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Abstract: Discrete wavelet transforms are widely used in signal processing, data compression and
spectral analysis. For discrete data with finite sizes, one always pads the data with zeros or extends
the data into periodic data before performing the discrete periodic wavelet transform. Due to
discontinuity on the boundaries of the original data, the obtained wavelet coefficients always decay
slowly, leading to data compression ratios that are significantly lower. In order to solve this issue, in
this study, we coupled polynomial fitting into classic discrete periodic wavelet transforms to mitigate
these boundary effects.
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1. Introduction

The application of wavelets in data compression, denoising and time-frequency repre-
sentation [1–6] requires that the wavelets are real-valued, (anti)symmetric and compactly
supported. Classic orthogonal wavelets cannot achieve these properties, so the orthog-
onality in wavelets is relaxed to biorthogonality [7–12]. Let ψ(t) and ψ̃(t) be a pair of
real-valued compactly supported biorthonomal wavelets in L2(R) that are generated by
real-valued compactly supported scaling functions ϕ(t) and ϕ̃(t) . The frequently used
wavelets in higher dimensions just consist of tensor products of one-dimensional wavelets,
e.g., we can generate the tensor product of ϕ(t) and ψ(t) as follows:

ϕ0(t1, t2) = ϕ(t1)ϕ(t2), ψ1(t1, t2) = ϕ(t1)ψ(t2),

ψ2(t1, t2) = ψ(t1)ϕ(t2), ψ3(t1, t2) = ψ(t1)ψ(t2).

Similarly, taking the tensor products of ϕ̃(t) and ψ̃(t), we can obtain ϕ̃(t1, t2), ψ̃1(t1, t2),
ψ̃2(t1, t2) and ψ̃3(t1, t2). Then, {ψµ(t1, t2)}µ=1,2,3 and {ψ̃µ(t1, t2)}µ=1,2,3 are a pair of two-
dimensional biorthonomal wavelets of L2(R2).

Denote

ψµ,m,n(t) =: 2mψµ(2mt− n) = 2mψµ(2mt1 − n1, 2mt2 − n2) (t = (t1, t2), n = (n1, n2)).

Any function f ∈ Cl(R2) can be expanded into a biorthonomal wavelet series:

f (t) = ∑
n

cw
m,n ϕ̃0,m,n(t) +

3

∑
µ=1

+∞

∑
m=0

∑
n

dw
µ,m,nψ̃µ,m,n(t),

where

cw
m,n =

∫
R
∫
R f (t)ϕ0,m,n(t) dt, dw

µ,m,n =
∫
R
∫
R f (t)ψµ,m,n(t) dt.
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If ϕ, ϕ̃, ψ, ψ̃ ∈ Cl(R), then wavelet coefficients of any smooth function f ∈ Cl(R2)
satisfy [1,2]

dw
µ,m,n = O(2−m(l+1)). (1)

The associated wavelet filter banks {hk} and {τk} are

hk =
√

2
∫
R ϕ(t)ϕ̃(2t− k)dt,

τk =
√

2
∫
R ψ(t)ϕ̃(2t− k)dt.

Then, the one-dimensional wavelet coefficients satisfy the following:

cw
m−1,k = ∑

n
hn−2kcw

m,n,

dw
m−1,k = ∑

n
τn−2kcw

m,n,
(2)

and the two-dimensional wavelet coefficients satisfy

cw
m−1,k1,k2

= ∑
n1,n2

hn1−2k1 hn2−2k2 cw
m,n1,n2

,

dw
1,m−1,k1,k2

= ∑
n1,n2

hn1−2k1 τn2−2k2 cw
m,n1,n2

,

dw
2,m−1,k1,k2

= ∑
n1,n2

τn1−2k1 hn2−2k2 cw
m,n1,n2

,

dw
3,m−1,k1,k2

= ∑
n1,n2

τn1−2k1 τn2−2k2 cw
m,n1,n2

,

(3)

see [1]. Formulas (2) and (3) are the one-dimensional and two-dimensional discrete wavelet
transforms (DWTs), respectively [1,2].

Biorthonomal wavelets can be extended to deal with periodic data. The periodization
of any function h(t) is denoted by

hper(t) =: ∑
k∈Z2

h(t + k).

