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Abstract: The paper mainly investigates a stochastic SIRS epidemic model with Logistic birth and
nonlinear incidence. We obtain a new threshold value (Rf}’) through the Stratonovich stochastic
differential equation, different from the usual basic reproduction number. If R6” < 1, the disease-free
equilibrium of the illness is globally asymptotically stable in probability one. If R > 1, the disease is
permanent in the mean with probability one and has an endemic stationary distribution. Numerical
simulations are given to illustrate the theoretical results. Interestingly, we discovered that random
fluctuations can suppress outbreaks and control the disease.
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1. Introduction

In the past few decades, researchers have provided various SIR models to study the
spread of epidemics [1-5]. For example, Beretta and Takeuchi [1] proposed a deterministic
SIR model with varying population sizes, and Lu et al. [2] analyzed a SIR epidemic
model with horizontal and vertical transmission. In practice, the persistence of infectious
diseases and disease-related deaths may lead to changes in birth rates as the population size
increases toward its carrying capacity. In other words, these SIR models should consider
density-dependent limited growth. Suppose that the total population N(f) can be divided
into three compartments at time t: susceptible S(t), infectious I(f), and removed R().
Zhang, Li, and Ma [3] introduced a SIR epidemic model with Logistic birth as follows

ds(t) = Kb - rNI(;))N(t) —uS(E) —nS(HI(H) | dt,

dI(t) = [S(OIE) — (u+ ¢ + ) I(D]dt,
dR(t) = [I(t) - pR($)]dt,

)

where K is the environmental capacity, b is the birth rate, # is the exposure rate, y is the
natural mortality rate, r(= b — ) is the intrinsic rate, x is the mortality rate due to disease,
and ¢ is the recovery rate of the infected.

For some diseases, the recovered individuals will lose immunity after a certain
period and become susceptible again. The SIRS model can be used to describe this
phenomenon [6-9]. However, most SIRS models often ignore the density-dependent de-
mographics and heterogeneous populations. Inspired by the above models, we propose
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a deterministic SIRS model with Logistic birth and a nonlinear incidence rate, which is
formed by

as(e) = | (b= NG = wS(0) = nF(S(0), 100, R(0) + pR0)
dI(t) = [nf(S(), 1(), R(£)) — (u+ ¢ + ) 1(D)]dt, @
dR(1) = [p1() — (u+ W)R(E)]de,

where f is a positive function, and 1 denotes the immunity loss rate of the recovered. The
model (1) is a special case of model (2) with p = 0and f(S(t), I(t), R(t)) = S(t)I(t).

In the real world, all dynamic systems are affected by environmental noise [10-13]. It
is necessary to study a stochastic SIRS epidemic model with Logistic birth and a nonlinear
incidence rate is necessary. Considering the effect of random perturbations, we assume
that the perturbations in the environment are expressed as a parameter # change to the
random variable # — # + cdB(t) and obtain the following stochastic SIRS model

ds(r) = Kb - er§”> N(t) = uS(t) = nf(S(1), 1(1), R(t)) + pR(1)| dt

— o f(S(t), I(t), R(¢))dB(t), )
dI(t) =[nf(S(£), 1(£), R(£)) = (u + ¢ + 1) I(B)]dt + o f(S(¢), I(£), R(¢))dB(¢),
dR(t) =[@I(t) — (u + )R(t)]dt,

where o represents the intensity of white environmental noise and B(t) is a one-dimensional
standard Brownian motion. Obviously, model (2) is also a special case of model (3) for
o = 0. This paper aims to analyze the asymptotic properties of the stochastic model (3) by
studying global stability, persistence, and stationary distribution.

In epidemiological studies, the basic reproduction number is an indicative factor in
considering whether a disease is endemic or not. In this paper, we introduce a new threshold
value through the Stratonovich stochastic differential equation and further analyze the
dynamic properties of model (3).

2. Preliminaries

DenoteRi ={x=(x1,x,%3) €R3:x,>0,1<i<3},and® = {(S,[,R) : S >0,
I>0,R>0,S+I+R>0}. Let (O, F, {Ft}i>0,P) be a complete probability space with
a filtration {F; }+>0 satisfying the usual conditions (Fj is increasing and right continuous
while F( contains all P-null sets). From [14], we give Itd’s formula for general stochastic
differential equations. Consider a 3-dimensional stochastic differential equation

AW(t) = F(W(E), )dt + g(W(t),H)dB(t) for t > to

with an initial value W(0) = W, € R3, B(t) denotes a 3-dimensional vector of stan-
dard Brownian motions defined on the complete probability space. Let the function
V(W,t) € C¥1(R3 x [tg,); R} ) be continuously twice differentiable in W and once in ¢.
The differential operator L is defined as

L= 2y AW+ Y [T g )] S
ot i1 ! ! an Zij:l ! ! z]E)WlaW]

