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Abstract: We present an analysis on variability Bitcoin characteristics that help to quantitatively
differentiate Bitcoin from the state-owned traditional currencies and the asset Gold. We provide a
detailed study on returns of exchange rates—against the Swiss Franc—of several traditional currencies
together with Bitcoin and Gold; for that purpose, we define a distance between currencies by means
of the spectral densities of the ARMA models of the returns of the exchange rates, and we present the
computed matrix of the distances between the chosen currencies. A statistical analysis of these matrix
distances is further proposed, which shows that the distance between Bitcoin and any other currency
or Gold is not comparable to any of the distances between currencies or between currencies and Gold
and not involving Bitcoin. This result shows that Bitcoin is essentially different from the traditional
currencies and from Gold, at least in what concerns the structure of its variance and auto-covariances.

Keywords: ARMA modelling; distance between power spectral densities; simulation-based testing;
state-backed currencies; gold; exchange rate; bitcoin
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1. Introduction

Money, in general, is a transmitter of value through time and space (see [1] I.1.19). Money
is also a reference for the expression of the exchange value of every commodity (see [1]
I.2.22). There are some characteristics of classical forms of money that we must now recall.
The usual forms of money are under the control of central banks. These usual forms
of money, currencies, have a close relationship with the economies to which the central
banks are in charge; Swiss, United States of America, Russian Federation and European
Monetary Union, are, respectively, examples of a country, a federation of states, a federation
of republics and an economic zone composed of several countries. Thus, the exchange
rates of one of these currencies versus the others, tend to vary, in a kind of first-order
perturbation, according to the variation of regional economic variables.

The exchange rates also vary as a kind of second-order perturbation attributed to
noticeable events—for instance, military instabilities. For these currencies, the monetary
mass circulating must be both an equivalent of goods that circulate in the regional economy
(to which the currency is connected) and a representation of the value of all the credits that
achieve maturity at a given date. In all these credits, one should count even those credits
that balance out each other (see [2] p. 135).

Considering a constant intrinsic value of the precious metals—such as silver or gold—
and all other goods, we have that, for a usual form of money, the intrinsic value of bank
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notes decreases if the nominal value increases; this happens in light of the fact that the
nominal value of bank notes does not represent the intrinsic value of some precious
reference metal, and this may occur, for instance, by means of an increase in the quantity of
these bank notes (see [2] pp. 142–143).

The hard connection between a usual form of money and the real economy has been
recognized in many important classic economic works. For instance, in the third section
of the third chapter of the first part of Capital, Karl Marx writes that: Just as the currency of
money, generally considered, is but a reflex of the circulation of commodities, or of the antithetical
metamorphoses they undergo, so, too, the velocity of that currency reflects the rapidity with which
commodities change their forms. . .

In addition, concerning the relation between the quantity of money and the speed
of the circulation of goods, the author we are quoting says The total quantity of money
functioning during a given period as the circulating medium, is determined, on the one hand, by
the sum of the prices of the circulating commodities and, on the other hand, by the rapidity with
which the antithetical phases of the metamorphoses follow one another (see [3]). In more recent
times, in the monetarist current of economy, Milton Friedman wrote that . . .the real quantity
of money—the quantity of goods and services that the nominal quantity of money can purchase, or
the number of weeks’ income to which the nominal quantity of money is equal (see [4] p. 1).

Bitcoin is a digital currency with many specific characteristics that distinguish it from
usual currencies. In order to have a reasonable model for the exchange rate evolution
of Bitcoin, some particular attributes should be considered. One of the most relevant
characteristics of Bitcoin evolution is volatility (see Figure 1).

Figure 1. Price in US Dollars and the rate of change evolution from 2017 to the present.

According to David Yermack, Bitcoin faces a number of obstacles in becoming a useful unit
of account. One problem arises from its extreme volatility,. . . (see [5] p. 38). A first glimpse
into the behaviour of the exchange rate and its variability—in this case, against the US
Dollar—is captured in Figure 1 (graphic taken from the bitcoin.org site). Several features of
this figure deserve a mention: the significant variability in the period from the middle of
2020 to February 2022 and, on the same period, the reduction in volume and in the rate of
change (the lower graphic in blue).
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These features certainly have an influence on the variance values that we will recover
in the present work since one of our purposes is to study the variability of Bitcoin prices by
comparing to the variability of state-owned currencies and a reference asset—Gold. Accord-
ing to Satoshi Nakamoto, the author that is credited for the creation of Bitcoin, . . .We have
proposed a system for electronic transactions without relying on trust. . . . (see Nakamoto [6] p. 8).
Given that it is common sense that the first and most important ingredient of any business
is the building of mutual trust, the reality of present day existence of Bitcoin is another
aspect that should deserve some analysis.

The market behaviour of Bitcoin has been studied under the perspective of its vari-
ability by several authors. In the following, we review some of the contributions that seem
more relevant under the perspective of our approach both for the specific theme and for a
broad context.

The book chapter [7] is an important review work that reports on the pairwise com-
parison of cryptocurrency characteristics with those of fiat currency and hard commodities, and
it . . .synthesises methods and results from empirical research that investigate the nexus. One of
the remarkable conclusions from the quoted work [8] is that . . .returns to cryptocurrencies
are isolated from returns to currency and commodities, a result that we also find in our work
with great significance. Another conclusion taken from a work using data in the period
2010–2017 (see [9]) is that Gold is found to be the second most important determinant for the full
sample. . .; this also justifies the choice of Gold in our comparative study.