The families generated by the periodization of ϕ, ψ, ϕ̃ and ψ̃, namely

ψper = {ϕ
per
0 }

⋃{ψper
µ,m,n, µ = 1, 2, 3, m = 0, 1, 2, . . . , n1, n2 = 0, 1, . . . , 2m − 1},

ψ̃per = {ϕ̃
per
0 }

⋃{ψ̃per
µ,m,n, µ = 1, 2, 3, m = 0, 1, 2, . . . , n1, n2 = 0, 1, . . . , 2m − 1},

are a pair of biorthonomal periodic wavelet bases for L2([− 1
2 , 1

2 ]
2) [1,2]. Any periodic

function f ∈ Cl([− 1
2 , 1

2 ]
2) can be expanded into a biorthonomal periodic wavelet series:

f (t) = c0,0 +
3

∑
µ=1

∞

∑
m=0

2m−1

∑
n1,n2=0

dµ,m,nψ̃
per
µ,m,n(t),

where

cm,n =
∫ 1

2
− 1

2

∫ 1
2
− 1

2
f (t)ϕ

per
0,m,n(t) dt, dµ,m,n =

∫ 1
2
− 1

2

∫ 1
2
− 1

2
f (t)ψper

µ,m,n(t) dt.

If ϕ, ϕ̃, ψ, ψ̃ ∈ Cl(R), then periodic wavelet coefficients of any smooth periodic function
f ∈ Cl([− 1

2 , 1
2 ]

2)
⋂

Cl(R2) satisfy

dµ,m,n = O(2−m(l+1)). (4)
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Noticing that ϕ(t) and ϕ̃(t) are compactly supported, there exists a positive integer N
such that

hk = τk = 0 (|k| ≥ N).

We take 2m0−1 > N and then define 2m0−periodic sequences {h∗n} and {τ∗n} such that

h∗k = hk, τ∗k = τk (|k| ≤ 2m0−1),

h∗k+2m0 = h∗k , τ∗k+2m0 = τ∗k (k ∈ Z).

For m ≥ m0, the one-dimensional periodic wavelet coefficients satisfy the following:

cm−1,k =
2m−1

∑
n=0

h∗n−2kcm,n,

dm−1,k =
2m−1

∑
n=0

τ∗n−2kcm,n,

(5)

and the two-dimensional periodic wavelet coefficients satisfy

cm−1,k1,k2 =
2m−1

∑
n1,n2=0

h∗n1−2k1
h∗n2−2k2

cm,n1,n2 ,

d1,m−1,k1,k2 =
2m−1

∑
n1,n2=0

h∗n1−2k1
τ∗n2−2k2

cm,n1,n2 ,

d2,m−1,k1,k2 =
2m−1

∑
n1,n2=0

τ∗n1−2k1
h∗n2−2k2

cm,n1,n2 ,

d3,m−1,k1,k2 =
2m−1

∑
n1,n2=0

τ∗n1−2k1
τ∗n2−2k2

cm,n1,n2 ,

(6)

see [1]. Formulas (5) and (6) are one-dimensional and two-dimensional discrete periodic
wavelet transforms (DPWTs), respectively [1,2]. Since the convolution of finite length data
are always computed approximately by circular convolution in signal processing and data
analysis, there is no big difference between (2) and (3) and (5) and (6); hence, the DPWT is
considered to be the same as the DWT.

The DWT/DPWT has become a routine fast algorithm in various signal processing
fields such as data compression, spectral analysis, denoising, mechanical fault diagnosis,
etc. Zeng [13] used two-dimensional DWTs to extract weak information from the gamma
spectrum; Alaifari et al. [14] developed a recovery algorithm of square-integrable signals
from the absolute values of their wavelet transforms; Lin [15] applied the DWT to the
simulation of corrosion fields on buried pipelines; Torrence and Compo [15] developed an
empirical formula for the statistical significance testing of DWTs of signals against red noise.
Later on, Zhang [16] extended this empirical formula to the generalized case and gave the
proof in the rigid statistical framework. Since all data used in this research are of a finite
size, we always needed to either pad the data with zeros before performing the DWT or
extend the data into periodic data before performing the DPWT. Due to discontinuity on the
data boundary, the associated wavelet coefficients always decayed slowly, leading to data
compression ratios that were significantly lower and wavelet spectra that were distorted.
Although the DWT/DPWT has been widely used in different fields (e.g., [13–18]), until
now there has been no method to delete or mitigate boundary effects in the DWT/DPWT.

In this study, we coupled simple polynomial fitting with a classic DWT/DPWT to mit-
igate boundary effects on wavelet coefficients. In Section 2, since our proposed algorithm
is complex, we first briefly introduce the simplest version of our improved DWT/DPWT
algorithm and show how boundary discontinuities are mitigated in our improvement. In
Section 3, we discuss the continuous version of our improvement and show the advantages
of our improvement. In Section 4, we establish, step by step, a full version of our improve-
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ment of the DWT/DPWT. In Section 5, we give details of some numerical experiments that
we used to test our improvement algorithm. In Section 6, we summarize the advantages of
our improvement algorithm and discuss some potential applications.

