same
power system model. Therefore, all the controllers are adequately designed with the
best parameters. This point demonstrates that the presented cascaded PD-PI controller,
designed based on the proposed ESMOA, outperforms the same controller based on the
GSO and CO. Additionally, the presented cascaded PD-PI controller, designed based on
the proposed ESMOA, outperforms the PI and PID controllers, which were designed based
on other previous algorithms.
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4.2.4. Application for Case 4 as Extension to Non-Linear Power System

To further show the effectiveness of the proposed ESMOA in handling the frequency
stability in power systems, the developed ESMOA is applied in comparison to GSO and
CO for tuning the presented cascaded PD-PI controller considering the non-linearities in
the power system model. This study was expanded to involve any non-linearity which
could exist in the power grid. The non-linear characteristic is illustrated in Figure 14 as
well as in [47]. Instead of the linear model of the non-reheat turbine displayed in Figure 1,
the actual physical limit on the response speed of a turbine determined by the generation
rate constraint (GRC) effect (δ) is integrated with 0.05 in this model. This is to account for
the GRC impact (i.e., the practical physical constraint on the response speed of a turbine).
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Figure 14. Non-linear turbine model with GRC.

At t = 0 s, a step load rise of 0.05 p.u. in area 1 is implemented for the above purpose.
The proposed ESMOA, GSO, and CO methods are used, as shown in Figure 15, and Table 9
outlines the simulated data for the studied ITAE minimizing approaches. The summarized
statistics are presented in addition to the ITAE goal scores and the associated parameter
settings of Kp1, Ki, Kp2, Kd, and n in each area. According to the results, the suggested
ESMOA has the lowest ITAE objective value of 0.225044, while CO and GSO have ITAE
objective values of 0.230348 and 0.254536, respectively. As a result, the proposed ESMOA
increases the ITAE value by 11.59% when compared to GSO and 2.31% when compared
to CO.
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Table 9. Results for Case 4.

Algorithm Proposed ESMOA GSO CO

Controller
parameters

KP1

Area 1

1.810359 2.7 0.52778

Ki 1.16859 1.8 0.988066

KP2 0.432614 0.3 1.44749

Kd 1.078064 1.8 1.401102

n 448.8788 201.3416 166.6564

KP1

Area 2

0.258859 0 2.5717

Ki 1.875776 2.1 1.135735

KP2 0.516261 1.824008 1.692278

Kd 1.50658 2.4 2.446288

n 339.1538 301.3416 225.1243

ITAE Value 0.225044 0.254536 0.230348

ITAE improvement percent compared to
the proposed ESMOA - 11.59 2.31

For this case, Figure 16 depicts the assessed four measures of the lowest, mean, max-
imum, and standard deviation of the produced ITAE throughout several independent
operations to provide statistical comparability between CO, GSO, and the suggested ES-
MOA. The suggested ESMOA is used to obtain the smallest measurements, as illustrated.
It finds the smallest minimum, mean, maximum, and standard deviation with 0.225, 0.2314,
0.2375, and 0.0054, respectively.
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Furthermore, the dynamic responses for frequency deviations in each area and tie-line
power under ITAE are displayed in Figure 17. The proposed ESMOA provides better
performances over CO and GSO in terms of settling times in frequency deviations and
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tie-line power deviations. From Figure 17a, that displays the deviation in frequency in
area 1, the proposed ESMOA shows a rise time of 1.8143 × 10−4 s; settling time of 2.8403 s;
and peak time of 1.0750 s. From Figure 17b, that displays the deviation in frequency in
area 2, the proposed ESMOA records the minimum settling time of 2.7745 s, while the CO
and GSO record settling times of 2.9972 and 3.3071 s. Additionally, the proposed ESMOA
achieves the least peak time of 1.0232 s as shown in Figure 17c, that displays the deviation
in power transfer between the two areas, while the CO and GSO record peak times of
1.0482 and 0.0383 s.

Mathematics 2023, 11, x FOR PEER REVIEW 28 of 32 
 

 

line power deviations. From Figure 17a, that displays the deviation in frequency in area 
1, the proposed ESMOA shows a rise time of 1.8143 × 10−4 s; settling time of 2.8403 s; and 
peak time of 1.0750 s. From Figure 17b, that displays the deviation in frequency in area 2, 
the proposed ESMOA records the minimum settling time of 2.7745 s, while the CO and 
GSO record settling times of 2.9972 and 3.3071 s. Additionally, the proposed ESMOA 
achieves the least peak time of 1.0232 s as shown in Figure 17c, that displays the deviation 
in power transfer between the two areas, while the CO and GSO record peak times of 
1.0482 and 0.0383 s. 

 
(a) 

 
(b) 

Figure 17. Cont.



Mathematics 2023, 11, 1796 29 of 32
Mathematics 2023, 11, x FOR PEER REVIEW 29 of 32 
 

 

 
(c) 

Figure 17. Dynamic responses for CO, GSO, and the proposed ESMOA for Case 4. (a) Deviation in 
frequency in area 1. (b) Deviation in frequency in area 2. (c) Deviation in transferred power through 
interconnected tie-line. 