Comparative behaviours of crypto-currencies have also been studied recently. In
[10], the authors compared the long term memory properties of seven cryptocurrencies—
Bitcoin, Ethereum, Litecoin, Monero, Stellar, Tron and the EOS token—during and before
the COVID-19 period, using high-frequency returns data, to find that the null hypothesis
of true long memory is rejected for all series, implying that the persistence in the high-frequency
cryptocurrency returns is not real and might be a spurious one, associated with some regime change
during the sample period. Furthermore, the analysis is complemented with the estimation
of the long-run correlation matrix of returns to find that, with the exception of Stellar, the
remaining six crypto returns exhibit significant long-run correlations among each other, thus,
justifying our consideration of only Bitcoin in this work.

The work [11] investigated . . .the contagious nature of tail events among cryptocurrencies
and the mechanism by which tail risk permeates the cryptocurrency markets. . ., and this was
achieved by constructing a network of tail risk spillovers among the most popular cryptocurrencies
and identifying the most important shock-driving and shock-sensitive currencies in the network.

The work [12] analysed Bitcoin price volatility from the perspectives of Bitcoin’s own and
external factors. . . by means of the structural vector autoregression (SVAR) model, the
results showing that Bitcoin’s own factors play fundamental roles in Bitcoin price volatility, and
the speculation factors have significant impacts on Bitcoin price volatility.

Comparative studies on the variances of the US Dollar, Bitcoin and Gold were per-
formed in [13] using both an asymmetric GARCH model with explanatory variables and an
exponential GARCH model. The author found that, in the perspective of explaining return,
there is . . .volatility clustering and high volatility persistence similar to gold and concluded
that . . .bitcoin and gold have similarities when it comes to the volatility of the return. . .. In the
conclusions, it is said that both Bitcoin and Gold seem to react symmetrically to good and
bad news but, . . .the frequency may be higher for bitcoin. . .

A detailed analysis of the importance of price jumps for Bitcoin is given in [14]
showing—by GARCH modelling—that . . .the role of large movements is found to be stronger in
the Bitcoin market than in the markets for crude oil and gold. A remarkable finding relates the
evolution of variance to the occurrence of jumps also showing that the influence of jumps
is larger in Bitcoin than in crude or Gold.

The work [15] provides an analysis of the main determinants of Bitcoin prices in a
period of roughly 6 years ending in February 2019 using Auto Regressive Distributed Lag
time-series model. The findings are on price variation, on one hand, that . . .macroeconomic
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and financial determinants. . . do not have a significant effect in short and long terms and, on the
other hand, that . . .price variation is determined by demand variation.

Modelling the volatility of currencies and of Bitcoin has been the subject of recent
works. In [16], the authors introduced, for a heterogeneous autoregressive model, a new
model averaging coefficient estimator with the mean squared error of the coefficient to be
minimised, and they provided inference by a double bootstrap since the relevant probability
laws are unknown. This inference approach is similar to ours where, instead of bootstrap,
we use a Monte Carlo simulation.

The source of any asset value variability is certainly multifactorial. In [17], the authors
claim to not take a stand on the controversial question of what the fundamentals are behind
Bitcoin, and they proceed to show that . . .the bitcoin market is largely like the stock market, with
more investors who are more centrally placed on average earning higher returns than others. . .

We may conclude that there is a place for the study we now present towards a compar-
ative study of the differences in variability between traditional state supported currencies,
the crypto-currency Bitcoin and the asset Gold by means of power spectral distances. Let
us briefly describe content and the main contributions of this work.

(i) In Section 2, we present the rationale for the choice of the reference currency against
which all other currencies, Bitcoin and Gold are priced, and the choice of the state-
backed currencies studied.

(ii) Next, in Section 3, we detail the ARMA process modelling of the returns of the
exchange rates.

(iii) Section 4 introduces the distance between currencies and assets as the L2 distance
between Power Spectral Densities (PSD) (associated with currencies by means of
ARMA modelling of the returns of the exchange rates against a fixed currency) and
computes this distance between all pairs of currencies, Bitcoin and Gold. Next, we
introduce a statistical test—based on the observed probability distribution of the
returns of exchange rates—that allows, in the particular case chosen, to more precisely
and firmly analyse the differences between currencies, Bitcoin and Gold.

(iv) In Section 5, we develop a result on the probability law of the distances of PSDs that
justifies the empirical results presented in Section 4. These results encompass the case
of asymptotically Gaussian-distributed PSD estimators. This result shows that, when
considering observed spectral distances as random variables, the law of the distance
of these spectral distances has, under assumptions that are verified in our study, a
generalised Gamma distribution.

(v) Finally, in Appendix B, we study a variation of the assumption on the normality
of returns of exchange rates of currencies that shows that this assumption may be
acceptable in a preliminary study of differences between our chosen currencies.

The following are the main contributions of the study:

1. The introduction of the L2 distance between Power Spectral Densities to differentiate
the variance and auto-covariance behaviours of currencies, Bitcoin and the asset Gold.

2. The confirmation that an initial grouping of currencies, Bitcoin and Gold, by broad
macro-economic criteria, reflects in the grouping driven by the L2 distance between
Power Spectral Densities (PSD).

