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1. Introduction

The set containing m× n matrices over the complex numbers C will be denoted as
Cm×n. Standardly, A∗, rk(A), R(A) and N (A) will represent the conjugate transpose,
rank, range (column space) and kernel (null space), respectively. Furthermore, Cm×n

r =
{X| X∈Cm×n, rk(X)= r}.

Generalized inverses are very powerful tools in many branches of mathematics, tech-
nics and engineering. The most frequent application of generalized inverses is in finding
solutions of many matrix equations and systems of linear equations. There are many other
mathematical and technical disciplines in which generalized inverses play an important
role. Some of them are estimation theory (regression), computing polar decomposition,
electrical circuits (networks) theory, automatic control theory, filtering, difference equa-
tions, pattern recognition and image restoration. Since 1955, thousands of papers have
been published discussing various theoretical and computational features of generalized
inverses and their applications. For the sake of completeness, we surveyed definitions of
generalized inverses related to our research.

For arbitrary A ∈ Cm×n, there is a Moore–Penrose inverse of A represented by the
distinctive matrix X ∈ Cn×m (denoted by A†) for which [1]:

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.

The symbol A{ρ} is stated for the set of all matrices that satisfy equations involved in
ρ ⊆ {1, 2, 3, 4}. A ρ-inverse of A, marked with A(ρ), is any matrix from A{ρ}. Notice that
A{1, 2, 3, 4} = {A†}.

The class consisting of outer generalized inverses ({2}-inverses) is defined for arbitrary
A ∈ Cm×n by

A{2} = {X ∈ Cn×m| XAX = X}. (1)
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Immediately from the definition, it can be concluded rk(A(2)) ≤ rk(A). Furthermore,
it is known that an arbitrary X ∈ A{1, 2} satisfies rk(X) = rk(A). The outer inverses
have many applications in statistics [2,3], in the iterative themes for tackling nonlinear
Equations [4], in stable approximations of ill-posed problems and in linear and nonlinear
issues implicating rank-deficient generalized inverses [5].

Consider A ∈ Cm×n, B ∈ Cn×k and C ∈ Cl×m. An outer inverse of A with predefined
rangeR(B) (denoted by A(2)

R(B),∗) is a solution to the following constrained equation:

XAX = X, R(X) = R(B). (2)

The class of outer inverses with the predefined range R(B) is denoted by A{2}R(B),∗.

Furthermore, an outer inverse of A with given kernel N (C) (denoted by A(2)
∗,N (C)) is a

solution to the following constrained equation:

XAX = X, N (X) = N (C). (3)

The symbol A{2}∗,N (C) will stand for the class of outer inverses with the predefined kernel
N (C). Finally, an outer inverse of A with given imageR(B) and kernel N (C) (denoted by
A(2)
R(B),N (C)) is the unique solution of the constrained equation

XAX = X, R(X) = R(B), N (X) = N (C). (4)

The key characterizations, representations and computational procedures for outer inverses
with prescribed range and/or kernel were discovered in [6–10] and other research articles
cited in these references. More details can be found in the monographs [4,11,12]. Full
rank representations of outer inverses are given in [13,14]. Characterizations, represen-
tations and computational procedures based on appropriate matrix equations and ranks
of involved matrices are proposed in [15–17]. Iterative computational algorithms were
developed in [18–23].

Recall that
A† = A(2)

R(A∗),N (A∗).

For A ∈ Cn×n, there exists the Drazin inverse AD of A as the unique matrix X ∈ Cn×n and
it has the following properties:

Ak+1X = Ak, XAX = X, AX = XA,

where k = ind(A) is used with meaning of the index of A. That is, k is the smallest
nonnegative integer satisfying rk(Ak) = rk(Ak+1). Under the limitation ind(A) = 1, the
group inverse of A is AD = A#. Notice that

AD = A(2)
R(Ak),N (Ak)

and A# = A(2)
R(A),N (A)

.

The Drazin inverse proved to be useful in the investigation of finite Markov chains,
in the analysis of singular linear difference equations and differential Equations [24],
cryptography [25] and other.

