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Abstract: In this paper, we study a new type of distribution that generalizes distributions from the
gamma and beta classes that are widely used in applications. The estimators for the parameters of
the digamma distribution obtained by the method of logarithmic cumulants are considered. Based
on the previously proved asymptotic normality of the estimators for the characteristic index and
the shape and scale parameters of the digamma distribution constructed from a fixed-size sample,
we obtain a statement about the convergence of these estimators to the scale mixtures of the normal
law in the case of a random sample size. Using this result, asymptotic confidence intervals for the
estimated parameters are constructed. A number of examples of the limit laws for sample sizes with
special forms of negative binomial distributions are given. The results of this paper can be widely
used in the study of probabilistic models based on continuous distributions with an unbounded
non-negative support.
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1. Introduction

Distributions belonging to beta and gamma classes play an essential role in prob-
ability theory and mathematical statistics. Such distributions have proven themselves
as convenient and efficient tools in modeling a large number of real processes and phe-
nomena [1–6]. Special cases of the generalized beta distribution of the second kind and
the generalized gamma distribution can have the properties of infinite divisibility and
stability, which makes it possible to use them as asymptotic approximations in various limit
theorems. Ref. [7] proposed a new probability distribution closely related to both beta and
gamma classes.

Definition 1. We say that the random variable ζ has the digamma distribution DiG(r, ν, p, q, δ)
with a characteristic index r ∈ R and the parameters of shape ν 6= 0, concentration p, q > 0, and
scale δ > 0, if its Mellin transform is

Mζ(z) =
δzΓ(p + z/ν)Γ(q− rz/ν)

Γ(p)Γ(q)
, p +

Re(z)
ν

> 0, q− rRe(z)
ν

> 0, (1)

where Re(z) is the real part of a complex number z, and Γ(z) is Euler’s gamma function.

Particular types of digamma distribution include the generalized gamma distribu-
tion (also known as the Amoroso distribution with zero shift) [8], the generalized beta
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distribution of the second kind (also known as the McDonald distribution) [9], and the
gamma-exponential distribution [10].

The digamma distribution (1) can be represented as a scale mixture of two general-
ized gamma-distributed random variables, i.e., for ζ ∼ DiG(r, ν, p, q, δ) and independent
random variables λ ∼ Γ(p, 1) and µ ∼ Γ(q, 1) with gamma distributions

ζ
d
= δ

(
λ

µr

)1/ν

. (2)

This representation makes it possible [11] to use the digamma distribution for an
adequate description of the Bayesian balance models proposed in [12].

Assuming that the process is modeled using the digamma distribution, the problem
of statistical estimation of its unknown parameters inevitably arises [5,13,14]. As shown
in Ref. [7], the density of the digamma distribution is expressed in terms of the special
Fox’s H-function. This significantly complicates the application of the maximum likelihood
method. The form of the Mellin transform (1) of the digamma distribution also indicates
the infeasibility of using the direct method of moments. Refs. [15–17] originally proposed
a modified method for estimating the parameters of the gamma-exponential distribution
based on logarithmic moments and cumulants. Due to the fact that the digamma distribu-
tion and the gamma-exponential distribution have the Mellin transform of the same type
(up to the range of the parameter r), all previously obtained conclusions about the form of
estimates by the method of logarithmic cumulants for the gamma-exponential distribution
automatically remain valid for the digamma distribution, taking into account the formal
expansion of the characteristic index range from a unit interval to the entire real line.

In today’s rapidly changing world, it is quite problematic to use the traditional statisti-
cal approach based on the analysis of fixed-size samples. Thus, in the context of the global
crisis caused by the COVID-19 epidemic, it is necessary to have a mechanism to respond
to negative impacts using only the currently available data. Since the accumulation of a
sufficient fixed amount of statistics can often take an indefinite time, it makes sense to
strive for the possession of methods that allow one to draw adequate conclusions based
on an a priori indefinite number of observations. This approach inevitably leads to the
consideration of models with randomized sample sizes and is usually found not only in
medicine but also in other fields in situations where the accumulation of statistical data
continues not up to a certain amount but, rather, over a given period of time. For example, a
similar situation can be observed in insurance when a different number of insurance events
(insurance payments and/or insurance contracts) occur during different reporting periods
of the same length (say, months), etc. Due to these circumstances, it becomes quite natural
to study the asymptotic behavior of distributions of fairly general statistics based on the
random size samples. When replacing a non-random sample size with a random variable,
the asymptotic properties of statistics can radically change. This fact was apparently first
noted by B.V. Gnedenko in 1989 [18,19]. It was shown that if the sample size is a geometri-
cally distributed random variable, then instead of the normal law expected in accordance
with the classical theory, a Student distribution with two degrees of freedom arises as an
asymptotic distribution for the sample median, whose tails are so heavy that it does not
have second-order moments. The “heaviness” of the tails of asymptotic distributions is of
critical importance, in particular, in problems of testing hypotheses.