3. The proposal of a statistical test to ascertain the difference of distances between the
PSD associated with currencies, Bitcoin and Gold and of a mathematical result that
justifies the modelling approaches followed.

4. Theorem 1 giving the probability law of the L2 distance of observed spectral densities
under assumptions that are general in the sense that these are assumptions verified
with the data analysed in this work.
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2. Foreign Exchange Markets and the Choice of Currencies and Assets to Study

Foreign Exchange is a form of currency exchange, consisting on the trading of one
currency for another (see [18]). A price is associated with each currency pair. This price is
the so-called exchange rate and it represents the value of a currency with respect to another.

In order to work with exchange rates, a reference currency has to be chosen as well
as the currency objects of our analysis. In this section, the choice of these currencies is
presented and explained.

2.1. On the Choice of the Reference Currency

Although there are hundreds of currencies, only a small number of them make up the
vast majority of forex transactions. The most traded in the world are called the Majors, and
they represent the largest share of the foreign exchange market (around 85%). These are:

• United States dollar (Dollar), USD (United States).
• Euro, EUR (Eurozone).
• Pound Sterling, GBP (United Kingdom).
• Australian dollar, AUD (Australia).
• Canadian dollar, CAD (Canada).
• Swiss franc, CHF (Switzerland).
• Japanese yen, JPY (Japan).

It is reasonable to focus only on this group in order to select our reference currency. The
most obvious choice would be the USD or EUR, since they are currently the most active
currencies. However, the Global Crisis in 2008 and the COVID-19 crisis have led central
banks around the world to roll out quantitative easing (QE) measures. These policies have
had large and persistent effects on the Dollar/Euro exchange rate. As a result, investors
began to flee to the Swiss franc, which is considered a safe-haven, since it offers protection
from market shocks.

The dramatic surge of the CHF occurred in 2015, when the Swiss National Bank (SNB)
removed the peg of 1.20 francs per euro, since it was no longer sustainable. The Swiss franc
has emerged as one of the best alternatives to the US dollar and Euro. The strongpoint of
the Swiss franc lies in the size of its related nation, Switzerland. Being a small country has
enabled its economic system to become one of the world’s most advanced.

Moreover, Switzerland has no deficit, and this makes it self-reliant and stabilizes its
currency. The Swiss franc is not backed by gold, meaning that the Swiss National Bank
(SNB) can print any amount of currency without any need for a reserve. For all the above
reasons, the reference currency chosen for our analysis was the Swiss franc.

2.2. On the Choice of Other Currencies and the Asset Gold

A further step was the selection of the other currencies to study with respect to the
reference one. The USD is the home denomination of the world’s largest economy, the
United States, and therefore it must be included among the currencies that we want to
analyse. Similarly, all the remaining Majors must be considered.

On the other hand, the group of the greatest emerging economies of the world require
special consideration. This group is composed of five countries, namely Brazil, Russia,
India, China, South Africa, and it is known by the acronym BRICS. The notion behind the
coinage of this acronym was that the BRICS cluster would grow to a size larger than the
Majors by 2050, shifting the economic balance of power. That is, the largest global economic
powers would no longer belong to the richest countries according to the income per capita.
Therefore, the Brazilian real (BRL), the Russian Ruble (RUB), the Indian rupee (INR), the
Chinese renminbi (CNY) and the South African rand (ZAR) are included in our analysis.

Likewise, the Israeli new shekel (ILS) has been gaining in strength against major
currencies, such as the US dollar and the Euro, due, in large part, to high levels of foreign
direct investment and to the strength of the tech sector. For this reason, this currency is
also taken into consideration. In addition, the Swedish krona (SEK) and the Norwegian
krone (NOK) is examined, as their corresponding countries benefit from a strong economy.
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Lastly, it is worthwhile to include the Polish zloty (PLN) to investigate possible ties with
USD and EUR.

Finally, the asset gold (Gold) (XAU) is analysed, since it has been considered a highly
valuable commodity for millennia acting as a reserve of value. As can be seen in Figure 2,
the price evolution of Gold has similarities with the price evolution of Bitcoin—particularly
for the most recent dates—leading to the natural question: how do Bitcoin and Gold
compare using spectral densities?

Figure 2. Price of Gold from 2017 to the present (left) and ratio of normalised prices of Gold
and Bitcoin (right).

Below, a summary of all the currencies considered for this study is shown receded by
the indication of the distinctive class of the currency or asset that, by the arguments called
in Sections 2.1 and 2.2, justify their inclusion in this study.

• The Majors: DOL, EUR, GBP, AUD, CAD and JPY.
• The BRICS: BRL, RUB, INR, CNY and ZAR.
• Independent Currencies: ILS, NOK, SEK and PLN.
• Others: BTC and XAU.

3. Time-Series Analysis of the Data

Daily exchange rates against the Swiss franc (CHF) for all the currencies listed above
were downloaded from Wolfram Financial Data Services. The study period goes from
1 January 2016 until 20 May 2022 when the effects of the Russian–Ukrainian conflict were
not yet large enough to possibly disrupt stationarity. With those data, logarithmic returns
were derived as follows:

rt = 100 ∗ log10

(
ex_ratet

ex_ratet−1

)
, t = 1, . . . , #observations− 1 (1)

Through (1), the time series of logarithmic returns was obtained for each currency. It is
advisable to use returns for several reasons: first, to be able to compare different currencies
and secondly to analyse dimensionless quantities. In the following Section 3.1, a preliminary
analysis of those time series is proposed—keeping in mind the ARMA model application.
For further information about the implemented techniques, see [19].