Let a function V € C*!(R3 x [ty,0); R, ), we obtain

LV(W, 1) = Vi(W, t) + Viy (W, £) f(W, £) + %trace [gT(w, t)VWW(W,t)g(W,t)],
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2
where Vt = aa—‘t/,VW = (%, aaWVZ'aaWV3)' VWW = (#XVV]‘)SX} Then,
dV(W(t),t) = LV(W(t),t)dt + Viw(W(t), t)g(W(t), t)dB(t).
Lemma 1. [15] The It6 stochastic differential equation (SDE)

dAW; = F(£W())dt + g(t, W(E)dB(8),
W(0) = Wo,

is equivalent (has the same solution) as the Stratonovich SDE

aw(t) = (5, w(e)) - 3 5T gt wie) )ar+ g0, Wi0) 0 a8 ()

In models (2) and (3), suppose that the function f(S, I, R) satisfies the following
conditions:

(Hy) f(S, I, R) is nonnegative and twice continuously differentiable for all (S,I,R) €
©,9f(S,1,R)/9S > 0and of(S,I,R)/0R < 0.

(Hz) f(S,0,R) = f(0,I,R) =0, f(S,I,R)/I < 9f(S5p,0,0)/9I for any (S,I,R) € O,
and 0f(Sp,0,0)/9I > 0, where Sy = K.

Under assumptions (Hj) and (Hy), it is obvious that

3f(0,I,R) _ 3f(0,I,R) _ 3f(S,0,R) _ 3f(S,0,R)

ol aR 35~ R -0 (BLRe6

Lemma 2. For any constants p > q > 0,let D = {(S,LR) : S > 0, > 0,R > 0,9 <
S+ I+ R < p}. Under (Hy) and (Hy), we have

max {f(S,I,R) f(S,I,R)} <o,

(SL,R)ED s 71

19£(S,LR) _ f(S,LR)
e {1705 z

7

19£(S, 1, R)
1~ a5 ‘}<°°'

The proof of Lemma 2 is similar to that of Lemma 2.1 in Ramziya et al. [16]. Denote
Ms = maxr{f(S,1,R)/S}. Define a bounded set

F:{(S,I,R):S>O,I>O,R>O,K(1—§)§S+I+R§K}. )

Lemma 3. Suppose that (Hy) and (Hy) hold.

(i) The region I is almost surely positive invariant in model (3).

(ii) For any initial value (S(0),1(0), R(0)) € R3, model (3) has a unique positive solution
(S(t),I(t),R(t)) ont > 0. That is to say, the solution will remain in a compact subset of T.
Furthermore,

K(l - 5) < liminf(S(t) + I(t) + R(t)) < limsup(S(t) + I(t) + R(t)) < So.

r t—co t—y00

The proof of Lemma 3 can be obtained using a similar method in Cai et al. [17]. The
lemma shows that we can study the dynamic properties of model (3) in the bounded
set . To obtain the basic reproduction number of model (3), we define a C? function
V:V(S(t),I(t)) =In(S(t), I(t)). By using Itd’s formula, it follows that

x

> |dt

dInS :E<(b—r11\<])N—yS —1f(S,I,R) +¢R> - %azfz(S,I,R)

V)
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—of(S, I,R)%dB(t),

dInl = E(qf(s, LR)—(p+¢+x))— %aZfZ(s, I,R)

N"—‘

: ]dtﬁf(S,l,R)}dB(t).

Thus, we have

ds = Kb — r%)N —uS—nf(S,I,R) + R — %szz(s, I, R)Hdt —af(S,1,R)dB(t),

©)
dI = {nf(s, LR)— (p+¢+x)— %azfz(s, I,R)H dt +of(S,I,R)dB(t).
We transform (5) into a Stratonovich SDE and obtain
ds _Kb—rIIZ>N—ys —1f(S,I,R) + ¢R — %azfz(S,I,R)%
- %azf(s, I, R)af(sa’SI’R)] dt —f(S,I,R) odB(t),
dI = {qf(s, LR)— (u+¢+x)l— %azfz(s, I,R)% - %azf(s, I,R)af(sa’ill’m dt
+0f(S,I,R) o dB(t).
Taking the mean value of the above equations derives
[ N 1 5.5 1
1, 9f(S,LR)
57 f(S,I,R) 35 dt
E(dL) = | nf(S,LR) ~ (u+ ¢+ K1 — 202 F(5, LR) T — Lo2f(s, 1, R) LR gy
As a result, the study of model (3) can be turned into
N 1 5., 1
E(dS) =|(b—rg |N=uS=nf(S,IR)+¢R - Eazf (S, LR)g
1 9f(S,1,R)
Eazf(s, I,R)T]dt, ©
E(dI) = [qf(S, LR)— (u+¢+x)— %azfz(s, I,R)% — %sz(s, I,R)w dt,
dR =[¢] — (u +y)R]dt,

