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1. Introduction

Let Ap denote the class of functions of the form:

Flo)=¢"+ > ai
j=p+1

(peN=1{1,2.1}), 1)

which are analytic in the open unit disc A = {¢ € C: [¢| < 1}.
Let P, («) be the class of functions /() analytic in A satisfying the properties 1(0) = p and

de < kr, )

21
O/‘ %{hp(g_)};x o

where ¢ = re, k>2and 0 < a < p- This class was introduced by (Aouf [1] with A = 0).
We note that

(i)  Pix(a) =Pr(a) (k>2, 0 < a < 1) (see Padmanabhan and Parvatham [2]);

(i) P1x(0) =Pk (k > 2) (see Pinchuk [3] and Robertson [4]);

(iii) Pp2(a) = P(p,a) (0 <a < p, p € N), where P(p, a) is the class of functions with a
positive real part greater than « (see [1]);

(iv) Pp2(0) = P(p) (p € N), where P(p) is the class of functions with a positive real part
(see [1]).
From (2), we have h(g) € P, x(«) if and only if there exists h1, hy € Pp(a) such that

6(c) = (330~ (53 )@ (c€o) ®
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For two functions F(¢) given by (1) and H(¢) given by

¢)=¢"+ > bd

j=p+1

the Hadamard product (or convolution) is defined by

(FxH)(c) ="+ Y ajbic = (H*F)(q). 4)
j=p+1

Define here a Borel distribution with parameter A, which is a discrete random variable denoted by

x. This variable takes the values 1, 2, 3, ... with the probabilities 1/\ 2)“3, 2 , 9)‘23, 2 , ..., Tespectively.
Wanas and Khuttar [5] recently mtroduced the Borel distribution (BD) whose probabil-
ity mass function is (see [6,7])

(pA)Ple e

o P25

P(x =p) =

Wanas and Khuttar studied a series M (A; ¢) whose coefficients are probabilities of the
Borel distribution (BD)

)P e AP
My(Aig) = ¢ + Z d, (0<A <), )
j= P+1 p).
= 9”2% ,(0<A<T),
] }7+1
where L Aljp)
— VP 1=A(-p
0p(A) = (AG— Pl ©)

(- P)-
We propose a linear operator D(p, A; ¢)F : Ay, — Ay as follows
D(pAic)F(g) = Mphig)F(g)

_ g,,+§°: A <]_p2}]_pp)! (j_p)ajgf, O<rg1)

In a recent paper, Srivastava [8] studied various types of operators regarding g-calculus.
We recall further some important definitions and notations. The g-shifted factorial is defined
for A,q € Cand n € Ny = NU {0} as follows
(,u'q)'z{ ! —1 j-:O’
L =)= pg) (1= ) jeN.

By using the g-gamma function I';(g), we get

(1—q) Ty(u+1)
Fq(#) ’

(q";q); = (j € No),

where (see [9])

I =@ q)lgmo, (lgl < 1).



Mathematics 2023, 11, 1742 30f13
Furthermore, we note that
(0w =[1(1-na'),  (lal <),
=0
and, the g-gamma function I';(g) is known
Iy(c+1) = [j], Tq(c),
where [f] 4 denotes the basic g-number defined as follows
1—g/ .
1_‘2 7 ] 6 (C/
(g = = @
! 1+ 4, jeN.
i=1

Using the definition from (7), we have the next two products:

(i) For a non negative integer j, the g-shifted factorial is defined by

1, if j=0,
lg! = j
[ly [T, if jeN.
n=1

(ii) For a positive number r, the g-generalized Pochhammer symbol is given by

1, if j=0,
[r] L= I’+j71 . )
11 IT [ if jeN.

n=r
In terms of the classical (Euler’s) gamma function I'(¢), we have
I(6) = T(g) asq—1".

Furthermore, we notice that
[ (@a);
lim J]. = ().
=17 (1 —q)

In order to establish our new results, we have to recall the construct of a g-derivative
operator. Considering 0 < g < 1, the g-derivative operator [10] (see also other specific and
generalized results [11-15]) for D(p, A; ) F is defined by

2. Preliminaries

Dy(D(p, A;¢)F () _ Dlp o) F (z Dq()/?\ ;) F (g6)
= [plgr '+ Z[I AG=p)) pflﬂ(]_p)a;‘ J1

j=p+1

where [f]; is defined in (7)
Fora > —1 and 0 < g4 < 1, we obtain the linear operator Dg’Z]: : Ap — Ay by

%WUM%M)[&%WWMW@MGA
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where the function N/ g 41 18 given by

N (6) ="+ Z “ TR

A simple computation shows that

flglAG = p)) P e MR
P]q[l“i‘”q,jfp(]_f’)!