3.1. Stationarity Inspection

In order to correctly build the time-series model, it is necessary to first check the sta-
tionarity of our data. Here, this is achieved in two ways: statistically, using the augmented
Dickey–Fuller test, and visually, looking at the autocorrelation plot of the data.

In the case of DOL/CHF time-series data, for example, the autocorrelation plot
(Figure 3) shows that all lags are within the highlighted area in blue. Hence, we may
assume stationarity, an assumption confirmed also by the Dickey–Fuller test result (rejec-
tion of the null hypothesis that the series is a unit root process). Similarly, stationarity was
assessed for all the other currencies.
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Figure 3. Autocorrelation plot of the DOL/CHF time-series data.

3.2. ARMA Modelling of the Returns of the Exchange Rates of Currencies against CHF

Since we assume our time-series data to be stationary, it is possible to model them
as ARMA processes. We recall that, given a stationary process X, it is an ARMA(p,q)
process if there exist a white noise W, a constant c and parameters a1,. . . , ap, b1,. . . , bq such
that ([19] Ch8):

p

∑
k=0

akXn−k = c +
q

∑
l=0

blWn−l , n ∈ Z, a0, b0 = 1. (2)

Each time series was modelled as ARMA process with varying orders of p and q, from 1 to
4, and then the best fit was selected according to the Akaike information criterion (AIC).
The results are shown in Table 1. It can be noticed that the variance of almost all the BRICS
currencies and of Gold is one order of magnitude greater than the others (10–25% against
1–5%). On top of that, Bitcoin stands out from all the currencies reaching a variance of
279.7%. A more complete analysis of this behaviour is further developed in Section 4 with
the use of the spectral density.

Table 1. Best-fit ARMA processes for each currency.

DOL EUR GBP AUD CAD JPY

p 3 3 3 3 4 2
q 3 4 3 3 3 3
σ2 0.0277 0.0140 0.0409 0.0450 0.0343 0.0333

BRL RUB INR CNY ZAR

p 2 4 2 3 3
q 2 4 4 2 4
σ2 0.1435 0.2514 0.0327 0.0391 0.1339

ILS NOK SEK PLN

p 3 4 1 4
q 4 4 1 4
σ2 0.0340 0.0490 0.0290 0.0370

BTC XAU

p 4 4
q 4 3
σ2 2.7970 0.1085
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The main conclusion that we can draw from this ARMA analysis is that, with the
exception of Ruble, Bitcoin and Gold, the assets have variances of the same order of
magnitude. Gold and Ruble both have variances one order of magnitude larger than
the others assets, and Bitcoin has a variance two orders of magnitude larger than the
other assets.

4. Comparing Currencies and Assets via the PSDs of Returns of Exchange Rates

In order to further investigate the variance of our time series, an application of spectral
properties of ARMA processes is developed in this section (see [20,21] for the basic definitions).

If X is a wide sense stationary process with a summable covariance function, then
there exists a function fX such that the auto-covariance function for the process is given by
the formula:

R(k) = Cov(Xn, Xn+k) =
∫
[−π,π]

fX(ω)eikωdω, n ∈ Z (3)

and fX is called the power spectral density (PSD) of the process X (see [20] p. 185). Moreover,
if k = 0, it is possible to obtain the variance function of the process, which is:

R(0) = V(Xn) =
∫
[−π,π]

fX(ω)dω. (4)

4.1. Power Spectral Density for the ARMA Process

In the case of an ARMA process and under the regularity hypothesis (see [20] p. 202),
the PSD function is defined as:

fX(ω) =
σ2

2π

|Q(e−iω)|2
|P(e−iω)|2

, (5)

where Q(z) =
q

∑
k=0

bkzk and P(z) =
p

∑
k=0

akzk, with ak and bk defined in (2). If z = e−iω =

cos(ω)− i sin(ω), the squared moduli of Q(z) and P(z) become:

|Q(z)|2 =
q

∑
k=0

b2
k + 2

q

∑
l=1

l−1

∑
j=0

blbjcos((l − j)ω)

|P(z)|2 =
p

∑
k=0

a2
k + 2

p

∑
l=1

l−1

∑
j=0

alajcos((l − j)ω).

(6)

Through (5) and (6), it is possible to derive the PSD functions of our currencies, using the
parameters obtained from the ARMA modelling. The plots of the computed functions,
multiplied by 2π, are shown in Appendix A.

4.2. Distance between Power Spectral Densities

For the purpose of comparing the obtained PSD functions, the L2([−π, π]) distance d
is introduced. It is defined as ([20] p. 58):

d( f , g) =
(∫

[−π,π]
| f (ω)− g(ω)|2dω

) 1
2
, (7)

with f , g ∈ L2([−π, π]).
From (7), the distances between our PSD functions are computed, and the results are

summarised in the symmetric matrix in Figure 4. The table in Figure 4 shows that the
currencies can be divided into three groups:



Mathematics 2023, 11, 1775 9 of 21

• A group of currencies for which distances among the elements of the group has order
of magnitude equal to −2 (the Majors, the independent ones, INR and CNY).