It is important to mention that some of popular generalized inverses are outer inverses
with a predefined image and kernel. One of the most popular is the core-EP inverse
applicable on square matrices in [26]. For a square matrix A of index k = ind(A), its CEP
inverse is the uniquely defined by

A †©AA †© = A †©, R(A †©) = R(A †©∗) = R(Ak).

In the case ind(A) = 1, the core-EP inverse transforms into the core inverse A #© [27]. The
DMP inverse AD,† = AD AA† is defined in [28] as the unique outer inverse satisfying



Mathematics 2023, 11, 1732 3 of 18

AkX = Ak A† and XA = AD A. For arbitrary positive integer m, the m-weak group inverse
(m-WGI) of a square matrix A is defined the unique solution to AX = (A †©)m Am and
AX2 = X [29] and it can be given by A w©m = (A †©)m+1 Am. For m = 1, the m-WGI becomes
the weak group inverse, proposed in [30]. For m = 2, the m-WGI reduces to the generalized
group inverse, proposed in [31].

The definition of the weak Drazin inverse was presented in [32] as a weakened form
of the Drazin inverse. Although a weak Drazin inverse lacks some properties of the Drazin
inverse, such as being unique, it is still easier to find the weak Drazin inverse than the
Drazin inverse. Furthermore, the weak Drazin inverse may be applied instead of the Drazin
inverse; for example, in investigating differential equations or Markov chains, as well as in
its additional own applications.

Consider a square matrix A ∈ Cn×n of index k = ind(A). Then, a matrix X ∈ Cn×n

represents [32]

• A weak Drazin inverse of A when

XAk+1 = Ak;

• A minimal rank weak Drazin inverse of A when

XAk+1 = Ak and rk(X) = rk(AD);

• A commuting weak Drazin inverse of A when

XAk+1 = Ak and AX = XA.

Recall that, by [32], the Drazin inverse is unique minimal rank commuting weak Drazin
inverse. Important characterizations of the minimal rank weak Drazin inverse were given
in [33]. Furthermore, it was proven in [33] that many recently defined generalized inverses
are special cases of the minimal rank weak Drazin inverse.

The conditions for solvability of matrix equations and studying their explicit solutions
were applied in physics, mechanics, control theory and many different areas [4,11]. Moti-
vated by theoretical and applied importance of studies involving the solvability of systems
of equations and forms of their solutions, we continue to study this topic.

The aim of this paper is to investigate the solvability of systems of matrix equations
which are weaker than systems considered in [32,33], and to solve some constrained
minimization problems. The main novelty of this paper is the unification of solutions of
considered matrix equations with corresponding minimization problems. Consequently,
we extend some well-known results and provide several new results for the weak Drazin
inverse. Furthermore, some characterizations for significant Drazin inverse, group inverse
and Moore–Penrose inverse are obtained as consequences.

2. Motivation and Research Highlights

The detailed explanations of our research goals follow in this section.

(1) For X ∈ Cn×m, A ∈ Cm×n and B ∈ Cn×k, the first problem we consider is to find
equivalent conditions for solvability of the constrained system

XAB = B and rk(X) = rk(B). (5)

We will prove that X is a solution to (5) if and only if (iff) X ∈ A{2}R(B),∗.
(2) In the case that system (5) is consistent, we solve the minimization model

min rk(X) subject to XAB = B. (6)

(3) We investigate solvability of system (5) with the additional assumptions. Precisely, we
add an additional constraint rk(X) = rk(B) = rk(A) or BAX = B or AX = XA. A
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minimal rank outer inverse X with prescribed rangeR(B) which commutes with A,
will be called a commuting minimal rank outer inverse with prescribed rangeR(B).

(4) Suppose that A ∈ Cm×n, X ∈ Cn×m and C ∈ Cl×m. We study the solvability of the
system

CAX = C and rk(X) = rk(C). (7)

Since we will show that X is a solution to (7) iff X ∈ A{2}∗,N (C), a solution X to (7) is
called a minimal rank outer inverse with prescribed kernel N (C).

(5) If the system (7) is consistent, the minimization problem

min rk(X) subject to CAX = C (8)

can be solved.
(6) Special cases of the system (7) will be the topic of this research. A minimal rank outer

inverse X with prescribed kernel N (C) which commutes with A, will be called a
commuting minimal rank outer inverse with prescribed kernel N (C).