2. Our Improvement of the DWT: The Simplest Version

In order to mitigate boundary effects in DWT/DPWT, we proposed the following algo-
rithm.

First, the discrete data, {xn1 ,n2}n1 ,n2=0,1,...,2J−1 , are decomposed into three parts:

xn1,n2 = y(2)n1,n2 − y(1)n1,n2 + zn1,n2 , (7)

where

y(1)n1,n2 = x0,0(1− 2n1
2J )(1− 2n2

2J ) + x0,2J−1(1− 2n1
2J )(

2n2
2J ) + x2J−1,0(

2n1
2J )(1− 2n2

2J ) + x2J−1,2J−1(
2n1
2J )(

2n2
2J ),

y(2)n1,n2 = x0,n2(1−
2n1
2J ) + x2J−1,n2

( 2n1
2J ) + xn1,0(1− 2n2

2J ) + xn1,2J−1(
2n2
2J ).

The computation of y(1)n1,n2 depends on the values {x0,0}, {x0,2J−1}, {x2J−1,0} and

{x2J−1,2J−1}. The computation of y(2)n1,n2 depends on the boundary data {xn1,0}, {xn1,2J−1},
{x0,n2} and {x2J−1,n2

}, which can be further decomposed as follows:

xn1,0 = x0,0(1− 2n1
2J ) + x2J−1,0(

2n1
2J ) + w0

n1
,

xn1,2J−1 = x0,2J−1(1− 2n1
2J ) + x2J−1,2J−1(

2n1
2J ) + w1

n1
,

x0,n2 = x0,0(1− 2n2
2J ) + x0,2J−1(

2n2
2J ) + v0

n2
,

x2J−1,n2
= x2J−1,0(1−

2n2
2J ) + x2J−1,2J−1(

2n2
2J ) + v1

n2
.

(8)

Next, an odd extension, and then a periodic extension, for {w0
n1
}, {w1

n1
}, {v0

n2
}, {v1

n2
}

and {zn1,n2} are performed. By (2.1) and (2.2), it is clear that for n1 = 0, 2J−1 or n2 = 0, 2J−1,

zn1,n2 = 0, w0
n1

= 0, w1
n1

= 0, v0
n2

= 0, v1
n2

= 0,

so we can easily deduce that the above odd and periodic extensions guarantee continuity
and differentiability on the data boundary. Finally, one-dimensional and two-dimensional
DWTs/DPWTs are performed for these extension data.

Due to the smooth extension in our improvement, by (1) and (4), the decay rate
of the obtained wavelet coefficients in our improvement algorithm is faster than that of
traditional (periodic) wavelet coefficients. This means that our improvement can compress
the data better than the traditional DWT/DPWT. Our proposed algorithm can be further
modified to achieve higher compression ratios. The full version of our improved algorithm
is summarized at the end of Section 4.

3. Continuous Version of Our Improved Wavelet Algorithm

In order to explain the advantages of our improved algorithm over traditional wavelet
algorithms, we established a step by step continuous version of our improved wavelet
algorithm.

Denote D(α,β) f = tialα+β

tialtα
1 tialtβ

2

f . If D(α,β) f is continuous on the region Ω for all α, β ≤ l,

we say f ∈ Cl(Ω). Let the fundamental polynomial pm(t) be a univariate polynomial of
degree 2m + 1 satisfying

D(2λ)pm(0) = 0, D(2λ)pm(1) = δλ,m, (9)

where δλ,m = 0 (λ 6= m) and δλ,m = 1 (λ = m). Then, pm(t) can be represented as follows:
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pm(t) =
1

(2m + 1)!
t2m+1 +

m−1

∑
k=0

ckt2k+1,

where the coefficients, {ck}k=0,...,m−1, satisfy

m−1

∑
k=j

(2k + 1)!
(2k− 2j + 1)!

ck = −
1

(2m− 2j + 1)!
(j = 0, 1, . . . , m− 1).

For any function f ∈ Cl([0, 1
2 ]), define the interpolation polynomial of f at the nodes 0

and 1
2 :

h(t) =
n

∑
k=0

1
22k

(
D(2k) f (0)pk(1− 2t) + D(2k) f

(
1
2

)
pk(2t)

)
(0 ≤ t ≤ 1

2
),

where n = [ l
2 ] and [·] represent the integral part. Then, h(t) satisfies

D(2j)h(0) = D(2j) f (0), D(2j)h(
1
2
) = D(2j) f (

1
2
) (j = 0, 1, . . . , n).