Denote x = (I, S, R)T. Then system (6) can be given as

where

1f(S,1,R) = J02£(S,1,R) 2GR
9(36') = 0 ;
0
(n+¢+x)I+302f2(S,I,R)}

7 (x) = ( —(b=rR )N+ uS+yf(S,1,R) — R+ 202 f2(5, I, R) & + 32 (5, 1, R) LS4 )
—¢I(t) + (n+ P)R(H)
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Through the calculation, model (3) has a unique disease-free equilibrium Ey = (S0,0,0),
which is also that of model (6). The Jacobian matrices of % (x) and 7"(x) at Eg are denoted
as F and V, respectively. Under the assumption (Hj;), by the calculation, there are

£ (Sp,0,0 £ (50,0,0) \ 2
Uf(aol )_%0-2( f(BOI )) 0 0
F= 0 00
0 00
and
u+o+x 0 0
V=| —b42r+ ¢80 oy
—¢ 0 pu+y
Then the basic reproduction number of model (6) is
1 9f(S0,0,0) g (af(SO,O,O))2 o2
Ry = p(FV1) = -
0 = ¢l ) ol  u+¢+x ol 2(u+¢+x)

- 9£(50,0,00\* o2
_°_< ol )2(y+¢+x)'

which is also that of model (3). In view of o = 0, model (6) is then transformed into model
(2). The basic reproduction number of model (2) is easily obtained as

af(SOI 0, 0) 7

Ro= = wxo+r

In the following, we present some properties of model (2).

Theorem 1. The disease-free equilibrium Ey = (K,0,0) of model (2) is locally asymptotically
stable if Ry < 1.

Proof. Given that assumptions (Hj) and (H;) hold, the Jacobian matrix of model (2)

evaluated at E is
—r b—2r b—2r+7v¢
J(Eo)=| 0 —(u+x+¢) 0 :

0 ¢ —(n+9)
Thus, the characteristic equation at Ey is
A+r)A+p+r+g)(A+p+y)=0,
which has eigenvalues A\ = —r < 0,A; = —(y+x+¢) < O0Oand A3 = —(p+ ) < 0.

Therefore, the disease-free equilibrium Ej is locally asymptotically stable. The proof is
complete. [

Theorem 2. If Ry > 1, model (2) has a unique endemic equilibrium E* = (S*,I*,R*), which is
locally asymptotically stable.

Proof. The Jacobian matrix of model (2) evaluated at E* is

[ AT AT A G
J(EY) = pUELRD SR yktrg)  pELRD /

0 ¢ —(n+v)
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where A = b — 2% (5" 4 I* + R*). The characteristic polynomial of J(E*) is

A+ @A’ + A +a3 =0,

where
a =A—naf(5*g,§’R*) +naf(5*5§*’R*) “Bu—x—¢—9>0,
af (S*, 1%, R* af (5%, 1%, R
ﬂz_(A—H—ﬂ i 53 ))(17 i 5 )—ZV—K—fp—tlJ)
df (5%, 1%, R* df (5*,I*,R*
+(’7f<al-)—ﬂ—7‘—4’>(—ﬂ—l/])—’74’f(aR)
(A ) P o
df (5%, 1%, R* df (5*,I*,R*
a3=—<A—u—17f(aS)>(<17f( B )—H—K—fl’)(—ﬂ—lP)
df (5*, 1%, R* df (5%, 1%, R af (5*,I*, R
- f( z ))H7 f( 1 )((_M,7 f( x ))(y+¢)
+ (—A+naf(s*é§’R*) —¢>¢) > 0.

We can verify that aja, — a3 > 0. Therefore, E* is locally asymptotically stable by
employing the Routh-Hurwitz criterion. [

3. Existence and Uniqueness of the Global Positive Solution

Theorem 3. There is a unique solution (S(t),I(t), R(t)) of model (3) on t > 0 for any given
initial value (S(0),1(0), R(0)) € R3., and this solution remains in R3_ with probability one.

Proof. The coefficients of model (3) are locally Lipschitz continuous. For any given initial
value (5(0),1(0), R(0)), there exists a unique local solution (S(t),I(t),R(t)) € R3 on
t € [0, 7.), where 7, denotes the explosion time. To prove the existence of a unique global
solution to the stochastic model (3), it is only necessary to prove 7, = coa.s..