(7) Characterizations for the Drazin inverse, group and the Moore–Penrose inverse are
obtained applying our results.

(8) The solvability of the system which contains equalities from both systems (5)
and (7) is considered. Precisely, in the case that A ∈ Cm×n, X ∈ Cn×m, B ∈ Cn×k and
C ∈ Cl×m, we study the system

XAB = B, CAX = C and rk(X) = rk(B) = rk(C). (9)

We will observe that X is a solution to (9) iff X = A(2)
R(B),N (C), and a solution X to (9)

is called a minimal rank outer inverse with predefined rangeR(B) and kernel N (C).
Furthermore, we investigate solvability of the system (9) with additional conditions.

The following is the organization of this paper. Preliminary information and motiva-
tion of our research are presented in Section 2. Section 3 contains investigations related
to solvability of the system (5) and the minimization problem (6) as well as solvability of
special cases of the system (5). As consequences, we also present characterizations for the
Drazin inverse, group and the Moore–Penrose inverse. The system (7) and the minimization
problem (8) are considered in Section 4. Section 5 involves solvability of the system (9) and
its particular cases. Concluding remarks are part of Section 6.

3. Minimal Rank Outer Inverses with Prescribed Range

The main goals of this section are to consider solvability of the system (5) and the
minimization problem (6). In the first theorem, we will observe that X presents a solution
to (5) iff X is an outer inverse of A with the predefined rangeR(B). Furthermore, we give
some systems of matrix equations which are equivalent to (5).

Lemma 1. (a) If A ∈ Cm×n and B ∈ Cn×k, it follows

there exists X ∈ Cn×m such that XAB = B⇐⇒ rk(AB) = rk(B). (10)

(b) For A ∈ Cm×n and C ∈ Cl×m, it follows

there exists X ∈ Cn×m such that CAX = C ⇐⇒ rk(CA) = rk(C). (11)

Proof. (a) The equality XAB = B gives rk(B) ≤ rk(AB) ≤ rk(B), i.e., rk(B) = rk(AB).
On the other hand, rk(B) = rk(AB) ⇐⇒ B(AB)(1)AB = B (see, for example [11]

(p. 33)), implies XAB = B in the case X = B(AB)(1).
(b) This statement can be verified using the conjugate transpose matrices in part (a).

Theorem 1. Suppose that A ∈ Cm×n, X ∈ Cn×m and B ∈ Cn×k.
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(a) The subsequent statements are mutually equivalent:

(i) XAB = B and rk(X) = rk(B);
(ii) XAB = B andR(X) = R(B);
(iii) X is a solution to (2), i.e., X ∈ A{2}R(B),∗;
(iv) X = BB†X and XAB = B;
(v) XAX = X, X = BB†X and XAB = B.

(b) Additionally,

min{rk(X)| XAB = B} = rk(B)

{rk(X)| XAB = B} ⊆ [rk(B), rk(X)]

{rk(X)| X ∈ A{2} ∧ XAB = B} ⊆ [rk(B), rk(A)]

(12)

and the following set identities are valid:

A{2}R(B),∗ =
{

X ∈ Cn×m| XAB = B ∧ rk(X) = rk(B)
}

(13)

A{2}R(B),∗ =
{

X := B(AB)† + Y(I − (AB)(AB)†)|Y ∈ Cn×m ∧ XAB = B ∧ rk(X) = rk(B)
}

. (14)

Proof. (a) (i)⇒ (ii): From XAB = B, it followsR(B) ⊆ R(X). Furthermore, rk(X) = rk(B)
givesR(X) = R(B).

(ii)⇒ (iii): The assumption R(X) = R(B) implies X = BW1 for some W1 ∈ Ck×m.
Then XAX = XABW1 = BW1 = X.

(iii)⇔ (iv)⇔ (v): It follows by (Theorem 2.3 [34]).
(v)⇒ (i): From X = BB†X and XAB = B, it follows rk(X) = rk(B). Furthermore,

XAB = BB†XAB = BB†B = B.