• Another group of currencies—disjoint from the first group—for which distances among
the elements of the group has order of magnitude of −1 (the remaining BRICS and the
asset Gold).

• Bitcoin, which has a distance from the other currencies of around 7.

Figure 4. Matrix of distances.

This result confirms, in a more precise way, what was previously observed in Section 3.2.

4.3. A Statistical Test for Distances between PSDs Associated with Currencies and Assets

To show that the distances between PSD functions are meaningful, we introduce
a statistical test procedure illustrated in a particular case. This is a Monte Carlo test
procedure as it relies on Monte Carlo simulation of a test statistic in order to obtain its
empirical distribution (see [22] or [23]). For the example studied, two currencies the US
Dollar and the Euro, are taken. The test is performed in three different ways.

(a) If normality of returns—derived from the exchange rates against the reference cur-
rency CHF—is assumed a priori (see Appendix B), the sample means µ̂1, µ̂2 and the
sample variances σ̂2

1 , σ̂2
2 of the returns of Dollar and Euro, respectively, are computed.

With these values, a simulation of a sample of the returns of the two currencies is
implemented, using Monte Carlo method. More precisely, an array of 2000 random
numbers is generated from the normal distribution N (µ̂1, σ̂2

1 ) and from N (µ̂2, σ̂2
2 ) for

Dollar and Euro, respectively. Then, ARMA modelling is executed and spectral density
function is calculated for both the simulated returns. Finally, the distance between
the computed PSDs is evaluated. This procedure—from the simulation—is repeated
1000 times, obtaining 1000 values of distances. The results are summarised in Figure 5.
The red line represents the distance between Dollar and Euro computed using the real
returns d∗ = 0.0361 (row 2, column 1 of the matrix in Figure 4).

Figure 5. Case (a): probability distribution of the distance between Dollar and Euro (left) and rejection
areas for α = 0.995 (green) and α = 0.95 (yellow) (right).
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With those data, it is possible to produce a statistical test with the null hypothesis:

H0: The spectral density of a given currency is either Dollars or Euros.

Significance levels α = 0.995, 0.95 are used. The corresponding empirical quantiles are:

q0.5% = 0.0287 q99.5% = 0.0419

q5% = 0.0311 q95% = 0.0394.

The steps for the test are the following:

(i) Consider the distances of a currency dDol , dEur from Dollar and Euro, respectively,
taken from the matrix in Figure 4.

(ii) If (dDol ≤ q1−α or dDol ≥ qα) and (dEur ≤ q1−α or dEur ≥ qα), then the null
hypothesis is rejected (see Figure 5).

(b) In order to avoid making assumptions about the distribution of the returns, the empiri-
cal cumulative distribution function is considered. This function is computed for both
Dollar and Euro returns and 2000 random numbers are generated from it, for the two
currencies. Then, the same steps as in Case (a) are repeated. The resulting histogram is
shown below in Figure 6.

Figure 6. Case (b): probability distribution of the distance between Dollar and Euro (left) and
rejection areas for α = 0.995 (green) and α = 0.95 (yellow) (right).

The new quantiles are given in Formulas (8) and (9), and the new rejection areas are
shown in Figure 6.

q0.5% = 0.0260 q99.5% = 0.0448 (8)

q5% = 0.0297 q95% = 0.0413. (9)

(c) Another nonparametric representation of the probability density function of Dollar
and Euro returns can be used, namely the kernel distribution. From this, a simulation
is performed, and all the calculations are repeated. The new quantiles are given in
Formulas (10) and (11), and the new rejection areas are shown in Figure 7.
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Figure 7. Case (c): probability distribution of the distance between Dollar and Euro (left) and rejection
areas for α = 0.995 (green) and α = 0.95 (yellow) (right).

q0.5% = 0.0285 q99.5% = 0.0462 (10)

q5% = 0.0313 q95% = 0.0427. (11)

4.4. A Discussion of the Results of the Statistical Tests

From Table 2, it is possible to conclude that it is better to use the ones of case (b) on
the left-hand side and case (c) on the right-hand side as rejection areas. This is because the
probability distribution of the distance is skewed. The normal approach in case (a) is a
direct and quick method for the construction of the probability distribution of the distance.

The so-obtained left quantiles (q0.5% and q5%) were found to be similar to those of the
kernel approach in case (c). Thus, the left tails of case (c) are close to the ones generated
in case (a). The reason behind this lies, possibly, in the fact that a default kernel function—
which is theoretically optimal for estimating densities for the normal distribution—was
used in our computations.

Contrarily, the right quantiles (q99.5% and q99%) of the normal approach are substan-
tially different from the values obtained using both (b) and (c) approaches. This means that
empirical and kernel functions are able to more accurately capture the tail behaviour of the
real data returns. The resulting quantiles of the distance distribution might be evidence of
this: more extreme values for the real data returns entail more extreme simulated distances.
However, the above observations are only possible interpretations of the results and contain
questions for further research.