Let Iy > 0 be sulfficiently large, such that S(0), I(0) and R(0) all lie within the interval
[%, lp]. For each integer [ > I, define a stopping time

T = inf{t €0, %) : min{S(#),I(t),R(t)} < % or max{S(#),I(t),R(t)} > l},

where inf@ = oo (as usual @ = the empty set). Clearly, 7; increases as | — oco. Let
Teo = lim;_,, 77, then 7o < T, a.s. If 7o = o0 a.s., then 7, = o0 a.s. Otherwise, there exists
a pair of constants T > 0 and € € (0,1), such that P{7. < T} > €. Hence, there exists an
integer I1 > Iy, such that

P{y <T}>e VIZ>Hh. (7)

Define a Lyapunov function by
V(S LR)=(S—1-InS)+(I-1—InI)+ (R—1—1InR).
Forany! > lpand t € [0, 77), applying Itd’s formula to V, we obtain

dV(S,1,R) = LV(S, I, R)dt + o f(S, T, R) (; _ DdB(t), ®)
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where

LV(S,I,R) = (1—)(( —r)N uS — nf(SIR)—i—v,bR)—i—azﬁ(S,I,R)Slz

+<_1> f(S,LR) — (u+¢+x)I) + f2<51R)112
(1= )=o)

:r<1_N)N_N(b_rN>+3y+nf<S,LR> _t/ﬂé%+;az<f<s,1,R>>2

—

K S K S S
S,I,R 1 S,ILR I
—KI—Ufi( )—|—4>+K+ 02<f( )) (P——HIJ
I 2 I

N 1 9f(50,0,0

<r(1-— |N+3u+nMs+ 02M5+¢+K—|—7 > (f(50.0,0))7 +
K 2 ol

=Ky,

where Kj is a positive constant. Then according to (8), we have

dV(S,I,R) = Kydt + of(S, 1, R) <; - )dB( ) ©)

Integrating both sides of (9) from 0 to 7; A T and taking the expectation, we have
EV(S(qAT),I(gAT),R(mAT))
< EV(5(0), 1(0), R(0)) + KE( A T) + E/ £(S,1,R) (; - )dB( ) (10)
< V(5(0),1(0),R(0)) + K; T.

Let )y = {w: 7 < T} forl > ly. From (7) we have P(();) > e. For every w € ();, we learn
S(1,w) or I(1,w) or R(7, w) equals either  or 1. Therefore, from (10), there is

E(IQIV(S(TZ/\T),I(TIAT),R(TIAT)))
P(QI)EV(S(TII )I(Tlr )R(Tl/ ))
zs{(l—l—logl) <% 1—logl) (I1—1—1logl)
1
T

—1—1log l) (I—1—1logl) A (%flflogﬂ},
where Iq, is the indicator function of ();. Taking / — oo results
oo > V(5(0),1(0),R(0)) + K1 T = oo.
Hence, T, = o0 a.s.. It completes the proof. O

4. Global Stability of Disease-Free Equilibrium
Denote

Yl n
——————— and 0= —m—or— .
9f(S0,0,0) /91 ’ 2(u+ ¢ +x)

The following result reveals the asymptotic property of Ey in model (3).

0 =

Theorem 4. Under (Hy) and (Hy), the disease-free equilibrium Eg is globally asymptotically
stable in probability one if one of the following conditions holds: (a) R} <1 and ¢ < 0,4, or (b)
o > max{0oy, 0p}.
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Proof. Let ki and k; be two positive constants. Define a Lyapunov function

V(S,I,R) = %kl (K—S)*+ klzlkz + ;k;‘pRz.
Obviously, V(S,1,R) > 0 in the region I'. Through It6’s formula and model (3), it follows
et dV(S,I,R) = LV(S,1,R)dt +cf(S,I,R) (kl (K—8)+ Ik2_1>dB(t),
where

LV = kl(KS)<(erI\<])NyS —nf(5,I,R) +1,IJR)
+ 1klazfz(s, LR)+ I (yf(S,I,R) — (u+x + ¢)I)

+

Nl—= DN

(ks — 1)0?f3(S, I, )12 + ";}"R(w —(u+P)R)
— k(K-S ((brI;)N yS) F k(K — 5);71]((5'7[“2) —ki(K = S)$R

1 S, I,R)\? S,I,R
+2k10212<f( 1 )) +171k2f( 1 )_(y+K+¢)1k2

L S(FSLRN g 1 5 F(S LR, ki (p+ )R

For any constant p > 0 and k, < 2, we have
I(t) <K—=S(t), > <K* 1%, and I(K—S) < %12 +o(K—-58)*< %KHZI"Z +po(K—S)%

Based on the above inequalities and (Hy), it yields that

LV < —kl(K—S)(<b—rII\<]>N—yS—np(K—S)af(SE(;}O’O)) — k(K = S)yR

2
N ;k10212<af(5(_;>}0r0)> +,71kzm C(utr+ )

Liyo? (af(sf" 0,0) )szz _ Ll (f(s' I'R)>21’<2 Rk~ 5) -~ AP IR

ok ol I ¢

2

1 oo f(S,LR)
ki —K> ek LA 2
+ 1’74p I

S—kl(K—S)(<b—r2}>N—yS—np(K—S)af(Sg}O’O))

2 2
e <’7f(S'II'R) ) - Lo (f(S,ILR)> ) Lo <8f(53}0,0)> e

_ kltp(l’l + w)RZ i Z—kz kz af(so’o’o) 1 2 Z—kz k2 af(SOI 0/ 0) 2
e +k1174p1< I Y + zkw K="21 T

:kﬂKS)((brII\(})NySqP(KS)af(Sg}O’O))

2
+1"2<'7f(5’11’m+<#+x+¢)—;02(f(5'1m> )

1 _1, (9f(Sp,0,0) 2 9f(S0,0,0) 2
ko | 212—ky [ ©J\20, YY) - 2 YS\C0/ YY)
+ I <2k10 K ( i + Zkza i
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1 2 1,9f(50,0,0)\ _ kigp(u+¢)R?