(b) It is straightforward that XAX = X implies rk(X) ≤ rk(A). On the other hand,
XAB = B implies rk(X) ≥ rk(B). So, (12) holds.

The set identity (13) follows from (i)⇐⇒ (iii). Finally, the set identities (14) follow from
the general solution to the matrix equation XAB = B [4,12] and the conditions (i)–(v).

Remark that the suppositions X = BB†X and XAB = B, exploited in Theorem 1, can
be substituted by some of equivalent requirements presented in (Corollary 2.4 [34]).

Proposition 1. If A ∈ Cm×n and B ∈ Cn×k, it follows

there exists X ∈ Cn×m satisfying XAB = B and rk(X) = rk(B)⇐⇒ rk(AB) = rk(B).

Proof. If there exists X satisfying XAB = B and rk(X) = rk(B), by Lemma 1, we conclude
rk(AB) = rk(B).

In addition, the assumption rk(AB) = rk(B) and (Theorem 3 [15]) imply the existence
of X ∈ A{2}R(B),∗. By Theorem 1, it follows XAB = B and rk(X) = rk(B).

Because of (12), a solution X to (5) is called a minimal rank outer inverse with pre-
scribed rangeR(B). Note that a weak Drazin inverse is a specific solution to (5) for m = n,
B = Ak and k = ind(A). So, we study solvability of a more general system than the system
whose solution is the weak Drazin inverse.

For the particular settings B = Ak, k = ind(A) in Theorem 1, we obtain the next result
which involves characterizations of the minimal rank weak Drazin inverse.

Corollary 1 generalizes results from [33], since the statements (i)–(iii) of Corollary 1
are proposed in [33].

Corollary 1. For A, X ∈ Cn×n and k ∈ N, the next assertions are equivalent:

(i) XAk+1 = Ak and rk(X) = rk(Ak);
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(ii) XAk+1 = Ak andR(X) = R(Ak);
(iii) X ∈ A{2}R(Ak),∗;
(iv) X = Ak(Ak)†X and XAk+1 = Ak;
(v) XAX = X, X = Ak(Ak)†X and XAk+1 = Ak;
(vi) X is a minimal rank weak Drazin inverse of A.

The assumption rk(X) = rk(B) = rk(A) in the system (5) reduces the results of
Theorem 1 to the smaller class of inner reflexive inverses if A{1, 2}R(B),∗.

Theorem 2. Suppose that A ∈ Cm×n, X ∈ Cn×m and B ∈ Cn×k.
(a) The subsequent statements are mutually equivalent:

(i) XAB = B and rk(X) = rk(B) = rk(A);
(ii) XAX = X,R(X) = R(B) andR(AB) = R(A);
(iii) XAX = X,R(X) = R(B) andR(AB) ⊇ R(A);
(iv) XAX = X,R(X) = R(B) and A = AB(AB)† A;
(v) XAX = X, AXA = A andR(X) = R(B), i.e., X ∈ A{1, 2}R(B),∗.

(b) In addition,{
X ∈ Cn×m| XAB = B, rk(X) = rk(B) = rk(A)

}
= A{1, 2}R(B),∗. (15)

Proof. (a) (i) ⇒ (ii): According to Theorem 1, XAX = X and R(X) = R(B). Using
Theorem 3, [15], rk(AB) = rk(B) = rk(A). Therefore, the fact R(AB) ⊆ R(A) gives
R(AB) = R(A).

(ii)⇔ (iii)⇔ (iv): These equivalences are clear.
(ii)⇒ (v): It is clear, by Theorem 1, that XAB = B. For some V ∈ Ck×n, the assumption

R(AB) = R(A) implies

A = ABV = AX(ABV) = AXA.

(v) ⇒ (i): From the equalities XAX = X and AXA = A, we deduce that rk(X) =
rk(A). The hypothesisR(X) = R(B) yields rk(X) = rk(B) and

B = XT = XA(XT) = XAB,

for some T ∈ Cm×k.
The proof of part (b) follows from the results of part (a) of this theorem. The matrices X

satisfying XAB = B, rk(X) = rk(B) are outer inverses of rank rk(X) = rk(B) ≤ rk(A). In
the case rk(X) = rk(B) = rk(A), outer inverses become {1, 2}-inverses [15]. Consequently,
the matrices X satisfying (15) are {1, 2}-inverses of rank rk(X) = rk(B) = rk(A).