Table 2. Quantiles of cases (a), (b) and (c). The values for which it is harder to reject are coloured (the
smaller values are on the left of the histogram, and the larger are on the right).

q0.5% q5% q95% q99.5%

(a) Normal 0.0287 0.0311 0.0394 0.0419
(b) Empirical 0.0260 0.0297 0.0413 0.0448

(c) Kernel 0.0285 0.0313 0.0427 0.0462

Taking into account the quantile values highlighted in Table 2, it is now possible to
evaluate, for each currency, whether or not the null hypothesis can be rejected. The table
in Figure 8 below displays the results of the test. The distances from Dollar and Euro
of the majority of the currencies are in the rejection regions, even for very high levels
of significance, meaning that there is a significant statistical separation between these
currencies and both USD and EUR, based on the L2-distance. A remarkable observation
is that the GBP seems to be close to USD and that SEK seems to be close to EUR; this fact
should be the object of further investigation.
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Figure 8. Results of the statistical tests.

4.5. An Alternative to ARMA Modelling for Comparing Currencies and Assets: The Periodogram

Instead of computing a PSD function from the ARMA modelling, it is possible to
consider an estimation of this function. In particular, in the following, we analyse the peri-
odogram, which is a nonparametric estimate of the power spectral density of a stationary
process under regularity assumptions. Its main advantage is that it does not need model
fitting as was seen in Section 3. The periodogram is defined as ([20] Ch4.1.2):

P(ω) =
1

2πN

∣∣∣∣∣N−1

∑
n=0

xne−iωn

∣∣∣∣∣
2

, −π ≤ ω ≤ π, (12)

where xn are the observations and N is the total number of observations. As in (6), it is
possible to rewrite the squared modulus of the sum in the following way:∣∣∣∣∣N−1

∑
n=0

xne−iωn

∣∣∣∣∣
2

=
N−1

∑
n=0

x2
n + 2

N−1

∑
l=1

l−1

∑
j=0

xl xjcos((l − j)ω) (13)

Formulas (12) and (13) were used to compute the periodogram of all the currencies. Once
all the periodogram functions are obtained, Formula (7) is applied, in order to find the
new matrix of distances (Figure 9). Although the values in Figure 9 are slightly larger
than those in Figure 4, it is still possible to divide the currencies in the same three groups
previously presented.

Figure 9. New matrix of distances.
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5. On the Law of the Distance of Two Spectral Densities

In Section 4.3, we introduced a test for which it was necessary to have the probability
distribution of the distance between two spectral densities. In order to consider such a
distance as a random variable, we have several options. A first option is to consider the
distance computed from the periodogram, such as in Section 4.5. In the case where the
returns of the exchange rates may be assumed to be a stationary Gaussian process with zero
mean and continuous spectra, the periodogram is known to have the chi-square distribution
multiplied by some constant—essentially, a Gamma-distributed random variable (see [21]
pp. 264, 270 or [24] p. 485).

In the present case, this option is not advisable since, as seen in Appendix B, the
returns of the exchange rates do not satisfy normality assumptions. The results known for
the law of the periodogram, not assuming normality of the returns of the exchange rates
and in the form proposed in ([25] p. 194) does not seem of utility in our context.

A second option is to assume an ARMA model for the returns of the exchange rates and
to inquire about the distribution of the coefficients of the ARMA model. Under regularity
assumptions on the noise process, it is known that the coefficients of an ARMA process
are asymptotically normal with zero mean and variances given by the spectral density
(see [24] p. 482). It is also known that the Whittle-like estimators of the spectral density of a
sufficiently regular ARMA process—since such a process is a wide sense stationary time
series with an almost everywhere positive density (see [20] p. 226)—are consistent (see [26]
p. 351) and asymptotically normal (see [24] p. 539, 540).

We observe that a connection between Gaussian and Whittle’s likelihoods is relevant
for finite sample estimation; see [27]. From the results just quoted, it may be possible to
deduce an asymptotic distribution for the distance of spectral densities. Nevertheless, since
we observed good fittings of the actual data to Gamma distributions, we opted to formulate
our results, ahead in Theorem 1, by stating directly the natural hypothesis needed instead
of resorting to an asymptotic result.

In Section 4, we obtained samples of spectral densities for currencies Dollar US and
Euro, let these be, respectively, f1(·, ω) and f2(·, ω) where, Ω being the probability space,
the dot means that, for every ω ∈ Ω we have two functions given by t ∈ [−π,+π] 7→
f1(t, ω) and also by t ∈ [−π,+π] 7→ f2(t, ω), which are spectral densities; we recall that
these spectral densities are positive, continuous and even functions defined on [−π,+π].

We suppose that, for each t ∈ [−π,+π] fixed, the random variables f1(t, ·) and f2(t, ·)
are independent; this hypothesis is implicit in the Monte Carlo simulation procedure used
in Section 4. We present, in the following, a result that justifies the computational results
found. As a consequence of the construction method given above for the random processes
f1, f2 we have that the map defined by the L2 distance, given by:

ω ∈ Ω 7→ d( f1(·, ω), f2(·, ω))2 =
∫ +π

−π
| f1(t, ω)− f2(t, ω)|2dt =

= 2
∫ +π

0
| f1(t, ω)− f2(t, ω)|2dt ,

is a random variable. The next result provides a justification for the computational results
found. In the following, we will use the parametrisation for X _ Γ(α, β, γ, µ), a generalised
Gamma-distributed random variable, with parametrisation given for its density fX by:

f α,β,γ,µ
X (x) =


γe
−
(

x−µ
β

)γ(
x−µ

β

)αγ−1

βΓ(α) x > µ

0 x ≤ µ ,
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depending on parameters α, β, γ, µ (see [28] p. 388). As a consequence, we use a parametri-
sation for G _ Γ(α, β), a Gamma-distributed random variable with parameters α, β, and
the following expression for the density fG,

f α,β
G (x) =

 β−αxα−1e
− x

β

Γ(α) x > 0

0 x ≤ 0 .