The distributions from the gamma class and their derivatives have become very popu-
lar for modeling random non-negative parameters, and, when modeling a random number
of events and studying an a priori unknown number of observations, their discrete analogs
are widely used, which are mixed Poisson distributions with corresponding continuous
structural distributions.
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The discrete analog of the gamma distribution Γ(p, δ) is the negative binomial distri-
bution, whose partial probabilities for n = 0, 1, . . . are

P(N = n) =
∞∫

0

λn+p−1e−(1+1/δ)λ

δpΓ(p)n!
dλ =

Γ(n + p)
Γ(n + 1)Γ(p)

(
δ

δ + 1

)n( 1
δ + 1

)p
. (3)

A natural generalization of the distribution (3) is the mixed Poisson distribution whose
structure is given by the generalized gamma distribution GG(ν, p, δ) with the density

f (x) =
|ν|xνp−1e−(x/δ)ν

δνpΓ(p)
, ν 6= 0, p > 0, x > 0. (4)

Such distributions are called generalized negative binomial distributions and are
widely used in insurance, financial mathematics, physics, and other fields [20–24].

The purpose of this article is to study the asymptotic behavior of digamma distribution
parameter estimates under conditions of an a priori unknown sample size.

The article has the following structure. Section 2 describes a method for obtaining
digamma distribution parameter estimates; auxiliary relations are given. Section 3 contains
the main statement of this paper on the asymptotic behavior of the digamma distribution
parameter estimates constructed from random size samples. Section 4 discusses special
cases of limit distributions. This paper also contains a section with our conclusions.

2. Auxiliary Relations

This section describes a method based on logarithmic cumulants for obtaining es-
timators for the parameters r, ν, and δ of the digamma distribution (1) with fixed con-
centration parameters p and q and a sample of a non-random size n. Estimating the
parameters p and q is a separate problem due to the analytical complexity of inverting the
polygamma function.

The results and relations of this section were published in Ref. [17] and are provided
as auxiliary statements.

To obtain an explicit form of theoretical logarithmic cumulants, consider the
polygamma functions

ψ(z) =
d
dz

ln Γ(z), ψ(m)(z) =
dm+1

dzm+1 ln Γ(z), m = 1, 2, . . .

The theoretical cumulants of the random variable ln ζ for ζ ∼ DiG(r, ν, p, q, δ) have
the form

κ1(r, ν, δ) = E ln ζ =
ν ln δ + ψ(p)− rψ(q)

ν
;

κm(r, ν) = (−i)m dm

dym lnEζ iy
∣∣∣
y=0

=
ψ(m−1)(p) + (−r)mψ(m−1)(q)

νm , m > 1.

The moments of the random variable ln ζ can be represented as [25]

µm(r, ν, δ) ≡ E lnm ζ = Bm(κ1(r, ν, δ), κ2(r, ν), . . . , κm(r, ν)), (5)

where Bm is a complete (exponential) Bell polynomial that can be recurrently defined as

Bm+1(x1, . . . , xm+1) =
m

∑
k=0

Ck
mBm−k(x1, . . . , xm−k)xk+1, B0 = 1.

An explicit form of the necessary relations connecting moments and cumulants can be
found in Ref. [25].
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In addition, we will need the following moment characteristics of the logarithm of a
random variable with a digamma distribution:

σ2
m(r, ν, δ) ≡ D lnm ζ = µ2m(r, ν, δ)− µ2

m(r, ν, δ);

σml(r, ν, δ) ≡ cov(lnm ζ, lnl ζ) = µm+l(r, ν, δ)− µm(r, ν, δ)µl(r, ν, δ). (6)

To define the sample logarithmic cumulants, we introduce a notation for the sample
logarithmic moments of the random variable ζ:

Lm(Xn) =
1
n

n

∑
i=1

lnm Xi,

where Xn = (X1, . . . , Xn) is a sample from the distribution ζ of non-random size n.
Let us denote l = (l1, l2, l3, l4). Consider the functions

K1(l) ≡ K1(l1) = (ψ(q))−1l1;

K2(l) ≡ K2(l1, l2) = (ψ′(q))−1(l2 − l2
1);

K3(l) ≡ K3(l1, l2, l3) = (ψ′′(q))−1(l3 − 3l2l1 + 2l3
1);

K4(l) ≡ K4(l1, l2, l3, l4) = (ψ′′′(q))−1(l4 − 4l3l1 − 3l2
2 + 12l2l2

1 − 6l4
1).