DIMF() : =¢'+ Z
j=p+1

.—.&

aj¢

= z”+z¢ja]-g7 (0<A<L, u>p 0<g<1, ge€N). (8)
j=p+1

where

©)

g A — p)Y P e AU=P)
;= [ _

plalp+1]g—p(j = p)!
For ¢ > 0, with the aid of the operator Dg?\ one can defined the linear g-differential
Borel operator A, — A, as follows:

gpq)us (¢) = :D%q]‘-(G)
GhnaaF(e) = = (1=0G, F() +05 (90,7 (6)
_ o g AG = W“W & AP
R gp+sz;rl [Plgln +1gp (G = p)! PJF(S(P 1>} ¢
G2 F(6) 5 = (=000, F(0)+05 (910, 7))
_ . [l!AG - )V”“”f i Y
B gp+12p;r1 [Plgln +1g—p (G = P)! PJF(S(P 1>} ¢
o o 2 [flq!AG )]Jr’l—(fp) i m‘.
Gparsle) QHJ%L P]q[ﬂ+l]q] p(i—p)! [l+5<P 1” %¢/(10)

(meNg=NU{0},6>0,0<A<1, u>p 0<g<l).
From the relation (10), we can easily deduce that the next relations held for all € Ay:
W) <90 s F(©) = kG YIF(©) — (k- )G F (o), (a1
p.g.A0 6 " P06 K=" P08
and
(i) 35 (91 (<)) = p Gl F () — p (1-8)GMr, F (o) (12)
paAs’ 6 P¥pars pAAS

Remark 1. By particularizing the parameters p and m, we derive the following operators based on
Borel distribution:
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(1) Letting p = 1, we obtain that Ql A = I;’/{"{s, where the operator Ig’/{nﬁ is defined as follows:

Iym — i ]71)}1 2,-A(j-1) [14-5(]'_1)}"1%@]‘-
45" 2 b T T i<

(2) Letting p = 1 and m = 0, we deduce that Ql s = : B, where the operator BK’q, introduced
by El-Deeb and Murugusundaramoorthy [1 6]

(3) Letting g — 1~ and p = 1, we deduce that lil’{l Q{' /qm)L 5= Rﬁ’?, where the operator RK;"
g1 LA , ,
is defined as follows

JZA

RS F( *€+Z]W] sy 18— 1))

(4) Puttingq — 1=, p = 1 and m = 0, we obtain that lim Ql Py MA, where the operator

l]%

Mﬁ, studied by El-Deeb and Murugusundaramoorthy [16].

Now we introduce the following classes 8’; (), C’;(oc) and IC’;,( B, «) of the class A for
0<a,B<p pecNandk > 2as follows:

S’g(zx) = {]—": F € Ay and g]];';ég)) €Ppr(a), ¢ € A},

’ _ oF (o)
Cpla) = {]—'. FeApand1+ o) € Pprla), ¢ € A},

and

K’;(ﬁ,a) = {J—': FeA,ge€ S,%(a) and g';(lg(;;) € Ppr(B), ¢ € A}.

Obviously, we know that

Flo) e Ch(a) & <~ p(g) e Sh(a). (13)

Remark 2. By particularizing the parameter k, we obtain the following classes:

(i) S%(oz) = S§;(a) (0<a <p, p€N), where S;(a) is the well-known class of p—valently
starlike functions of order o and was studied by Patil and Thakare [17];

(i1) C%(zx) = Cp(x) (0<a <p, p€N), where Cy(a) is the well-known class of p—valently
convex functions of order « and was studied by Owa [18];

(ii)) K5(B,a) = Ky(B,a) (0<a < p, peN), where Kp(B,a) is the class of all p—valently
close-to-convex functions of order B and type a and was introduced by Aouf [19].

Next, by making use of the operator defined by (10), we obtain the following subclasses
S;‘ ;1Ak5( w), C;l Z;@\k s(w) and IC;;"; s(B, ) of the class A, as follows:

k 7
S;’;"M( ) = {]—": F € Ay and Q;’,ZA,(;}"(Q) € S’;(a), = A}, (14)

mk ,
chmts(w) = {F: FeAyand G (o) € Ch(w), g € A}, (15)

and

KL (B ) = {F : FeApand G SF(6) € Ky(Ba), ¢ € A}. (16)
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We can easily see that

mk F mk
Flg) e Clmi(a) & & p(g) e sl (@) (17)

In order to establish our main results, we will require the following lemmas.