Let r(t) = f (t)− h(t) (t ∈ [0, 1
2 ]). Then,

r(2j)(0) = r(2j)(
1
2
) = 0 (j = 0, 1, . . . , n). (10)

For r(t), an odd extension is performed, which is denoted by ro(t). Again, a 1-periodic
extension of ro(t) is performed to obtain r̃(t). By (10), it follows that r̃ ∈ Cl(R), i.e., the
univariate function f ∈ Cl([0, 1

2 ]) can be decomposed as follows:

f (t) = h(t) + r̃(t),

where h(t) is the interpolation polynomial of f at the nodes 0 and 1
2 , r̃(t) is a 1-periodic

odd function and r̃ ∈ Cl(R).
For a bivariate smooth function f ∈ Cl([0, 1

2 ]
2), denote t = (t1, t2) and n =

[
l
2

]
. Define

τ1(t) as the interpolation polynomial of f at the vertices of [0, 1
2 ]

2:

τ1(t) =
n
∑

α,β=0
2−2α−2β[ D(2α,2β) f (0, 0)pα(1− 2t1)pβ(1− 2t2)

+D(2α,2β) f (0, 1
2 )pα(1− 2t1)pβ(2t2)

+D(2α,2β) f ( 1
2 , 0)pα(2t1)pβ(1− 2t2)

+D(2α,2β) f ( 1
2 , 1

2 )pα(2t1)pβ(2t2) ],

(11)

such that for 0 ≤ α, β ≤ n and (t1, t2) = (0, 0), (0, 1
2 ), (

1
2 , 0), ( 1

2 , 1
2 ),

D(2α,2β)τ1(t1, t2) = D(2α,2β) f (t1, t2).

Define

τ2(t) =
n
∑

α=0

1
22α [D(2α,0) f (0, t2)pα(1− 2t1) + D(2α,0) f ( 1

2 , t2)pα(2t1)]

+
n
∑

β=0

1
22β [D(0,2β) f (t1, 0)pβ(1− 2t2) + D(0,2β) f (t1, 1

2 )pβ(2t2)].
(12)
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Theorem 1. Let f ∈ Cl([0, 1
2 ]

2). Then, the following decomposition formula holds:

f (t) = τ2(t)− τ1(t) + r(t) (t ∈ [0,
1
2
]2), (13)

and r(t) can be extended into a 1-periodic odd function r̃(t) and r̃ ∈ Cl(R2).

Proof. By (9), we know that D(2µ)pα(1) = δα,µ and D(2µ)pα(0) = 0. Again, by (11), for
0 ≤ µ, ν ≤ n,

D(2µ,2ν)(τ1(0, t2)) =
n

∑
β=0

[ D(2µ,2β) f (0, 0)D(2ν)pβ(1− 2t2) + D(2µ,2β) f (0,
1
2
)D(2ν)pβ(2t2) ].

By (12), we deduce that for 0 ≤ µ, ν ≤ n and 0 ≤ t2 ≤ 1
2 ,

D(2µ,2ν)(τ2(0, t2)) = D(2µ,2ν) f (0, t2) +
n

∑
β=0

[ D(2µ,2β) f (0, 0)D(2ν)pβ(1− 2t2) + D(2µ,2β) f (0,
1
2
)D(2ν)pβ(2t2) ].

Therefore, for 0 ≤ µ, ν ≤ n,

D(2µ,2ν)(τ2(0, t2)− τ1(0, t2)) = D(2µ,2ν) f (0, t2) (0 ≤ t2 ≤
1
2
).

By (13), for 0 ≤ µ, ν ≤ n,

D(2µ,2ν)r(0, t2) = 0 (0 ≤ t2 ≤
1
2
).

Similarly, we can deduce that for 0 ≤ µ, ν ≤ n,

D(2µ,2ν)r( 1
2 , t2) = 0 (0 ≤ t2 ≤ 1

2 ),

D(2µ,2ν)r(t1, 0) = D(2µ,2ν)r(t1, 1
2 ) = 0 (0 ≤ t1 ≤ 1

2 ).

Finally

D(2µ,2ν)r(t) = 0 (t ∈ tial([0,
1
2
]2), 0 ≤ µ, ν ≤ n). (14)

For r, an odd extension is performed, denoted by ro,

ro(t1, t2) = r(t1, t2) (t ∈ [0, 1
2 ]

2),

ro(−t1, t2) = ro(t1,−t2) = −ro(t1, t2) (t ∈ [− 1
2 , 1

2 ]
2).