Denote h(x) = nx — (. + ¢ + ) — 202x2. The function h(x) increases for x € [0,77/0?].
IfR}' <1land o < g, then f(S,I,R)/I < 9f(S0,0,0)/9I < 1/0?. We obtain

2
LR gy Loz (L)

3£ (S0,0,0 1 ,/3f(S0,0,0) )2
Snff(ég’l)—(#+4>+’<)—2‘72<f(aol)> =A<

If ¢ > max{o,, 03}, we have

2
Uf(S/I/R) —(‘M—‘,—q)—l—K)—la’z(f(S’I'R))
I 2 I
1,12
< 5oz — (e +x) £ A <0,

Suppose the condition (a) or (b) holds. Then,

LVS—kl(K—5)(<b—rll\<])N—yS—17p(K—S)af(S§}O’0))

2 2
+ IR (max{Al,Az} + %k1021<2*k2 <af(s§}o,0)) + %kzaz <af(s§}o,0))

1

x2-k 9 (S0, 0,0)) _ kap(p +p)R?
or o

We choose the constant p > 0, such that

N 9f(S0,0,0)
(b—rK)N—yS—iyp(K—S)aI >0,

and two positive constants (k1, ko) satisfy

2 2
max{Ay, A2} + %kaKHz (af(SO'O'O)) 4+ Lo? (af(so,o,o))

ol 2 ol
9f(Sp,0,0)

Y, < 0.

1
ki — KZ*kz
TRy 0
Therefore, LV is negative definite in the region I'. By applying the global asymptotic
stability theorem [14,18], we can obtain that the disease-free equilibrium Ey of model (3) is
globally asymptotically stable in probability one. The proof is complete. []

For the stochastic model (3), Theorem 4 reflects the asymptotic property of the disease-
free equilibrium Ey under conditions (a) and (b). Denote

V2 + ¢ +1)(Ro — 1)
Ro—1

for Ry > 1.

Based on the relationship of Ry and R{}', we analyze the properties under the ranges of Ry.

Corollary 1. Under (Hy) and (Hy), the disease-free equilibrium Ey is globally asymptotically
stable in probability one if one of the following conditions holds: (a) Ry <1, (b) 1 < Ry < 2 and
o> 0g,0r(c) Ry >2and o > oy,
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5. Permanence in the Mean of Disease
In this section, we discuss permanence in the mean of the dlsease For any t > 0, the
average value of a continuous function u(t) is defined by (u fo s)ds/t.

Theorem 5. If Rf} > 1 and K < B/, then any solution (S(t),I(t), R(t)) of model (3) with
initial values (S(0),1(0), R(0)) € R is permanent in the mean with probability one. That is, there
exists a constant m > 0, such that

Hminf(S(¢)) > m, ULminf(I(t)) >m, liminf(R(t)) > ma.s.,

t—o0 t—o0 t— o0

where

, b*K
B:mm{Ky, (1—7)(;44-1() TS }
Proof. Integrating model (3) from 0 to t and dividing by ¢, we have

I() —1(0) ¢ R(t)—R(0)
t t TR t

_ r ue
= IN() = N2 () = (56 = (ot w0 1)
> B— p(S(t)) - (u+x+ L )<1<t>>

+¢
That is,
R )
Rk — )10
Thus, o
_ _B o) 1 o
So—(S(t)) <K ‘u—i- ” +‘u<]1+ +y+1,b>< (1)). (11)
Through Lemma 3, lim;_e0(¢(t) /) = 0 a.s.. Using [td’s formula, we have
o2 2
dinI(t) = <;7f(5(t>'11((:))'R(t)) (it ¢+ 5) — 7f (S(t )21((t)) R(t )))dt
4 SEOI0RO) 4o

I(t)

From (H;), for any ¢t > 0, it follows that

cllnI(,f)2<,7f< (1), 1), R(1)) (me_(w) )dt

(t) 2 ol
F(S(1), 1), R(1))
+ (t) dB(t)
_<178f(55} O (s ) % df( so,oo>
+,7(f(5(t),1(f),R(t)) f(S0, (1), R(1) | f(So,1(t), R(t)) _ 9f(S0,0,R(t))
0 0 1(t) al
ACOORI) _ HE000)) g HEOIOR) gy,
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By Lagrange’s mean value theorem, we have

f(S(),1(t), R(t)) — f(So, I(8),R(£)) | f(So I(t),R(t)) — 9f(S0,0,R(t))