Lemma 1 ([20,21]). Let ®(r,s) be complex valued function, ® : D — C, D ¢ CxC (C
is the complex plane) and let r = ry +iry, s = s1 + isp. Suppose that ®(r,s) satisfies the
following conditions:

(i) ®(r,s) is continuous in a domain D;
(i) (1,0) € Dand R{P(1,0)} > 0;
(iti) R{P(iry,s1)} < 0forall (iry,s1) € D and such that sy < —%(1 +73).

Leth(c) =14 3. cmc™, be regular in A such that (h(c),ch' (c)) € D forall ¢ € A. If
m=1

R{D(h(c),ch (c))} >0 (cen),

then
R{h(c)} >0 (g €A).

Lemma 2 ([22]). Let ® be convex and F be starlike in A. Then, for Y analytic in A with Y(0) = 1,

%‘gf is contained in the convex hull of Y(A).

3. Inclusion Properties Involving the Operator QZ‘T/\ 5

Further, we assume throughout this paper thatk > 2, p e N, m € Ny, § >0, 0 < A <
1, 0 < g <1, ¢ € A and the power are the principal values.

Theorem 1. For0 < { <a < pandyu > p, then
u—1,mk nmk
S’glq’)\,ﬁ (D() - Sp,q,)L,(S(g)/

where ( is given by

V@i —2p— 20+ 17 +-8(p — 2a(p — 1)) + (20— 2p — 20+ 1)

u—1,mk

Proof. Assume that F € Sp,q,A, s (a) and let
(G5 s F(6)
(,’3,?"> = M(¢) = (p = Oh(g) +¢. (19)
gp,q,)Lj‘F(g)

where

h(g) = (Z + ;)hl(G) - (Z - ;)hz(G) (20)
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and h;(z) (i = 1,2) are analytic in A with /;(0) =1, i = 1,2. Using (11) and (19), we have
-1,
gﬂq S F(¢)

By computing the logarithmical derivative of (21) with respect to g, we have

=(p—0h(g) +—pu+p. (21)

c(9n, 157 (0)
qu)”s (c)

Now we show that M(g) € P,x(a) or hi(g) € P, i = 1,2. From (20) and (22), we have

o B (p— 2k ()
v=C—a+(p C)h(€)+(p_§)h(g)+€_y+r)- (22)

!

Gl Vi F () ; 9
( quAni ) - <4+;){g—a+(p—§)h1(g)+ (p_g()r)hl(g))irlé(i)ﬂ+P}
Gpars T (€)

ko1 (p— Dchy(c)
—<4‘z>{5‘”+@‘§mﬂd*wpémxg+2u+p}

and this implies that

%{5—“+(P—C)hi(g)+ ( (P—C)ghi(g)

P—C)hi(g)+€—y+p} >0(cedi=12)

We form the function ®(r,s) by choosing r = h;(g) and s = gh;(g). Thus

7 _ (p—0s
P(r,s)=C—a+(p C)r+(p—§)r+€—y+p'

Then, we have
(i) ®(r,s) is continuous function in D = ((C\g ”ﬂ’) x C;
(i) (1,0) € Dand R{D(1,0)} = p—a > 0;

(iii)

§R{CI>(ir2,s1)} = %{C —a+ (P - g)l‘?‘z + (P — g)(lzz_-fési u—+ P}

. (P=0C—p+ps

M M Gt )
(P—0)(C—pu+p)(A+13)
2[(p— 223+ (€~ + )]

IN

— X —

R+ Er%
2C

for all (iry,s1) € D such that sy < —%(1 +13),
where

R=2(0—a){—p+p)’—(p—0)C—p+p)
E=20-a)(p-0P2-(p-0C—u+p),
=(p-0B+C—pn+p>
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We note that R{®P(irp,s1)} < 0,ifand only if R <0, E < 0and C > 0. From R <0,
we obtain { as given by (18), and from 0 < { < a < p, we have E < 0. By applying
Lemma 1, h;(g) € P (i = 1,2) and consequently M(g) € P,x(7) for ¢ € A. This completes
the proof of Theorem 1. [

Theorem 2. For0 < ¢ < a < pand y > p, then

Ch i (@) C Cpts D),

p.q.\0 p.q.\0
where ( is given by (18).
Proof. Let

—1,mk -1,
Foe ¢ ) =6h iF) € Ch(a)
—1,m !
c(9) . V5 F(g)
N ( paA ) ES’;(IX)

-1, r
= G (9 p(g)) € Sk(a)

/
¢F (g) p—1mk ok
= o € Sp,q,A,é (a) C Sp,qr)\,é(g)

= g (52 e s
= g F(e) €Cy(Q)
= Fe¢ c;‘;;}f{s(g).