From this and (14), it follows that ro ∈ C(l)([− 1
2 , 1

2 ]
2). Again, a periodic extension is

performed, denoted by r̃,

r̃(t + m) = ro(t) (t ∈ [−1
2

,
1
2
]2, m ∈ Z2),

so r̃ is a 1-periodic odd function and r̃ ∈ Cl(R2), and it can be reconstructed well using its
two-dimensional periodic wavelet coefficients.

By (4), the periodic wavelet coefficients of r̃ decay as fast as O(2−m(l+1)). Compared
with this, if we directly compute traditional (periodic) wavelet coefficients of f ∈ Cl([0, 1

2 ]
2),

due to discontinuity on the boundary, the obtained (periodic) wavelet coefficients decay as
fast as O(2−m).

By (12), τ2(t) is determined by four derivative functions of f on the boundary of [0, 1
2 ]

2:
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{D(2α,0) f (0, t2)}α=0,1...,n, {D(2α,0) f (
1
2

, t2)}α=0,1,...,n,

{D(0,2β) f (t1, 0)}β=0,1,...,n, {D(0,2β) f (t1,
1
2
)}β=0,1,...,n.

Similarly to the above process, these four functions can be decomposed as

D(2α,0) f (0, t2) =
n
∑

β=0

1
22β ( D(2α,2β) f (0, 0)pβ(1− 2t2) + D(2α,2β) f (0, 1

2 )pβ(2t2) ) + uα(t2),

D(2α,0) f ( 1
2 , t2) =

n
∑

β=0

1
22β ( D(2α,2β) f ( 1

2 , 0)pβ(1− 2t2) + D(2α,2β) f ( 1
2 , 1

2 )pβ(2t2) ) + vα(t2),

D(0,2β) f (t1, 0) =
n
∑

α=0

1
22α ( D(2α,2β) f (0, 0)pα(1− 2t1) + D(2α,2β) f ( 1

2 , 0)pα(2t1)) + wβ(t1),

D(0,2β) f (t1, 1
2 ) =

n
∑

α=0

1
22α ( D(2α,2β) f (0, 1

2 )pα(1− 2t1) + D(2α,2β) f ( 1
2 , 1

2 )pα(2t1) ) + γβ(t1).

(15)

From this, we have

u(2β)
α (0) = u(2β)

α ( 1
2 ) = 0, v(2β)

α (0) = v(2β)
α ( 1

2 ) = 0,

w(2α)
β (0) = w(2α)

β ( 1
2 ) = 0, γ

(2α)
β (0) = γ

(2α)
β ( 1

2 ) = 0 (α, β = 0, 1, . . . , n).

After odd extensions and then 1-periodic extensions for uα, vα, wβ and γβ, we obtain
four 1-periodic smooth odd functions u∗α, v∗α, w∗β, γ∗β ∈ Cl(R). Similarly to the argument in
(4), the one-dimensional periodic wavelet coefficients of these four periodic functions decay
as fast as O(2−m(l+1)). So, τ2(t) can be reconstructed well using the value of the derivative
of f on the four vertices of [0, 1

2 ]
2 and the one-dimensional periodic wavelet coefficients. By

(11), τ1(t) can be reconstructed using the value of the derivative of f on the four vertices
of [0, 1

2 ]
2. Therefore, f can be reconstructed well using the value of the derivative of f on

the four vertices of [0, 1
2 ]

2 and the one-dimensional and two-dimensional fast-decaying
periodic wavelet coefficients.

4. Our Improvement of the DWT: Full Version

In this section, the traditional DWT/DPWT is improved so that the impacts of the
data boundary on the wavelet coefficients can be mitigated well. The full version of our
improved algorithm is stated as follows.

For f ∈ Cl([0, 1
2 ]

2), assume that the sampling of f on [0, 1
2 ]

2 is given by the following:

xn1,n2 = f
(n1

2J ,
n2

2J

)
(n1, n2 = 0, 1, . . . , 2J−1).