I(t) I(t) I(t) ol
L (S0, 0RW) _ 3f(50,0,0
ol al
_ 1 of(&(t), I(t),R(t)) 1 9f(So,0(t). R(t)) _ f(So,&(t),R(t))
-1 = (S(t) — So) + (m T AL o0 )I(t)
2
+ d f(saolraollze(t))R(t)’
where &(t) € (S(t),Sp),(t) € (0,1(t)) and 6(t) € (0, R(¢)). Hence,
2 2
dini(t) > (Waf(Sg}O,O) —(p+¢+x) — % (8f(5§}0,0))
ey HELIORO) g,
9f (So.L(1).R(t)) 2
7€<t) _f(SO/ g(ﬂrR(t)) 0 f(S ,O,Q(t))
A — L I(t) + aOIE)RR(t)>dt
- ACOILRED)

From Lemma 2, it is obvious that

- 19(S,I,R) B
Pl_mf‘ix{‘l 39S <o, Py =max 9I9R

P; = mlgx{ } < 0.

Forany t >0, (§(t),I(t),R(t)) € T, (So,¢(t),R(t)) € T, and (Sp,0,0(t)) € T a.s. Thus,

L AfE) I, R(E) o, 2f(S0,0,6(1))
I(t) FS = v 0IoR

9?f(So,0,R) ‘} _

and 9f(So,LR)
£(So, I, R) — YBuLR)
12

> —DP as.

and

WQQ — f(So,¢(t),R(t))
¢2(t)

> —Psas..
Further, we have

dInI(t) >(n(3f(So,0,0)/0I) — (u + ¢ +x) — c*(df(S0,0,0)/3I)*/2
—1(P1(So — S(t)) + P3I(t) + PaR(t)))dt + o (f(S(t), I(t), R(t))/I(t))dB(¢).

For the above inequality, we integrate from 0 to ¢ and then divide by f into both sides. It
follows that

2 2
din(t) > (naf(sgio,o) —(pt+¢+x)— % <8f(5§}0,0))

(12)

—y(P1(So — S(8)) + PI(1) + PzR(t))> dt + af(S“)'II((:))'R(t” dB(t).

Since



Mathematics 2023, 11, 1737

12 of 17

we substitute (11) into (12) and have

2
1n1t(t) Z1nlt(0) . (ﬂaf(sg}o,o) (54 ptx) 7<af(53}0 o)) )
(P50~ (S(0)) + Pat1()) + PaR()) + o [ LEDG R g
2
:lnIt(O) .\ (ﬂaf(sg}o,m (54041 %(af(s(g}O 0)) )
o R(0) - R(1)
~Py (u+x+ y+¢><1<t>> e LR ) BNIO)

wob [ LEOIRO) gy, ,,p1<1<_§+%)

:(Uaf(SS}O,O) (it — %<Bf(55}0 o))2) s (K— g)

—r;(;(m kt HP >P1+ ¢ P2+P3)<1(t))+<1>(t),

Bt +¢
where
(1) — lnIt(O) _’7<P1g;(t) +P2R(?V+1P ) / (S ())dB(r)‘

From the large number theorem for martingales [19], we have

lim — /f 8),1(s), ())dB() 0.

t—oo t

Hence, lim;_,o ®(t) = 0 a.s.. Thatis to say, by Rl > 1, liminf; e (I(t)) > U/D £ L, as.,
where

u:<rlaf(sg}0’0) (u+¢+K)—2<af(S§}OO)> )—ﬂpl(K—i) >0,

DIﬂ(}ll(]/l+K+ylip¢)P1+ jthP2+P3) > 0.

Therefore, I(t) is permanent in the mean with probability one. According to Lemma 2,
)

F(S(t), I(t),R(t)) < MgS(t) for all t > 0. Integrating from 0 to t and dividing by f into
both sides of the first equation of model (3), we have
S(t) —S(0 1 [t
SO0 Sy~ £ N0) 1 [ (gMs + p)S(s)ds — —/ F(S(5),1(5), R(5))dB()
1
281 [ (Mg + s ds——/f R(3))dB(s).