This completes the proof of Theorem 2. [J

Theorem 3. For 0 < g < a < pand y > p, then

—1,mk .k
Ky i (B) C K s(B ).

Proof. Let F € ICZ,;,l);Z;’k(,B,a). Then, there exists G(g) € S,%(zx) = S} («) such that

4
6(9) 15 7 (<)
GO € Ppi(B)- (23)
Then : o
G(e) =Gy, 158(c) €Sy 75 (@)
We set /
6(Gh s F(6)
(g’iﬁn?‘s) = R(c) = (p = Phlc) + B, 24
p,q,)\,(sg(g)

where h(g) is given by (20). By using (11) in (23), we get
71, ! , / ! , /
(9,5 F©)  o(dhms(sF @) +wm=pgir (sF () o)
u—1,m o ! ’
Opa a8 () 6(Ghs2(0)) + (1= p)Gh s3(c)
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Furthermore, G(¢) € S;‘ q}\ s (a) and by using Theorem 1, with k = 2, we have

G(g) € S;’ Z;n)\ 5(a). Therefore, we can write

¢ (gy";ﬂ/\ 58(9)),

G 4(6) =TRole) = (p—a)q(g) +a (g€ Py), (26)

where g(g) = 1+ ¢1¢ + ca6? + ... is analytic and ¢(0) = 1 in A. By differentiating (24) with
respect to ¢, we have

! !

c(Ghms(sF (@) =c(Ghins8(0)) Re) + R ()G 58(6)

then

!

HEAG) ,
% pgqf (gg(g) ) = ¢R(¢) + Ro(c)R(g). @7)
.9,M,0

From (25) and (27), we obtain

5(9,05F(©)  ¢R'(¢) + Ro()R() + (1 — P)R(&)

G5 8(c) Ro(o) + (1 —p)
so that
;4 1,m
c(9h,50r0)) o
L — A
G o586 R Ro(g) +(m—p) (28)
Let
R = (5+2) (= pm© 8}~ (5= 2){(p- () +5)

and

Ro(g) +(n—p) = (p—a)q(g) + (a+p—p).

We intend to show that R € P,x(B) or h; € P fori = 1,2. Then, we can say that
R{Ro(¢) + (1 —p)} > 0. From (24) and (28), we have

(27 (o)
Gh o 158(c)

- (r = Bl (6)
—h= (§+%){(P_ﬁ)hl((;)+ (p—w)q(g)Jr(;Jr#—P)}

C(k_1\ i, (P — B)ghs(c)
(i 2){“’ ﬁ)hz““(p—a)q(gwww—p)}

and this implies that

%{(P—ﬁ)hi(gH( (P~ Pl (c) )} >0(geN, i=12).

p—a)q(e) +(atpu—p

We form the function ®(r,s) by choosing r = h;(¢) and s = gh;(g). Thus,

rS) = (p— B)r (p—B)s
A TS R CEaTEr) )

Then
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(i) P(r,s)is continuousin D = C x C;
(i) (1,0) e Dand R{®(1,0)} =p—-B>0;

(iii)

. B , (p—B)v
Rl s} = R (p- P+ O

(p=B)(p—a)g1 +a+p—plsy

[(p—&)q + o+ p— pl* + (p — )20}

_ =Bl tatp—pl0+s)
2{[(p—w)qr +a+p—pl* + (p — )23}

IN

1
for all (iry,s1) € D such that sy < —5(1 +12).

By applying Lemma 1, we have R{h;(g)} > Ofor (i =1,2) and consequently
R(g) € Ppx(B) for ¢ € A. This completes the proof of Theorem 3. [J

4. Inclusion Properties Involving the Integral Operator 75 ,

The generalized Bernardi operator is defined by (see [23])
0+ /
TspF)e) = 52 [0 F(war 6> —p), @0

which satisfies the following relationship:
§(Top(F)(6)) = (6+p)F(6) = 0Tsp(F)(c)- (31)

Theorem 4. If0 < & < p,k > 2and F € Sy (w), then Js ,(F) € Sh,(a) (6 > 0).