Consider the statistics
K1(Xn) ≡ K1(L1(Xn));

K2(Xn) ≡ K2(L1(Xn), L2(Xn)); (7)

K3(Xn) ≡ K3(L1(Xn), L2(Xn), L3(Xn));

K4(Xn) ≡ K4(L1(Xn), L2(Xn), L3(Xn), L4(Xn)). (8)

Note that the statistics ψ(m−1)(q)Km(Xn) are the m-th sample logarithmic cumulants
of the digamma distribution.

The method for estimating the unknown parameters considered in this paper is based
on solving the system for logarithmic cumulants:

κm(r, ν, δ) = ψ(m−1)(q)Km(Xn), m = 1, 2, 3, 4.

To describe the solution of this system, we introduce a number of functions of sample
logarithmic cumulants with the arguments k = (k1, k2, k3, k4):

φm =
ψ(m)(p)
ψ(m)(q)

; τ(k) ≡ τ(k2, k4) = φ2
1k4 + φ3

(
k4 − k2

2

)
; (9)

R±(k) ≡ R±(k2, k4) =

√
φ1k4 ± k2

√
τ(k)

k2
2 − k4

;

V±(k) ≡ V±(k2, k4) =

√
φ1k2 ±

√
τ(k)

k2
2 − k4

;

D±(k) ≡ D±(k1, k2, k4) = exp
{

ψ(q)k1 +
ψ(q)R±(k)− ψ(p)

V±(k)

}
. (10)
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In what follows, we will need the derivatives of functions (10), expressed in terms of
the functions φm and τ, defined in (9). Note that

Rk2,±(k) ≡
∂R±
∂k2

(k2, k4) = ∓
k4

(
φ2

1k2
2 + τ(k)± 2φ1k2

√
τ(k)

)
2
(
k2

2 − k4
)3/2√

τ(k)
√

φ1k4 ± k2
√

τ(k)
;

Rk4,±(k) ≡
∂R±
∂k4

(k2, k4) = ±
k2

(
φ2

1k2
2 + τ(k)± 2φ1k2

√
τ(k)

)
4(k2

2 − k4)3/2
√

τ(k)
√

φ1k4 ± k2
√

τ(k)
;

Vk2,±(k) ≡
∂V±
∂k2

(k2, k4) = ∓
k2
(
φ2

1k4 + τ(k)
)
± φ1(k2

2 + k4)
√

τ(k)

2(k2
2 − k4)3/2

√
τ(k)

√
φ1k2 ±

√
τ(k)

;

Vk4,±(k) ≡
∂V±
∂k4

(k2, k4) = ±
φ2

1k2
2 + τ(k)± 2φ1k2

√
τ(k)

4(k2
2 − k4)3/2

√
τ(k)

√
φ1k2 ±

√
τ(k)

;

Dk1,±(k) ≡
∂D±
∂k1

(k1, k2, k4) = ψ(q) exp
{

ψ(q)k1 +
ψ(q)R±(k)− ψ(p)

V±(k)

}
;

Dk2,±(k) ≡
∂D±
∂k2

(k1, k2, k4) = exp
{

ψ(q)k1 +
ψ(q)R±(k)− ψ(p)

V±(k)

}
×

×
ψ(p)Vk2,±(k) + ψ(q)Rk2,±(k)V±(k)− ψ(q)R±(k)Vk2,±(k)

V2
±(k)

;

Dk4,±(k) ≡
∂D±
∂k4

(k1, k2, k4) = exp
{

ψ(q)k1 +
ψ(q)R±(k)− ψ(p)

V±(k)

}
×

×
ψ(p)Vk4,±(k) + ψ(q)Rk4,±(k)V±(k)− ψ(q)R±(k)Vk4,±(k)

V2
±(k)

.

Using the formula for the derivative of a composite function, we obtain

∂R±
∂l1

(l) = − 2l1
ψ′(q)

Rk2,±(K2(l), K4(l))−
4l3 − 24l2l1 + 24l3

1
ψ′′′(q)

Rk4,±(K2(l), K4(l));

∂R±
∂l2

(l) =
1

ψ′(q)
Rk2,±(K2(l), K4(l))−

6l2 − 12l2
1

ψ′′′(q)
Rk4,±(K2(l), K4(l));

∂R±
∂l3

(l) = − 4l1
ψ′′′(q)

Rk4,±(K2(l), K4(l));

∂R±
∂l4

(l) =
1

ψ′′′(q)
Rk4,±(K2(l), K4(l));
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∂V±
∂l1

(l) = − 2l1
ψ′(q)

Vk2,±(K2(l), K4(l))−
4l3 − 24l2l1 + 24l3

1
ψ′′′(q)

Vk4,±(K2(l), K4(l));

∂V±
∂l2

(l) =
1

ψ′(q)
Vk2,±(K2(l), K4(l))−

6l2 − 12l2
1

ψ′′′(q)
Vk4,±(K2(l), K4(l));