The derivatives on the boundary of the square are denoted by

x(α,β)
n1,n2 = D(2α,2β) f

(n1

2J ,
n2

2J

)
(n1 = 0, 2J−1 or n2 = 0, 2J−1; α, β = 0, 1, . . . , [l/2]). (16)

Based on (11) and (12), we define y(1)n1,n2 and y(2)n1,n2 as

y(1)n = τ1(
n
2J ) =

n
∑

α,β=0

1
22α+2β [x

(α,β)
0,0 pα(1− 2n1

2J )pβ(1− 2n2
2J ) + x(α,β)

0,2J−1 pα(1− 2n1
2J )pβ(

2n2
2J )

+x(α,β)
2J−1,0 pα(

2n1
2J )pβ(1− 2n2

2J ) + x(α,β)
2J−1,2J−1 pα(

2n1
2J )pβ(

2n2
2J )]

(n = (n1, n2), n1, n2 = 0, 1, . . . , 2J−1),

(17)
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y(2)n = τ2(
n
2J ) =

n
∑

α=0

1
22α [x

(α,0)
0,n2

pα(1− 2n1
2J ) + x(α,0)

2J−1,n2
pα(

2n1
2J )]

+
n
∑

β=0

1
22β [x

(0,β)
n1,0 pβ(1− 2n2

2J ) + x(0,β)
n1,2J−1 pβ(

2n2
2J )]

(n = (n1, n2), n1, n2 = 0, 1, . . . , 2J−1).

(18)

The discrete data, xn1,n2 , can be decomposed as follows:

xn1,n2 = y(2)n1,n2 − y(1)n1,n2 + zn1,n2 (n1, n2 = 0, 1, . . . , 2J−1). (19)

By (17)–(19), we have

zn1,n2 = 0, (n1 = 0, 2J−1 or n2 = 0, 2J−1).

An odd extension for the data {zn1,n2} is performed as follows:

zo
2J−1+k,n2

= −z2J−1−k,n2
, zo

n1,2J−1+k = −zo
n1,2J−1−k, zo

2J−1+k,2J−1+k = zo
2J−1−k,2J−1−k (20)

where n1, n2 = 0, 1, . . . , 2J−1, k = 1, . . . , 2J−1− 1. Following this, the 2J−periodic extension
for {zo

n1,n2
} is performed to obtain {z∗n1,n2

}.

Proposition 1. For a large J, the periodic wavelet coefficients cJ,n of r̃ satisfy

cJ,n ≈
λ

2J z∗n (n1, n2 = 0, 1, . . . , 2J − 1),

where λ = (
∫
R ϕ(t)dt)2 and r̃ is stated in Theorem 1.

Proof. Comparing (13) and (19), it follows that {z∗n1,n2
} is just the sampling of r̃. Noticing

that ϕ
per
0,J,n(t) = ∑k∈Z2 ϕ0,J,n(t + k), by (2.6), it follows that

cJ,n =
∫
[− 1

2 , 1
2 ]

2
r̃(t) ∑

k∈Z2

ϕ0,J,n(t + k)dt = ∑
k∈Z2

∫
[− 1

2 , 1
2 ]

2+k
r̃(t)ϕ0,J,n(t)dt =

∫
R2

r̃(t)ϕ0,J,n(t)dt.

Denote the compact support of ϕ0 by Ω. Noticing that ϕ0,J,n(t) = 2J ϕ0(2Jt− n) and
r̃ ∈ Cl(R2), we have

cJ,n = 2J ∫
R2 r̃(t)ϕ0(2Jt− n)dt = 2−J ∫

R2 r̃(2−Ju)ϕ0(u− n)du

= 2−J ∫
R2 r̃(2−J(u + n))ϕ0(u)du = 2−J ∫

Ω r̃(2−J(u + n))ϕ0(u)du

= 2−J(r̃(2−Jn)
∫
R2 ϕ0(u)du +

∫
Ω(r̃(2−J(u + n))− r̃(2−Jn))ϕ0(u)du

)
= 2−J(λr̃(2−Jn) + O(2−J)),

i.e.,

cJ,n ≈
λ

2J r̃(2−Jn) =
λ

2J z∗n (n1, n2 = 0, 1, . . . , 2J−1),

where

λ =
∫
R2

ϕ0(u)du =
∫
R2

ϕ0(u1, u2)du1du2 =
∫
R2

ϕ(u1)ϕ(u2)du1du2 =

(∫
R

ϕ(t)dt
)2

.

The wavelet coefficients {cJ,n} (n = (n1, n2), n1, n2 = 0, 1, . . . , 2J − 1) can be decom-
posed as
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{cm0,k1,k2}k1,k2=0,1,...,2m0−1, {dµ,m,k1,k2}µ=1,2,3,k1,k2=0,1,...,2m−1, m=m0,m0+1,...,J−1. (21)

Theorem 2. Suppose that ϕ and ϕ̃ are symmetric at t = 0 and ψ and ψ̃ are symmetric at t = 1
2

and t = − 1
2 , respectively. Then periodic wavelet coefficients in (21) are symmetric:

cm,2m−k1,k2 = −cm,k1,k2 , cm,k1,2m−k2 = −cm,k1,k2 ,

d1,m,2m−k1,k2 = −d1,m,k1,k2 , d1,m,k1,2m−k2−1 = −d1,m,k1,k2 ,

d2,m,2m−k1−1,k2 = −d2,m,k1,k2 , d2,m,k1,2m−k2 = −d2,m,k1,k2 ,

d3,m,2m−k1−1,k2 = −d3,m,k1,k2 , d3,m,k1,2m−k2−1 = −d3,m,k1,k2 .