We observe that f α,β,1,0
X ≡ f α,β

G .

Theorem 1 (On the probability law of L2 distances of spectral densities). Consider the
following assumptions which are justified by observed computational experiences.

1. Assumption A: a Gamma distribution provides a good fit for the random variable Qn given
by:

Qk,n(ω) :=
∣∣∣∣( f1(π

k
2n , ω)− f2(π

k
2n , ω)

)∣∣∣∣2 _ Γ(αk,n, βk,n) ,

with the βk,n parameter of the Gamma distribution verifying 0 < βk,n � 1.
2. Assumption B: for arbitrarily values close to one another t 6= t′ in [−π,+π], the random

variables given by:

| f1(t, ω)− f2(t, ω)| ,
∣∣ f1(t′, ω)− f2(t′, ω)

∣∣
are independent.

3. Assumption C: for n ≥ 1, we have that, for some constants α∞ , 0 < β∞ � 1,

π

2n

2n

∑
k=0

αk,nβk,n ≈ α∞β∞ . (14)

Then, d( f1(·, ω), f2(·, ω)) _ Γ(α∞,
√

2β∞), 2, 0), that is, the the random variable d( f1(·, ω),
f2(·, ω)) admits a fitting by a generalised Gamma-distributed random variable.

Proof. Consider a standard discretisation numerical procedure that gives an approximation
of the integral for large n:

∫ +π

0
| f1(t, ω)− f2(t, ω)|2dt ≈

2n

∑
k=0

π

2n

∣∣∣∣ f1(π
k

2n , ω)− f2(π
k

2n , ω)

∣∣∣∣2 .

By Assumption A: , we are bound to find the distribution of the limit of a sum of Gamma-
distributed random variables. We use the moment generating function and we determine
the limit distribution of:

In :=
2n

∑
k=0

π

2n

∣∣∣∣( f1(π
k

2n , ω)− f2(π
k

2n , ω)

)∣∣∣∣2 =
2n

∑
k=0

π

2n Qk,n .

We resort to the moment generating function of a Gamma-distributed random variable
Γ(αn, βn) that is, in this case:

ϕQk,n(t) = E
[
etQk,n

]
=

1
(1− βk,nt)αk,n

.

As a consequence, under Assumption B, we have:

ϕIn(t) = E
[
e∑2n

k=0
tπ
2n Qk,n

]
=

2n

∏
k=0

E
[
e

tπ
2n Qk,n

]
=

2n

∏
k=0

ϕQ(
tπ
2n ) =

2n

∏
k=0

1(
1− βk,n

tπ
2n

)αk,n
.
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Under Assumption C, we obtain using 0 < βk,n � 1 and 0 < β∞ � 1,

2n

∑
k=0

αk,n log
(

1− βk,n
tpi
2n

)
≈

2n

∑
k=0

αk,nβk,n
tπ
2n ≈ α∞β∞t ≈ α∞ log(1− β∞t) ,

which , in turn, gives, in the limit:

lim
n→+∞

ϕIn(t) = lim
n→+∞

2n

∏
k=0

1(
1− βk,n

tπ
2n

)αk,n
=

1
(1− β∞t)α∞

.

This shows that d( f1(·, ω)− f2(·, ω)) =
√

2G(ω) with G(ω) _ Γ(α∞, β∞), finally showing
that d( f1(·, ω)− f2(·, ω)) admits a fitting by a generalised Gamma-distributed random
variable. In fact, we have that, given fG the density of G, the density of

√
2G(ω), let it be

denoted by f√2G(ω)
, is given by f√2G(ω)

(x) = x fG(x2/2). This equality, with a simple

calculation using densities, shows that if G _ Γ(α, β) then
√

2G(ω) _ Γ(α,
√

2β), 2, 0),
that is,

√
2G(ω) admits a fitting by a generalised Gamma distribution as announced.

Remark 1 (On the interpretation of Assumption C). Formula (14) of Assumption C means
that, for all orders n ≥ 1 of the resolution in the discretisation of the integral, the average of the
Gamma distribution parameters for all the discretisation points should be constant. This assumption
although with a straightforward interpretation is impossible to be fully verified; nevertheless, it can
be verified for values n ≤ n0 of the resolution order in the discretisation procedure of the integral,
for n0 ≥ 1 sufficiently large.

Remark 2 (Testing equality of spectral distribution functions in the normal case). If we could
assume the normality of the returns of the exchange rates it would be possible to test the equality of
two spectral distribution functions with a simple computation (see [25] p. 198). As already noted
this assumption is not valid in our case.

6. Conclusions

The returns of the exchange rates between various currencies and Swiss franc were
calculated and modelled as ARMA processes. From this modelling, Power Spectral Densi-
ties were computed, and the L2-distance between them was introduced as a measure to
compare the volatility behaviour of the returns. The resulting matrix of distances (see the
table in Figure 4) clearly shows that there are three main different groups:

• The Majors, the independent ones, INR and CNY.
• The remaining BRICS and gold.
• Bitcoin.