Proposition 2. If A ∈ Cm×n and B ∈ Cn×k, it follows

there exists X ∈ Cn×m that fulfills

XAB = B and rk(X) = rk(B) = rk(A)⇐⇒ rk(AB) = rk(B) = rk(A).

When we add the assumption AX = XA in the system (5), we obtain the following
characterizations for a commuting minimal rank outer inverse with prescribed rangeR(B).

Theorem 3. For A, X, B ∈ Cn×n, the subsequent statements are equivalent each other:

(i) XAB = B, rk(X) = rk(B) and AX = XA;
(ii) XAX = X,R(X) = R(B) and AX = XA;
(iii) X2 A = AX2 = X andR(X) = R(B);
(iv) X2 A = AX2 = X, X = BB†X and XAB = B.
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Proof. (i)⇔ (ii): It follows by Theorem 1.
(ii)⇒ (iii): This implication is evident.
(iii)⇒ (ii): Using X2 A = AX2 = X, we get AX = AX2 A = XA. Hence, X = X2 A =

XAX.
(iv)⇔ (iii): Applying Theorem 1, one can verify this implication.

By Theorem 3, we get the next consequence which contains several characterizations
for the Drazin inverse. For A ∈ Cn×n with k = ind(A), recall that by (Corollary 2.3 [33]), X
is a minimal rank weak Drazin inverse of A and AX = XA iff X = AD.

Corollary 2. Let A, X ∈ Cn×n and k ∈ N. The subsequent statements are equivalent each other:

(i) XAk+1 = Ak, rk(X) = rk(Ak) and AX = XA;
(ii) XAX = X,R(X) = R(Ak) and AX = XA;
(iii) X2 A = AX2 = X andR(X) = R(Ak);
(iv) X2 A = AX2 = X, X = Ak(Ak)†X and XAk+1 = Ak;
(v) X = AD.

In the case that the hypothesis BAX = B is added to the system (5), we present
necessary and sufficient requirements for the solvability of novel system. The system
XAB = BAX = B was considered in [35], but in conjunction with additional assumptions
different from our conditions in Theorem 4.

Theorem 4. The subsequent statements are equivalent each other for A, X, B ∈ Cn×n:

(i) XAB = BAX = B and rk(X) = rk(B);
(ii) XAB = B,R(X) = R(B) and N (X) = N (B);
(iii) XAB = B,R(X) = R(B) and N (X) ⊆ N (B);
(iv) XAB = B,R(X) = R(B) and N (B) ⊆ N (X);
(v) XAB = B and N (B) ⊆ N (X);
(vi) XAX = X, BAX = B andR(X) = R(B);

(vii) XAX = X,R(X) = R(B) and N (X) = N (B), i.e., X = A(2)
R(B),N (B);

(viii) XAX = X,R(X) = R(B) and N (X) ⊆ N (B);
(ix) XAX = X,R(X) = R(B) and N (B) ⊆ N (X).

Proof. (i) ⇒ (ii): Firstly, BAX = B gives N (X) ⊆ N (B). Since rk(X) = rk(B), then
dimN (X) = n− rk(X) = n− rk(B) = dimN (B). So, N (X) = N (B).

(ii)⇒ (iii) and (iv): It is evident.
(iii)⇒ (i): Theorem 1 and assumptions XAB = B andR(X) = R(B) imply XAX = X

and rk(X) = rk(B). The condition N (X) ⊆ N (B) yields, for some V ∈ Cn×n,

B = VX = (VX)AX = BAX.

(iv)⇒ (v): This implication is evident.
(v) ⇒ (ii): From XAB = B, we conclude that R(B) ⊆ R(X) and rk(B) ≤ rk(X).

Because N (B) ⊆ N (X), we have X = SB, for some S ∈ Cn×n, and so rk(X) ≤ rk(B).
Hence, rk(X) = rk(B), which implies N (X) = N (B) andR(B) = R(X).

The rest follows by Theorem 1.