∂V±
∂l3

(l) = − 4l1
ψ′′′(q)

Vk4,±(K2(l), K4(l));

∂V±
∂l4

(l) =
1

ψ′′′(q)
Vk4,±(K2(l), K4(l));

∂D±
∂l1

(l) =
1

ψ(q)
Dk1,±(K1(l), K2(l), K4(l))−

2l1
ψ′(q)

Dk2,±(K1(l), K2(l), K4(l))−

−
4l3 − 24l2l1 + 24l3

1
ψ′′′(q)

Dk4,±(K1(l), K2(l), K4(l));

∂D±
∂l2

(l) =
1

ψ′(q)
Dk2,±(K1(l), K2(l), K4(l))−

6l2 − 12l2
1

ψ′′′(q)
Dk4,±(K1(l), K2(l), K4(l));

∂D±
∂l3

(l) = − 4l1
ψ′′′(q)

Dk4,±(K1(l), K2(l), K4(l));

∂D±
∂l4

(l) =
1

ψ′′′(q)
Dk4,±(K1(l), K2(l), K4(l)). (11)

To formulate the statement about the asymptotic normality of estimators for the
parameters r, ν, and δ with fixed concentration parameters p and q for a fixed sample size
n, we introduce some notations. Let

Σ =


σ2

1 (r, ν, δ) σ12(r, ν, δ) σ13(r, ν, δ) σ14(r, ν, δ)
σ12(r, ν, δ) σ2

2 (r, ν, δ) σ23(r, ν, δ) σ24(r, ν, δ)
σ13(r, ν, δ) σ23(r, ν, δ) σ2

3 (r, ν, δ) σ34(r, ν, δ)
σ14(r, ν, δ) σ24(r, ν, δ) σ34(r, ν, δ) σ2

4 (r, ν, δ)

;

dR± =

(
∂R±
∂l1

(l)
∣∣∣
l=µ

,
∂R±
∂l2

(l)
∣∣∣
l=µ

,
∂R±
∂l3

(l)
∣∣∣
l=µ

,
∂R±
∂l4

(l)
∣∣∣
l=µ

)
;

dV± =

(
∂V±
∂l1

(l)
∣∣∣
l=µ

,
∂V±
∂l2

(l)
∣∣∣
l=µ

,
∂V±
∂l3

(l)
∣∣∣
l=µ

,
∂V±
∂l4

(l)
∣∣∣
l=µ

)
;

dD± =

(
∂D±
∂l1

(l)
∣∣∣
l=µ

,
∂D±
∂l2

(l)
∣∣∣
l=µ

,
∂D±
∂l3

(l)
∣∣∣
l=µ

,
∂D±
∂l4

(l)
∣∣∣
l=µ

)
, (12)

where the variances σ2
m(r, ν, δ) and the covariances σml(r, ν, δ) are defined in the

relations (6), the partial derivatives ∂R±/∂lk(l), ∂V±/∂lk(l), and ∂D±/∂lk(l) are defined in
(11), and µ = (µ1, µ2, µ3) is the vector of moments (5).

Previously, in Ref. [17], the following result was obtained for the gamma-
exponential distribution.

Theorem 1. Let 0 ≤ r < 1 and ν > 0. Assume that the concentration parameters p and q
of the digamma distribution DiG(r, ν, p, q, δ) are fixed. Then, for r >

√
φ3/φ1, the estimators

r̂(Xn) = R+(K2(Xn), K4(Xn)) for the unknown characteristic index r, ν̂(Xn) = V+(K2(Xn),
K4(Xn)) for the unknown shape parameter ν and δ̂(Xn) = D+(K1(Xn), K2(Xn), K4(Xn)) for the
unknown scale parameter δ have the property of asymptotic normality when n→ ∞:

√
n

r̂(Xn)− r√
dR+ΣdT

R+

=⇒ N(0, 1),
√

n
ν̂(Xn)− ν√

dV+ΣdT
V+

=⇒ N(0, 1);
√

n
δ̂(Xn)− δ√

dD+ΣdT
D+

=⇒ N(0, 1). (13)

Remark 1. In addition to the property of asymptotic normality, the estimators listed in Theorem 1
have the property of strong consistency [16].
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Remark 2. In Theorem 1, if 0 ≤ r <
√

φ3/φ1, then one should choose the statistics
r̂(Xn) = R−(K2(Xn), K4(Xn)), ν̂(Xn) = V−(K2(Xn), K4(Xn)), and δ̂(Xn) = D−(K1(Xn),
K2(Xn), K4(Xn)) with a corresponding modification of the normalizing constants in (13) [17].