Taking t — oo, we have liminf; ,,(S(t)) > B/(u + 7Ms) a.s.. Similarly, from the third
equation of model (3), we can obtain lim inf; e (R(t)) > ¢/ (u + ¢) L, as.. O

6. Existence of Stationary Distribution

Theorem 6. Suppose (Hy) and (Hy) hold. If Ri' > 1, then model (3) has a unique stationary
distribution.
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Proof. From Lemma 2, let

— max{ | 21500 {]f(5,1,0) - A0
Ml - mraX{ alas’} < 00, MZ = ml—ax 12 < oo,
_ 19£(S,I,R)
MS—mraX{‘IaR‘}<OO.
Since i
1 df(Sy,0,0 9f(Sp,0,0
H+K+¢+2‘72< . 31 )) =1 A E())I ) <o,

we choose a constant v € (0,1) and make it small enough, such that

<0,

af(80/0/0)>2 . naf(S0,0,0)
ol ol

1
y+K+¢+2(1+0)02(

and 7M3 — /v < 0. Let a > 0 be a large enough constant, and
I'*={(S,LR):$>0,I>0,R>0,S+I+R < Sp},

1 11 11 1
D—{(S,I,R)er:<S<So—,<I<So—,2<R<SO—2}.
a a a a a a

Next, we construct a nonnegative C2-function V, such that LV(S,I,R) < —1 for any
(S,1,R) € T*\D. For convenience, we can divide I'*\ D into three domains, as follows

1 1 1
D, = {(S,I,R) el :0<S< a}’DZ = {(S,I,R) er-:s> E’0< I< a},

Daz{(S,I,R)eF*:Sz ,Izi,o<R<1}.

Clearly, D = D; U D, U D3. Next, we will prove that LV(S,I,R) < —1 forany (S,I,R) €
D;(i = 1,2,3). Define a nonnegative Lyapunov function as follows

V(S,I,R) = Q(S,I,R) — Q(So, Ip, Ry) = Vi(I) + Vo(S,I) + V5(S) + V4(R) — Q(So, I, Ry),

where

Vi(I) = %rv, V(S 1) = %rv(so _S), V(S) = % Vi(R)=R—1—InR,
and Q(So, Ip, Ro) is the minimum value of Q(S, I, R). Through Itd’s formula and (Hj),

we have

—_

LVi = —1" V(g f(S,LR) = (4 + x4+ ¢)I) + 5 (14 0)o* 1“2 (S, I, R)

= I—U(qf(S’ILR) —(p+x +4>)) - %(1 + v)azrv(f(s’lm)z.

N

By Lagrange’s mean value theorem, we have

9f(S0,0,0)  f(S,I,R) 9f(S0,0,0) 3f(5,0,0) 3f(5,0,0) £(S,1,0)

ol 1 ol ol ol 1
f(S5,1,0)  f(S,I,R)
+ —
1 1
_9%f(£,0,0) £(5,0,0)— LS 19¢(s,1,0)
=—sa1 (0~ 8)+ 2 “7 ok R

SMl(SO — S) + Myl + M3R,
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where ¢ € (S,S0),C € (0,I) and 6 € (0,R). Hence,
2
Lv, <I™ <u+x+¢+;(1+v)oz<af<5§}0'0>> _,79f<5§}0r0>>

+1M1(So — S)I" % +yMI' ™% + M3 "R,

LV, = — %I*U ((b — r%)N —uS—nf(S,LR)+ ‘PR>

190 -5) (1 w9

2 2
51 +0)0? (f(S'II' R)) (59— §) — 2 (f(S'II' R)) v
=21 ((b ~ YN - yS) + Il_vgfi(&[l, R _ Pror

2
“”(50—5)<u+x+¢—17f(5'1m+;(1+v)a2<f<5fm) )

I
e (MR )2

<I7(5 = 5) (V Frtgt o0l +v>02<f<~°~ILR>>2>

+ Il—vﬁf(s’ I’R) _ QI—UR _ 11—‘00.2 f(S/ I/R) 2
v I v I !

LV3 = — ;((b—rz)N—yS —1f(S,I,R) +1,bR) +02<f(s,51,12)>2;
< - (b;}’)]\l_’_ %(}l—FﬂMs-l—O'ZM%) - %R
< ‘ZQEIW 3G —1#,3)1\1 (1 + 1M +02Mg)2 - %R,

Vi =(1- & ) @1 = (0 IR <~ + 50+ -+,

where

(b—r%)N

1 2
+ .
282 2(b—r¥)N

% (y + Mg + (TZM%) <

(;4 + Mg + azMé)

Based on the inequality of LV;(i = 1,2,3,4) and I' 7 < S(l)*”, forany (S,I,R) € T*\D

we can obtain

ol ol 252

2 _+N
LV<1_U<P+K+¢+;(1+v)02(af(50'0'0)> —naf(50’0’0)>—(b rK)N—¢é+Q,

where

_¢cl-v Eaf(SO,O,O) 1 2. 2\2

K

2
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For a larger enough a > 0, if (S, I, R) € Dy, then

Co-rN

So— TQ<-1L

For (S,I,R) € Dy, we have

2
I-v(wﬁwguﬂwz(w) - afgw)g

and —¢I/R+ Q < —1if (S,I,R) € D3. Therefore, we have LV < —1 forall (S,I,R) €
I'*\ D. Based on the theorem for a unique stationary distribution [14,18], we complete the
proof. [

7. Numerical Simulations

In this section, the effect of white noise on model (3) can be determined by the Milstein
method in Higham [20]. Thus, we obtain the discretization equations of model (3):

St =5+ | (0= r 2RO (50614 109 + RO - (1R + 9y

- ySk} At — (S, I Ry) I:U’(:k\/E-i- %UZ(C,% - 1)At},

vt =L+ [1f (S B Ri) = (e + ¢+ 1) A + £ (S, T, Re) {aék@ +502(8 - 1)At},

Rip1 =Ri + [¢I — (1 + ) Re]At,

where ¢ are the independent Gaussian random variables that follow the distribution
N(0,1) fork =1,2,...,n. Here, f(S,I,R) = SI/N.