As a consequence of Theorem 4, we get the following result which involves characteri-
zations of the Drazin inverse.

Corollary 3. Let A, X ∈ Cn×n and k ∈ N. The subsequent statements are mutually equivalent:

(i) XAk+1 = Ak+1X = Ak and rk(X) = rk(Ak);
(ii) XAk+1 = Ak,R(X) = R(Ak) and N (X) = N (Ak);
(iii) XAk+1 = Ak,R(X) = R(Ak) and N (X) ⊆ N (Ak);
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(iv) XAk+1 = Ak,R(X) = R(Ak) and N (Ak) ⊆ N (X);
(v) XAk+1 = Ak and N (Ak) ⊆ N (X);
(vi) XAX = X, Ak+1X = Ak andR(X) = R(Ak);

(vii) XAX=X,R(X)=R(Ak), N (X)=N (Ak), i.e., X = A(2)
R(Ak),N (Ak)

= AD;

(viii) XAX = X,R(X) = R(Ak) and N (X) ⊆ N (Ak);
(ix) XAX = X,R(X) = R(Ak) and N (Ak) ⊆ N (X).

For k = 1 in Corollary 3, we obtain characterizations for the group inverse.

Corollary 4. The subsequent statements are equivalent for A, X ∈ Cn×n:

(i) XA2 = A2X = A and rk(X) = rk(A);
(ii) XA2 = A,R(X) = R(A) and N (X) = N (A);
(iii) XA2 = A,R(X) = R(A) and N (X) ⊆ N (A);
(iv) XA2 = A,R(X) = R(A) and N (A) ⊆ N (X);
(v) XA2 = A and N (A) ⊆ N (X);
(vi) XAX = X, A2X = A andR(X) = R(A);

(vii) XAX = X,R(X) = R(A), N (X) = N (A), i.e., X = A(2)
R(A),N (A)

= A#;

(viii) XAX = X,R(X) = R(A) and N (X) ⊆ N (A);
(ix) XAX = X,R(X) = R(A) and N (A) ⊆ N (X).

Theorem 4 also implies new characterizations for the Moore–Penrose inverse.

Corollary 5. The next assertions are mutually equivalent for A, X ∈ Cn×n:

(i) XAA∗ = A∗AX = A∗ and rk(X) = rk(A∗);
(ii) XAA∗ = A∗,R(X) = R(A∗) and N (X) = N (A∗);
(iii) XAA∗ = A∗,R(X) = R(A∗) and N (X) ⊆ N (A∗);
(iv) XAA∗ = A∗,R(X) = R(A∗) and N (A∗) ⊆ N (X);
(v) XAA∗ = A∗ and N (A∗) ⊆ N (X);
(vi) XAX = X, A∗AX = A∗ andR(X) = R(A∗);
(vii) XAX = X,R(X) = R(A∗) and N (X) = N (A∗), i.e.,

X = A(2)
R(A∗),N (A∗) = A†;

(viii) XAX = X,R(X) = R(A∗) and N (X) ⊆ N (A∗);
(ix) XAX = X,R(X) = R(A∗) and N (A∗) ⊆ N (X).

Example 1. Consider the matrices

A =


ε + 1 ε ε ε ε + 1

ε ε− 1 ε ε ε
ε ε ε + 1 ε ε
ε ε ε ε− 1 ε

ε + 1 ε ε ε ε + 1


and

B =


2ε + 1 ε ε

ε 2ε− 1 ε
ε ε 2ε + 1
ε ε ε

3ε ε ε

.
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Let us generate the candidate solutions X in the generic form

X =


x1,1 x1,2 x1,3 x1,4 x1,5
x2,1 x2,2 x2,3 x2,4 x2,5
x3,1 x3,2 x3,3 x3,4 x3,5
x4,1 x4,2 x4,3 x4,4 x4,5
x5,1 x5,2 x5,3 x5,4 x5,5