Proof. Since ϕ and ϕ̃ are symmetric at t = 0 and ψ and ψ̃ are symmetric at t = 1
2 and

t = − 1
2 , respectively, by (6), it follows that

h∗−n = h∗n, τ∗1+n = τ∗1−n.

Based on the DPWT algorithm, by (20), we easily obtain the symmetry property of the
wavelet coefficients.

In (18), {y(2)n } is determined by four sequences {x(α,0)
0,n2
}, {x(α,0)

2J−1,n2
}, {x(0,β)

n1,0 } and {x(0,β)
n1,2J−1},

which can be decomposed further as follows:

x(α,0)
0,n2

=
n
∑

β=0

1
22β ( x(α,β)

0,0 pβ(1− 2n2
2J ) + x(α,β)

0,2J−1 pβ(
2n2
2J ) ) + uα,n2 ,

x(α,0)
2J−1,n2

=
n
∑

β=0

1
22β ( x(α,β)

2J−1,0 pβ(1− 2n2
2J ) + x(α,β)

2J−1,2J−1 pβ(
2n2
2J ) ) + vα,n2 ,

x(0,β)
n1,0 =

n
∑

α=0

1
22α ( x(α,β)

0,0 pα(1− 2n1
2J ) + x(α,β)

2J−1,0 pα(
2n1
2J )) + wβ,n1 ,

x(0,β)
n1,2J−1 =

n
∑

α=0

1
22α ( x(α,β)

0,2J−1 pα(1− 2n1
2J ) + x(α,β)

2J−1,2J−1 pα(
2n1
2J ) ) + γβ,n1 .

(22)

After odd extensions and then 1-periodic extensions for uα,n2 , vα,n2 , wβ,n1 , γβ,n1 , we
obtain four 2J-periodic smooth sequences u∗α,n2

, v∗α,n2
, w∗β,n1

, γ∗β,n1
. Again, by (5), we obtain

one-dimensional periodic wavelet coefficients of u∗α,n2
, v∗α,n2

, w∗β,n1
, γ∗β,n1

:

{cu
m0,k}k=0,1,...,2m0−1, {du

m,k}k=0,1,...,2m−1, m=m0,m0+1,...,J−1.

{cv
m0,k}k=0,1,...,2m0−1, {dv

m,k}k=0,1,...,2m−1, m=m0,m0+1,...,J−1.

{cw
m0,k}k=0,1,...,2m0−1, {dw

m,k}k=0,1,...,2m−1, m=m0,m0+1,...,J−1.

{cγ
m0,k}k=0,1,...,2m0−1, {dγ

m,k}k=0,1,...,2m−1, m=m0,m0+1,...,J−1.

(23)

Similar to Theorem 2, the above periodic wavelet coefficients are also symmetric.
Finally, we summarize our improvement of the discrete (periodic) wavelet transform

for {xn1,n2}n1,n2=0,1,...,2J−1 , as follows:

Decomposition Algorithm
Step 1. By (17)–(19), we obtain {zn1,n2}n1,n2=0,1,...,2J−1 . After that, an odd extension and

a periodic extension are performed for {zn1,n2}n1,n2=0,1,...,2J−1 to obtain {z∗n1,n2
}n1,n2∈Z2 . Fi-

nally, by Proposition 1 and (6), two-dimensional periodic wavelet coefficients are computed
in (21). Again, by Theorem 2, the number of nonzero two-dimensional periodic wavelet
coefficients that is necessary to store is (2J−1 − 1)2.
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Step 2. By (22), uα,n2 , vα,n2 , wβ,n1 , γβ,n1 can be obtained. After odd extensions, and then
periodic extensions, we obtain four 2J-periodic smooth sequences u∗α,n2

, v∗α,n2
, w∗β,n1

, γ∗β,n1
.

Again, by (5), one-dimensional periodic wavelet coefficients are obtained as those in (23).
Similar to Theorem 2, due to the symmetric property of periodic wavelet coefficients, the
number of nonzero two-dimensional periodic wavelet coefficients that is necessary to store
is 4× (2J−1 − 1).