Remark 3. In Theorem 1, if ν < 0, then one should choose as an estimator for the unknown parameter ν the
statistics ν̂(Xn) = −V+(K2(Xn), K4(Xn)) if r >

√
φ3/φ1, and ν̂(Xn) = −V−(K2(Xn), K4(Xn))

if 0 ≤ r <
√

φ3/φ1.

Remark 4. Since the gamma-exponential distribution and the digamma distribution have the
Mellin transform of the same type (1), the results of Theorem 1 and Remark 1 remain valid for all
r ≥ 0. In the case when r < 0, one should consider as an estimator for the parameter r the statistics
r̂(Xn) = −R+(K2(Xn), K4(Xn)) for r < −

√
φ3/φ1 and r̂(Xn) = −R−(K2(Xn), K4(Xn)) for

−
√

φ3/φ1 < r ≤ 0.

Remark 5. When processing real data, one should first choose one of the statistics ±R±(K2(Xn),
K4(Xn)), and ±V±(K2(Xn), K4(Xn)) as the estimators r̂(Xn) and ν̂(Xn), using the algorithm for
eliminating unnecessary solutions described in Ref. [17]. The estimator for the unknown parameter
δ is always defined by the formula

δ̂(Xn) = exp
{

ψ(q)K1(Xn) +
ψ(q)r̂(Xn)− ψ(p)

ν̂(Xn)

}
.

3. Main Result

Everywhere below we will assume that the sample size is random. To obtain asymp-
totic approximations, it is reasonable to consider a situation in which the random size of
the sample increases in some sense. We will consider a sequence Nn such that Nn −→ ∞ in
probability as n→ ∞.

Let the non-random size sample Xn = (X1, . . . , Xn) and the random size sample
XNn = (X1, . . . , XNn) be from the digamma distribution DiG(r, ν, p, q, δ) with the known
concentration parameters p and q.

Using the Functions (7) and (8), we construct the statistics

K2(XNn) ≡ K2(L1(XNn), L2(XNn));

K4(XNn) ≡ K4(L1(XNn), L2(XNn), L3(XNn), L4(XNn)),

based on sample logarithmic moments

Lm(XNn) =
1

Nn

Nn

∑
i=1

lnm Xi.

Let Nn be a sequence of natural-valued random variables independent of X1, X2, . . .,
for each n, and let Nn tend toward infinity in probability as n→ ∞.

The following statement holds.

Theorem 2. Let r >
√

φ3/φ1 and ν > 0. Suppose that the concentration parameters p and q of
the digamma distribution DiG(r, ν, p, q, δ) are fixed. Assume that there exists a numerical sequence
{bn > 0} and a random variable U such that

Nn

bn
=⇒ U (14)

when n → ∞. Then, the estimators r̂(XNn) = R+(K2(XNn), K4(XNn)) for the unknown char-
acteristic index r, ν̂(XNn) = V+(K2(XNn), K4(XNn)) for the unknown shape parameter ν, and
δ̂(XNn) = D+(K1(XNn), K2(XNn), K4(XNn)) for the unknown scale parameter δ converge in
distribution when n→ ∞:
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√
bn

r̂(XNn)− r√
dR+ΣdT

R+

=⇒ Y√
U

,
√

bn
ν̂(XNn)− ν√

dV+ΣdT
V+

=⇒ Y√
U

,
√

bn
δ̂(XNn)− δ√

dD+ΣdT
D+

=⇒ Y√
U

, (15)

where Y has a standard normal distribution, and U can be considered independent of Y.

Proof of Theorem 2. We consider the statement of the theorem for estimating the charac-
teristic index r. The argument is based on the method proposed in Ref. [26].

Denote

an =

√
dR+ΣdT

R+√
bn

, cn =

√
dR+ΣdT

R+√
n

.

Let hn(t) be the characteristic function of a random variable

Yn ≡
√

n
r̂(Xn)− r√

dR+ΣdT
R+

≡ r̂(Xn)− r
cn

;

and fn(t) be the characteristic function of

Zn ≡
√

bn
r̂(XNn)− r√

dR+ΣdT
R+

≡ r̂(XNn)− r
an

.

Theorem 1 implies that when n→ ∞

Yn =⇒ Y ∼ N(0, 1).

Denote by h(t) the characteristic function of a standard normal random variable Y.
Define the random variables

Un ≡
cNn

an
.

Let
gn(t) = Eh(tUn).

Let us show that for any t ∈ R

lim
n→∞

| fn(t)− gn(t)| = 0.

For some positive number γ and positive integer m, we define

K1,n ≡ K1,n(γ) = {m | cm ≤ γan}, K2,n ≡ K2,n(γ) = {m | cm > γan}.