This grouping is similar to the grouping based in macro-economic criteria presented
in Section 2, thus, showing that the variance and auto-covariance structure of returns of
exchange rates of currencies is tied to the macro-economic properties of the owners of the
currencies. Moreover, Bitcoin exhibits an extremely different quantitative behaviour when
compared to one of the other currencies, revealing unique volatility properties.

An informed investor aware of the basic principles of Modern Portfolio Theory, such
as those exposed in [29], has to take into consideration the extreme volatility properties of
Bitcoin further revealed in this study. The study of the covariance structure for a portfolio,
with similar methods to the one used in this work, can take advantage of modelling with
vectorial ARMA processes (see [30]) and in cases where there is the possibility of regime
switching VARMA models (see [31]).

An alternative approach presented is to directly estimate the Power Spectral Density
with the periodogram, thus, avoiding ARMA modelling. These results add credibility to
the ARMA modelling approach as the qualitative conclusions are identical, although the
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quantitative results in the matrix of distances (see the Table in Figure 9) are less precise.
Figure 10 shows a comparison of the two approaches.

Figure 10. Matrices of distances with scaled colours. On the left is the matrix obtained from PSD, and
on the right is the matrix obtained from the periodogram.

In both cases, three different groups are clearly detectable, as they exhibit three
different shades of colour. Once again, it is noticeable that Bitcoin has standout values
(yellow colour). It is also clear that the shades of colour in the graphic corresponding to
the use of the PSD in the lefthand side are much more salient that those in the graphic
corresponding to the use of the periodogram in the righthand side—also showing a loss of
precision attached to the use of the periodogram already noticed in Section 4.5.

Furthermore, a statistical study was introduced. The empirical probability distribution
of the L2-distance between the Power Spectral Densities of Dollar and Euro was constructed
through performing a Monte Carlo simulation. The results were used to test and validate
significant statistical separation between currencies basing on the L2-distance. Furthermore,
a formal result was proven, which substantiates the probability distribution assumptions
in this work.

As a stationary stochastic process can be characterised by its spectral density, the
determination of the distance between the spectral distances introduced in this work
is, in fact, a determination of a quantitative distance between (the ARMA models of)
the returns of currencies. Furthermore, the statistical test introduced allows for a well-
founded discussion of the separation in terms of the distance introduced between currencies
and assets.

A natural question for further study is consider ways to obtain information on the
joint variation of the returns of two currencies and or assets. A naive starting point may be
the fact that, under some regularity assumptions, we can consider the product of ARMA
processes (see [32]).
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Appendix A. Power Spectral Densities

Figure A1. Power spectral density functions of the Majors.

Figure A2. Power spectral density functions of the BRICS.
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Figure A3. Power spectral density functions of the independent currencies.

Figure A4. Power spectral density functions of Bitcoin and gold.

Remark A1. It is clear that there is very significant information to be drawn from the spectral
densities requiring a more sensible tool than the L2 distance used in this work. One of the most
remarkable features is the similar location of extrema, particularly in the case of Bitcoin and Gold,
which should be placed in parallel with the graphic similarities observed in Figures 1 and 2. We
intend to pursue this analysis in future work.

Appendix B. Normality of Returns

The Dollar and Euro returns do not satisfy the normality assumptions that result from
usual statistical tests. In this section, we present an attempt to transform data in a way so
that a normality test is passed.

For both Dollar and Euro, returns r are grouped into sets of 12 elements. The mean
of each set is saved in a vector R, and then the normality of R is tested and confirmed
using the one-sample Kolmogorov–Smirnov test. Its sample mean µ̂R and variance σ̂2

R are
calculated, and the estimated mean and variance of the returns r correspond to µ̂r = µ̂R
and σ̂2

r = 12σ̂2
R supposing normality and independence of the elements of r.

The new estimated means µ̂1, µ̂2 and variances σ̂2
1 , σ̂2

2 of Dollar and Euro are obtained
as specified above, and computations for the construction of the histogram are performed.
The results are summarised in Figure A5. The average of the simulation data is not close to
the value d∗ (red line), contrarily to the case in Figure 5.
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Figure A5. New empirical probability distribution of the distance between Dollar and Euro (left) and
new rejection areas for α = 0.995 (green) and α = 0.95 (yellow).

The quantiles for this approach are given in Formulas (A1) and (A2), and the new
rejection areas are shown in Figure A5.

q0.5% = 0.0240 q99.5% = 0.0360 (A1)

q5% = 0.0261 q95% = 0.0335 (A2)

However, it can be demonstrated that there is no advantage in transforming the data.
Indeed, it is possible to produce a statistical test to verify whether or not the mean values
of the two histograms in Figures 5 and A5 are the value d∗.

The test is performed as follows. Once the mean µ and the variance σ2 of the data
visualised in the histogram, are obtained, the value z = (µ − d∗)/σ is computed and
compared with the standard normal quantiles:

q0.5% = −2.5758 q99.5% = 2.5758

q5% = −1.6449 q95% = 1.6449.

The null hypothesis can be written as:

H0: µ = z.

Figure A6 shows that H0 is not rejected when normality is assumed a priori. This
suggests that, despite Dollar and Euro returns not satisfying normality assumptions, it is
possible to derive some results assuming normality.

Figure A6. Quantiles of the standard normal distribution and the value z (in red). On the (left), the
case in which normality is assumed a priori. On the (right), the case in which data are transformed.
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