Proof. Let

!

¢ (g;;:z;f/\,tsj&,p (-F) (G))
g:::,:l)\l(sjé,p (]:) (Q)
where h(g), given by (20). Using (31), we have

=R(¢) = (p—a)h(g) +ua, (32)

!/

G(gZ/’ZA/tsj&,AF)(g)) (5 + P)qu ) ( ) - 5g;‘:;rf)\,(5j5,p (]:) (Q) (33)
From (32) and (33), we have
gh

(0+ P) O o) rate (34)

g qA5j5p< )( )

By computing the logarithmical derivative of (34) with respect to ¢ and multiplying
by ¢, we have

!/

(9 @) o
m_“* =M+ (o) +a+ 6 (35)
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Now, we show that R(g) € Ppx(a) or h; € P for i = 1,2. From (20) and (35), we have

!

S(GhmsF©) k1 (p— a)ghy (c)
g”’m—}—(g)_lx = (44—2){(}7—0()]/11((;)4— (p_“)h1<g):_a+(5}

p,9.A0
k 1 (F 0‘) ‘l,( )
(1 2){( )hZ(g) (P “)hZ(g)z g“ ‘5}

and this implies that

(p— @)ghy(c) o
§)“3{(r’—l’¢)hz'(g)+ (p_w>hi(g)+“+5} >0(cen; i=1,2).

We form the function ®(r,s) by choosing r = h;(¢) and s = gh;(g). Thus

(p—a)s

D(r,s) = (p—a)r+ Goartats

(36)

Clearly, conditions (i), (ii) and (iii) of Lemma 1 are satisfied. By applying Lemma 1,
we have R{h;(¢)} > 0 for (i = 1,2) and consequently 75, (F) € Spq/w( ) for ¢ € A. This
completes the proof of Theorem 1. O

Theorem 5. If0<wa <p, k>2and F € CZ,’;’,I)’\IZS(“), then J5,,(F) € CZ”;?/’\%(&) (6 >0).

Proof. Let

Mk F
Fechm (w)« (9) € s;;q’f’w(a)
By applying Theorem 4, we have

/ ) 6(Jsp(F)(s)) ) y:
j&,p(%) esg,xms(“)@(pp) GS;;,;Z/\(S( )@jé,p( )( ) C,’:Z/\(s( )
which evidently proves Theorem 5. [J

5. Inclusion Properties by Convolution

Theorem 6. Let ® be a convex function and F & Syy}\z(s(p'y) then G € S;”;nf&(p'y), where
G=FxPand 0 <y < 1.

Proof. To show that G = F+® € S""? (py) (0 <7 < 1), it sufficient to show that

/ paAd
(pgg’f';f;';") contained in the convex hull of Y(A). Now
A0 /
(gqu ) _CD*Yqu)\é -
PG G o gh F
where Y = g(gg;;;'%f) is analytic in A and Y(O) = 1. From Lemma 2, we can see that
(4, contrined e 1555

o s contained in the convex hull of Y(A), since

ik oGl is analytic in A and
b pAaA0 PAaA 0
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wm
¢(G,asw(c)
YN CO={w: —( il ) eP(y)y, (38)
pgp,q,)\,§w(g)
then M lies in 0, this implies that G = F & € S (py). O
parT G ’ P paro\PT):

References

Theorem 7. Let ® be a convex function and F € Cﬁf;f}\z,(s(P”r% then G € C;j,’;gz,(s(p’y), where
G=Fx«xPand 0 <y < 1.

Proof. Let F € C;”IT)’LZ 5(p7), then, by using (13), we have

¢F (g 2
p( ) e Sy s(PY)

and hence by using Theorem 6, we get

¢F (g m2
(it e s

G(F*®) () _ auma2

€ Sp,q,/\j(p’)/)‘

Now applying (13) again, we obtain G = F x P ¢ C;l%zo

Theorem 7. [

(p7), which evidently proves

Remark 3. Particularizing the parameters q and m in the results of this paper, we derive various
results for different operators.

6. Conclusions

In the present survey, we propose new subclasses of p-valent functions by making use
of the linear g-differential Borel operator. The applications of this interesting operator are
discussed. Inclusion properties and certain integral preserving relations were aimed to be
our main concern.
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