For t = 0, the statement is obvious. Fix an arbitrary t 6= 0. Then,

| fn(t)− gn(t)| = |E exp{itZn} − Eh(tUn)| =

=

∣∣∣∣∣ ∞

∑
m=1

P(Nn = m)

[
E exp

{
it

r̂(Xm)− r
an

}
− h
(

t
cm

an

)]∣∣∣∣∣ =
=

∣∣∣∣∣ ∞

∑
m=1

P(Nn = m)

[
E exp

{
it

cm

an
· r̂(Xm)− r

cm

}
− h
(

t
cm

an

)]∣∣∣∣∣ =
=

∣∣∣∣∣ ∞

∑
m=1

P(Nn = m)

[
hm

(
t
cm

an

)
− h
(

t
cm

an

)]∣∣∣∣∣ ≤ ∑
m∈K1,n

P(Nn = m)

∣∣∣∣hm

(
t
cm

an

)
− h
(

t
cm

an

)∣∣∣∣+
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+ ∑
m∈K2,n

P(Nn = m)

∣∣∣∣hm

(
t
cm

an

)
− h
(

t
cm

an

)∣∣∣∣ = I1 + I2.

Fix an arbitrary ε > 0. Consider I2.

I2 = ∑
m∈K2,n

P(Nn = m)

∣∣∣∣hm

(
t
cm

an

)
− h
(

t
cm

an

)∣∣∣∣ ≤ 2 ∑
m∈K2,n

P(Nn = m) = 2P(Un > γ) < ε/2

for all γ > γ2(ε), due to the convergence Un =⇒ 1/
√

U.
Now, consider I1. Let γ > γ2(ε). Since |tcm/an| ≤ |t|γ,

I1 = ∑
m∈K1,n

P(Nn = m)

∣∣∣∣hm

(
t
cm

an

)
− h
(

t
cm

an

)∣∣∣∣ ≤
≤

∞

∑
m=1

P(Nn = m) sup
|τ|≤γ|t|

|hm(τ)− h(τ)| = E sup
|τ|≤γ|t|

|hNn(τ)− h(τ)|.

Due to the uniform convergence of the sequence of characteristic functions hn(t) to
h(t) on any finite interval and the convergence Nn −→ ∞ in probability,

E sup
|τ|≤γ|t|

|hNn(τ)− h(τ)| < ε/2

starting from some n.
Since I1 + I2 < ε starting from some n, we conclude that for any t

lim
n→∞

| fn(t)− gn(t)| = 0.

Note that the function
φt(x) = h(tx)

is bounded and continuous. Therefore, the weak convergence condition Un =⇒
1/
√

U implies
lim

n→∞
Eφt(Un) = Eφt(1/

√
U) = Eh(t/

√
U).

By the Fubini theorem, the right-hand side of the last equality is the characteristic
function of the random variable Y/

√
U for a copy of the standard normal random variable

Y independent of U.
Since

| fn(t)− Eh(t/
√

U)| ≤ | fn(t)− gn(t)|+ |gn(t)− Eh(t/
√

U)| < 2ε

for all ε > 0 starting from some n,

lim
n→∞

fn(t) = Eh(t/
√

U),

which completes the proof of the theorem for the estimator of the characteristic index r.
The statements of the theorem for the estimators of the form parameter ν and the scale

parameter δ are proved in a completely similar way. The theorem is proved.

Remark 6. Similarly to Remarks 2–5, the statement of Theorem 2 remains valid in the cases
r < −

√
φ3/φ1, −

√
φ3/φ1 < r ≤ 0, 0 ≤ r <

√
φ3/φ1 and ν < 0 for the estimators

r̂(XNn) = ±R±(K2(XNn), K4(XNn)) and ν̂(XNn) = ±V±(K2(XNn), K4(XNn)) with the cor-
responding modification of the normalizing constants in (15). The choice of the “correct” signs of the
estimators is carried out using the algorithm for eliminating unnecessary solutions from Ref. [17].
The estimator for the unknown parameter δ is always defined by the formula
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δ̂(XNn) = exp
{

ψ(q)K1(XNn) +
ψ(q)r̂(XNn)− ψ(p)

ν̂(XNn)

}
.

Let us introduce additional notation

smm(XNn) ≡ σ2
m(r̂(XNn), ν̂(XNn), δ̂(XNn));

sml(XNn) = slm(XNn) ≡ σml(r̂(XNn), ν̂(XNn), δ̂(XNn));

d[m]
r (XNn) ≡

∂r̂(XNn)

∂lm
; d[m]

ν (XNn) ≡
∂ν̂(XNn)

∂lm
; d[m]

δ (XNn) ≡
∂δ̂(XNn)

∂lm
, (16)

where σ2
m(r, ν, δ) and σml(r, ν, δ) are defined in (6) and r̂(XNn), ν̂(XNn), and δ̂(XNn) satisfy

the conditions of Theorem 2.
Theorem 2 implies a statement about the form of the asymptotic confidence intervals

for unknown parameters of the digamma distribution. Denote by uγ the (1+ γ)/2-quantile
of the limiting random variable Y/

√
U.