Example 1. Assume thatb =0.3,r = 0.18, p =0.11, K= 0.9,y = 0.86, u = 0.12, ¢ = 0.13,
x = 0.21, and At = 0.01. Obviously, Ry = 1.6087 > 1. For model (2), the endemic equilibrium
E* is globally asymptotically stable. In model (3), if ¢ = 0.84, then R = 0.8417 < 1 and
02 —17/9f(S0,0,0) /01 = —0.0344 < 0. Based on Theorem 4 (a), the disease-free equilibrium
Ey of model (3) is globally asymptotically stable. It reveals that S(t) of the models (3) and (6)
are close to the environmental capacity K, but I(t) and R(t) are close to 0. When o = 0.35, and
RG = 1.4755 > 1, the disease is persistent. In addition, the intensity of white noise can suppress
the disease outbreak. Figure 1 shows the curves of (S(t),I1(t), R(t)) under these parameters.

v

0 0 0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 00 900 1000
time t time t time t

Figure 1. The paths of S(t), I(¢), and R(t) under the initial value (5(0), I(0), R(0)) = (0.6,0.5,0.3).

Example 2. Take the initial value (S(0), 1(0), R(0)) = (0.6,0.3,0.5), and parameters ¢ = 0.11,
n =054 u =005 ¢ =02« =0.09and c = 0.2. The time step size At = 0.01. Through
the calculation, we have Rg = 1.5882 > 1, Rj = 1.5294 > 1, and K — B/u = 0. Based on
Theorem 5, the disease is permanent. Next, we consider the effects of the environmental capacity K
and the birth rate b according to two cases:

(i) K = 09,1.1, and b = 0.2. We observe that S(t), I(

£), and R(t) will increase when K
increases. Figure 2 illustrates the different evolutions of S(t), I(t

), and R(t).
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(ii) b = 0.6,0.2, and K = 0.9. The nonlinear incidence initially becomes larger due to the
increase of b, so that S(t), I(t), and R(t) become smaller at the beginning. Moreover, the population
slightly increases when the birth rate plays a major role (see Figure 3).

el(2) K=0.9]
—— model(3) k=09
09|

= = modeli2) K=09) = = modell2) K-09
045 |—— model(3) k=09

—— model(§)K=0.9
~ = model(2)K=1.1 ~ = model(2) K=1.1
—— model(3)K=1.1 04 —— model(3) K=1.1
—— model(e) K=1.1 —— model) Kt 1

R N . W

O A i
'.'y%’ﬂg\l’il’l‘g}l‘.%m

0 o1
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
time t time t time t

Figure 2. The paths of S(), I(¢), and R(t) under the environmental capacity K = 0.9, 1.1.

= = modell2)b-0.2 = = modell2)b=02
—— model(3)b-0.2
b-02

—— model(6) b

R

005 (8]
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
time t time t time t

Figure 3. The paths of S(t), I(¢), and R(¢) under the birth rate b = 0.6,0.2.

Example 3. Take b = 0.3, r = 025, K = 09,7 = 05, 4 = 0.05, ¢ = 0.2, x = 0.09, and
o = 0.15. Obviously, Ry = 1.4375 > 1. From Theorem 6, model (3) has a unique stationary
distribution. Figure 4 provides the density functions of S(t), I(t), and R(t) in model (3).

60 70 200

180

Frequency

0
045 05 055 06 08 07 075 004 006 008 01 012 014 016 018 02 022 01 0 oi 02 03 04 05 08
s 1) R(Y

Figure 4. The histograms of S(t),I(t), and R(t) with the initial value (5(0),1(0),R(0)) =
(0.6,0.2,0.5).

8. Discussion

In this paper, we analyzed the dynamic properties of a stochastic SIRS epidemic model
with Logistic birth and nonlinear incidence. Through a Stratonovich SDE, we obtained a
new threshold value Rfy’ to analyze the stability of model (3). Under the threshold value Ry,
we derived some interesting results, including the global asymptotic stability of the disease-
free equilibrium, permanent in the mean of the disease, and the existence of stationary
distribution. We observed that environmental noise is a crucial influence in describing the
dynamic behaviors of an epidemic. However, there are still some unsolved problems. For
example, how to study the relationship of models (6) and (2), as well as (3). It is an exciting
issue and will be the subject of our future work.
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