Table 10 contrasts the efficacy of the proposed ESMOA-based PD-PI controller with 
various previously published controlling methods concerning ITAE. As shown, the pro-
posed ESMOA-based PD-PI controller obtains the minimum ITAE of 0.225044, while the 
conventional PID, PID-based-GA, PID-based-BFOA, PID-based-FA, PID-based-hybrid FA 
and pattern search, CO-based PD-PI controller, and GSO-based PD-PI controller find 
0.604, 0.5513, 0.4788, 0.324, 0.2782, 0.230348, and 0.25436, respectively. 

Table 10. Comparison of the proposed ESMOA outcomes with other reported results in terms of 
ITAE for Case 4. 

Controller Optimization Technique Reference ITAE Objective Value 
PID Conventional [47] 0.604 
PID GA [47] 0.5513 
PID BFOA [47] 0.4788 
PID FA [48] 0.324 
PID hybrid FA and pattern search [48] 0.2782 

PD-PI CO Applied 0.230348 
PD-PI GSO Applied 0.25436 
PD-PI Proposed ESMOA Applied 0.225044 

5. Conclusions 
This paper presents a cascaded PD-PI controller optimized using an improved 

ESMOA, which includes a chaotic dynamic and an elite group. The suggested cascaded 
PD-PI controller based on the ESMOA solves the FSP in MAPSs with two area non-reheat 
thermal systems. The motion update incorporates the chaotic technique, and the exploita-
tion procedure is enhanced by searching for an elite group rather than merely the best 
solution overall. The proposed ESMOA is assessed compared to GSO and CO for design-
ing the cascaded PD-PI controller. The proposed ESMOA provides the best performance. 
For load perturbation in area 1, the proposed ESMOA improves the ITAE value by 12.48% 
and 2.0521% compared to GSO and CO, respectively. For load perturbation in area 2, the 
proposed ESMOA enhances the ITAE value by 10% and 0.71% compared to GSO and CO, 
respectively. For simultaneous load perturbation in areas 1 and 2, the suggested ESMOA 

Figure 17. Dynamic responses for CO, GSO, and the proposed ESMOA for Case 4. (a) Deviation in
frequency in area 1. (b) Deviation in frequency in area 2. (c) Deviation in transferred power through
interconnected tie-line.

Table 10 contrasts the efficacy of the proposed ESMOA-based PD-PI controller with
various previously published controlling methods concerning ITAE. As shown, the pro-
posed ESMOA-based PD-PI controller obtains the minimum ITAE of 0.225044, while the
conventional PID, PID-based-GA, PID-based-BFOA, PID-based-FA, PID-based-hybrid FA
and pattern search, CO-based PD-PI controller, and GSO-based PD-PI controller find 0.604,
0.5513, 0.4788, 0.324, 0.2782, 0.230348, and 0.25436, respectively.

Table 10. Comparison of the proposed ESMOA outcomes with other reported results in terms of
ITAE for Case 4.

Controller Optimization Technique Reference ITAE Objective Value

PID Conventional [47] 0.604

PID GA [47] 0.5513

PID BFOA [47] 0.4788

PID FA [48] 0.324

PID hybrid FA and pattern
search [48] 0.2782

PD-PI CO Applied 0.230348

PD-PI GSO Applied 0.25436

PD-PI Proposed ESMOA Applied 0.225044

5. Conclusions

This paper presents a cascaded PD-PI controller optimized using an improved ES-
MOA, which includes a chaotic dynamic and an elite group. The suggested cascaded PD-PI
controller based on the ESMOA solves the FSP in MAPSs with two area non-reheat thermal
systems. The motion update incorporates the chaotic technique, and the exploitation proce-
dure is enhanced by searching for an elite group rather than merely the best solution overall.
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The proposed ESMOA is assessed compared to GSO and CO for designing the cascaded
PD-PI controller. The proposed ESMOA provides the best performance. For load pertur-
bation in area 1, the proposed ESMOA improves the ITAE value by 12.48% and 2.0521%
compared to GSO and CO, respectively. For load perturbation in area 2, the proposed
ESMOA enhances the ITAE value by 10% and 0.71% compared to GSO and CO, respectively.
For simultaneous load perturbation in areas 1 and 2, the suggested ESMOA improves the
ITAE value by 41.1% and 46.61% compared to GSO and CO, respectively. Additionally,
the proposed ESMOA shows higher robustness than CO and GSO as it successfully finds
the smallest minimum, mean, maximum, and standard deviation. In addition to that,
the effectiveness of the presented cascaded PD-PI controller via the proposed ESMOA is
demonstrated in handling the frequency stability considering the non-linearities in the
power system model. Moreover, the proposed cascaded PD-PI controller based on the
ESMOA demonstrates significant efficiency and outperformance over several previously
published PID and PI controllers adjusted using numerous contemporary techniques.
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