Corollary 1. Suppose that the conditions of Theorem 2 are met; then the asymptotic confidence
intervals with a confidence level γ based on the estimators r̂(XNn), ν̂(XNn), and δ̂(XNn) for the
unknown parameters r, ν, and δ have the form

(Ar(XNn), Br(XNn)) =

(
r̂(XNn)−

uγ√
n

Cr(XNn), r̂(XNn) +
uγ√

n
Cr(XNn)

)
;

(Aν(XNn), Bν(XNn)) =

(
ν̂(XNn)−

uγ√
n

Cν(XNn), ν̂(XNn) +
uγ√

n
Cν(XNn)

)
;

(Aδ(XNn), Bδ(XNn)) =

(
δ̂(XNn)−

uγ√
n

Cδ(XNn), δ̂(XNn) +
uγ√

n
Cδ(XNn)

)
,

where

Cr(XNn) =

√√√√ 4

∑
m=1

4

∑
l=1

d[m]
r (XNn)sml(XNn)d

[l]
r (XNn);

Cν(XNn) =

√√√√ 4

∑
m=1

4

∑
l=1

d[m]
ν (XNn)sml(XNn)d

[l]
ν (XNn);

Cδ(XNn) =

√√√√ 4

∑
m=1

4

∑
l=1

d[m]
δ (XNn)sml(XNn)d

[l]
δ (XNn),

and sml(XNn), d[m]
r (XNn), d[m]

ν (XNn), d[m]
δ (XNn) are defined in (16).

The proof is completely analogous to the proof of Corollary 2 from Ref. [17].

4. Examples of Limit Distributions

Let us give a number of examples of possible limit distributions in Theorem 2.
As noted in Section 1, special forms of the negative binomial distribution have gained

great popularity in modeling a random number of events. Since the negative binomial
distribution is concentrated on non-negative integers, it cannot be directly used as a random
sample size. We will consider such distributions with a shift by one, which will ensure
the natural value of the sample size. According to the generalized Slutsky theorem, all
conclusions concerning the asymptotic behavior of “shifted” distributions are equivalent
to the statements about the asymptotics for sequences of random variables that have a
classical negative binomial distribution or a mixed Poisson distribution with a structural
gamma distribution.
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Note that the gamma distribution belongs to the class of distributions with a scale

parameter. It means that if Λ ∼ Γ(s, θ), then Λ̂ d
=Λ/θ ∼ Γ(s, 1). The following state-

ments are based on the fact that for a standard Poisson process N1(t) independent of the
random variable Λ,

N1(Λn)
θn

=⇒ Λ̂, n→ ∞.

Note also that if a random variable ξ has a generalized gamma distribution GG(v, s, θ)
with the density (4), then

1√
ξ
∼ GG

(
−2v, s,

1√
θ

)
.

Denote by Π(Λ) the mixed Poisson distribution whose structure is given by the
random variable Λ. To specify particular cases of Theorem 2, we consider the distribution
D(θ) degenerate at the point θ, the gamma distribution Γ(s, θ), the exponential distribution
E(θ) ≡ Γ(1, θ), and the scaled χ2-distribution χ2(k, θ) ≡ Γ(k/2, θ), k ∈ N as the structural
one. To determine the corresponding mixed Poisson distributions, consider the negative
binomial distribution NB(p, 1/(1 + θ)) whose partial probabilities are given by (3), and
the geometric distribution G(1/(1 + θ)) ≡ NB(1, 1/(1 + θ)). To determine the limit
distributions, consider the type VII Pearson distribution P7(m, α), m ≥ 1/2, α > 0, with
the density

fP7(x) =
α2m−1

B(m− 1/2, 1/2)
(α2 + x2)−m;

the Student distribution St(n) ≡ P7((n + 1)/2,
√

n); and the Cauchy distribution
K(α) ≡ P7(1, α).

For bn = θn, let us list several examples of limit distributions of the random variable
Y/
√

U from (15).

Let Nn − 1 d
=N1(Λn) ∼ Π(Λn). Then, the limit random variable U in (14) coincides

in distribution with Λ̂, and the distributions of the random variable Y/
√

U have the form
shown in Table 1.

Table 1. Special cases of the limit distribution.