Step 3. The following 4(n + 1)2 values are stored:

{x(α,β)
0,0 }, {x(α,β)

0,2J−1}, {x(α,β)
2J−1,0}, {x(α,β)

2J−1,2J−1} (α, β = 0, 1, . . . , n).

Reconstruction Algorithm.
Step 1. By (17), using the 4(n + 1)2 values,

{x(α,β)
0,0 }, {x(α,β)

0,2J−1}, {x(α,β)
2J−1,0}, {x(α,β)

2J−1,2J−1} (α, β = 0, 1, . . . , n),

we obtain {y(1)n1,n2}n1,n2=0,1,...,2J−1 .
Step 2. Using the 4(n + 1)2 values in Step 1, (22), (23) and the one-dimensional inverse

discrete periodic wavelet transform, we obtain

{x(α,0)
0,n2
}, {x(α,0)

2J−1,n2
} (n2 = 0, 1, . . . , 2J−1, α = 0, 1, . . . , n)

{x(0,β)
n1,0 }, {x(0,β)

n1,2J−1} (n1 = 0, 1, . . . , 2J−1, β = 0, 1, . . . , n),

and, by (18), we obtain {y(2)n1,n2}n1,n2=0,1,...,2J−1 .
Step 3. By (21) and the two-dimensional inverse discrete periodic wavelet transform,

we obtain {z∗n1,n2
}. This means that {zn1,n2}n1,n2=0,1,...,2J−1 can be computed.

Step 4. By (17), we can reconstruct f :

xn1,n2 = y(2)n1,n2 − y(1)n1,n2 + zn1,n2 (n1, n2 = 0, 1, . . . , 2J−1).

5. Numerical Experiments

We compared our improved DWT with the classic DWT through numerical experi-
ments. The quality of data approximation was measured by the known peak signal-to-noise
ratio (PSNR) [17]:

PSNR = 20 log10


max
m,n
|xm,n|

RMSE

,

where {xm,n} is the original data, RMSE is the mean squared error between the original
and the approximation divided by the square root of the total number of samples.

For the discrete data xm,n = e
m

128+
n

128 (m, n = 0, 1, 2, . . . , 127), we used the simplest
version of our algorithm, which meant that no numerical derivative was computed to
approximate {xm,n}. In the approximation and reconstruction processes, we retained a
certain number of the largest coefficients in terms of energy from all one/two-dimensional
wavelet coefficients and then reconstructed the original data from them. Figure 1 shows
the quality of the approximations by using DWT and our improvement, where the depth
of wavelet decomposition was set to the maximum level. The higher value of the PSNR
indicated a better approximation performance. It was clear that the simplified version
of our algorithm had a better approximation performance than that of the classic DWT.
Noticing that the PSNR value is in terms of logarithmic scale, the smaller the number of
retained coefficients, the clearer the performance difference became.
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Figure 1. Approximation quality of the discrete wavelet transform and our improved algorithm.

6. Discussion and Conclusions

The discrete wavelet transform and the discrete periodic wavelet transform is widely
used in signal processing, data compression and wireless communication. Due to dis-
continuity on the boundary of the original data, the decay rate of the obtained wavelet
coefficients was slow. In this study, we introduced a combination of polynomial inter-
polation and one-dimensional/two-dimensional discrete periodic wavelet transforms to
mitigate these boundary effects. Due to the smooth extension in our algorithm, the one-
dimensional and two-dimensional periodic wavelet coefficients in our algorithm decayed
as fast as O(2−m(l+1)). Compared with this, if we applied the traditional discrete (periodic)
wavelet transform, due to discontinuity on the boundary, the corresponding wavelet co-
efficients decayed as fast as O(2−m). Even if we considered the simplest version of our
algorithm (i.e., taking n = 0 in (17) and (18), which meant that no numerical derivative
was computed), the corresponding wavelet coefficients in our algorithm still decayed as
fast as O(2−3m), which was faster than that of the traditional discrete (periodic) wavelet
transform (i.e., O(2−m)). Moreover, the numerical experiment also demonstrated that the
simplest version of our algorithm could compress the data much better than the traditional
discrete wavelet transform. The full version of our algorithm could be applied to compress
smoother data, e.g., CMIP6 data [13]. The size of CMIP6 data increases sharply at the
petabyte scale [19], but, even now, there is still no good algorithm to compress it. Since
CMIP6 data are output data from numerical solutions of fluid equations and energy equa-
tions governing the Earth’s climate system [18], CMIP6 data is smooth and the derivative
values on the data boundary are easily estimated, so our algorithm could compress this
kind of data well.
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