Λ ∼ Π(Λn) Y /
√

U ∼
D(θ) Π(θn) N(0, 1)
E(θ) G

(
1

1 + θn

)
St(2)

χ2(1, θ) NB
(

1
2

,
1

1 + θn

)
K
(√

2
)

Γ(s, θ) NB
(

s,
1

1 + θn

)
P7
(

s +
1
2

,
√

2
)

Let us give some numerical examples of calculating the estimates of the parameters
r, ν, and δ of the digamma distribution DiG(r, ν, p, q, δ) from the model samples. The
concentration parameters p and q are fixed. The data given in Table 2 are obtained using
the algorithm described in Ref. [17].

The pseudorandom sample size Nn for each n is generated for the distributions Π(Λn)
from Table 1. The simulation of pseudorandom samples from the digamma distribution is
based on Relation (2).

Table 2 lists the values of the estimates r̂(XNn), ν̂(XNn), and δ̂(XNn) of the pa-
rameters r, ν, and δ, obtained by simulating a sample from the digamma distribution
DiG(0.5; 2.5; 2.4; 1.9; 1.0), and the corresponding boundaries of the confidence intervals.
The distributions of the random sample size are taken from Table 1 with θ = 1 and s = 2.
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Table 2. Examples of parameter estimates and boundaries of confidence intervals for a model
distribution for r = 0.5, ν = 2.5, and δ = 1.0.

Nn− 1 ∼ r̂(XNn ) Ar(XNn ) Br(XNn ) ν̂(XNn ) Aν(XNn ) Bν(XNn ) δ̂(XNn ) Aδ(XNn ) Bδ(XNn )

Π(104) 0.5754 0.0458 1.1051 2.5877 1.8475 3.3278 1.0159 0.8915 1.1403
Π(105) 0.4693 0.3526 0.5859 2.4633 2.3205 2.6061 0.9912 0.9630 1.0195
Π(106) 0.5032 0.4631 0.5433 2.5039 2.4525 2.5554 1.0005 0.9909 1.0101

G
(

1
1 + 104

)
0.4073 −0.2401 1.0549 2.3678 1.6620 3.0735 0.9767 0.8180 1.1355

G
(

1
1 + 105

)
0.5613 0.1982 0.9243 2.5793 2.077 3.0808 1.0140 0.9284 1.0995

G
(

1
1 + 106

)
0.4942 0.4392 0.5493 2.4927 2.4229 2.5626 0.9985 0.9853 1.0118

NB
(

1
2 , 1

1 + 104

)
0.4575 −2.9511 3.8662 2.4297 −1.6338 6.4933 0.9884 0.1551 1.8217

NB
(

1
2 , 1

1 + 105

)
0.4137 −0.7791 1.6065 2.4056 1.0728 3.7384 0.9780 0.6893 1.2668

NB
(

1
2 , 1

1 + 106

)
0.5107 0.2524 0.7690 2.5133 2.1781 2.8485 1.0024 0.9404 1.0644

NB
(

2, 1
1 + 104

)
0.5700 0.2545 0.8855 2.5935 2.1529 3.0341 1.0148 0.9407 1.0888

NB
(

2, 1
1 + 105

)
0.5317 0.3867 0.6767 2.5418 2.3483 2.7353 1.0079 0.9733 1.0424

NB
(

2, 1
1 + 106

)
0.5052 0.4848 0.5256 2.5056 2.4793 2.5319 1.0009 0.9960 1.0058

5. Conclusions

This paper has considered the problem of estimating the parameters of the digamma
distribution with a random sample size. The consideration of a random sample size is very
important since the accumulation of a sufficient fixed amount of statistical data can often
take an indefinite amount of time, and, sometimes, it is impossible, in principle. Therefore, it
becomes natural to study the asymptotic behavior of statistics based on random size samples.

The digamma distribution is a generalization of popular distributions from the gamma
and beta classes, as well as the gamma-exponential distribution. This paper has discussed
a method for estimating unknown parameters of the digamma distribution based on the
logarithmic cumulants. Assuming that the sample size is random, the weak convergence of
the studied estimators to the scale mixtures of the normal law is proved. This result allows
for the construction of asymptotic confidence intervals for the estimated parameters. It is
shown that the asymptotic properties of the statistics can change radically when passing
from a fixed sample size to a random one. In particular, it leads to heavier tails of the limit
distribution. For example, the type VII Pearson distribution may appear to be a limiting
distribution whose representatives may not have a mathematical expectation.

The results proposed in this paper concern the estimation of the characteristic in-
dex and the shape and scale parameters of the digamma distribution assuming that the
concentration parameters are known. Naturally, the question arises about the form of
statistical estimates in the case in which all five parameters are unknown. The equations
for constructing the estimates contain polygamma functions with arguments depending on
the concentration parameters. Theoretical methods for inverting polygamma functions are
being actively developed at the present time, but, apparently, there are currently no effective
tools suitable for use in the method under consideration. At the same time, polygamma
functions have nice properties that make their inversion easy using numerical methods.
The authors plan to continue their studies in this direction.
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