, (16)

where xi,j, i, j = 1, . . . , 5 are unevaluated symbols. The general solution X to XAB = B is the
matrix

x1,1
2ε3+ε2−2ε+(−6ε3+3ε2+6ε+1)x1,1+(−6ε3+3ε2+6ε+1)x1,5−1

2(ε−1)ε(3ε+2)
−2ε+(6ε+3)x1,1+(6ε+3)x1,5−3

6ε+4

x2,1
−7ε3+3ε+(−6ε3+3ε2+6ε+1)x2,1+(−6ε3+3ε2+6ε+1)x2,5

2ε(3ε2−ε−2)
ε+(6ε+3)x2,1+(6ε+3)x2,5

6ε+4

x3,1
ε(ε+1)2+(−6ε3+3ε2+6ε+1)x3,1+(−6ε3+3ε2+6ε+1)x3,5

2ε(3ε2−ε−2)
5ε+(6ε+3)x3,1+(6ε+3)x3,5+4

6ε+4

x4,1
−ε(ε+1)2+(−6ε3+3ε2+6ε+1)x4,1+(−6ε3+3ε2+6ε+1)x4,5

2ε(3ε2−ε−2)
ε+(6ε+3)x4,1+(6ε+3)x4,5

6ε+4

x5,1
ε(5ε2−2ε−3)+(−6ε3+3ε2+6ε+1)x5,1+(−6ε3+3ε2+6ε+1)x5,5

2(ε−1)ε(3ε+2)
−5ε+(6ε+3)x5,1+(6ε+3)x5,5

6ε+4

4ε3−ε2−2ε+(−12ε4−8ε3+5ε2+6ε+1)x1,1+(−12ε4−8ε3+5ε2+6ε+1)x1,5−1
4(ε−1)ε2(3ε+2) x1,5

ε(12ε3+3ε2−6ε−1)+(−12ε4−8ε3+5ε2+6ε+1)x2,1+(−12ε4−8ε3+5ε2+6ε+1)x2,5

4(ε−1)ε2(3ε+2) x2,5

−12ε4−3ε3+6ε2+ε+(−12ε4−8ε3+5ε2+6ε+1)x3,1+(−12ε4−8ε3+5ε2+6ε+1)x3,5

4(ε−1)ε2(3ε+2) x3,5

ε(7ε2+2ε−1)+(−12ε4−8ε3+5ε2+6ε+1)x4,1+(−12ε4−8ε3+5ε2+6ε+1)x4,5

4(ε−1)ε2(3ε+2) x4,5
ε(ε2+2ε−3)+(−12ε4−8ε3+5ε2+6ε+1)x5,1+(−12ε4−8ε3+5ε2+6ε+1)x5,5

4(ε−1)ε2(3ε+2) x5,5


which satisfies XAB = B but does not satisfy XAX = X. Ranks of relevant matrices are equal to

rk(B) = rk(AB) = 3 < rk(A) = 4 < rk(X) = 5.

The matrix Z obtained by the replacement x1,5 = x2,5 = x3,5 = x4,5 = x5,5 = 0 in X is equal to

Z=



0
2ε3+ε2−2ε+(−6ε3+3ε2+6ε+1)x1,5−1

2(ε−1)ε(3ε+2)
−2ε+(6ε+3)x1,5−3

6ε+4
4ε3−ε2−2ε+(−12ε4−8ε3+5ε2+6ε+1)x1,5−1

4(ε−1)ε2(3ε+2) x1,5

0
−7ε3+3ε+(−6ε3+3ε2+6ε+1)x2,5

2ε(3ε2−ε−2)
ε+(6ε+3)x2,5

6ε+4
ε(12ε3+3ε2−6ε−1)+(−12ε4−8ε3+5ε2+6ε+1)x2,5

4(ε−1)ε2(3ε+2) x2,5

0
ε(ε+1)2+(−6ε3+3ε2+6ε+1)x3,5

2ε(3ε2−ε−2)
5ε+(6ε+3)x3,5+4

6ε+4
−12ε4−3ε3+6ε2+ε+(−12ε4−8ε3+5ε2+6ε+1)x3,5

4(ε−1)ε2(3ε+2) x3,5

0 (−6ε3+3ε2+6ε+1)x4,5−ε(ε+1)2

2ε(3ε2−ε−2)
ε+(6ε+3)x4,5

6ε+4
ε(7ε2+2ε−1)+(−12ε4−8ε3+5ε2+6ε+1)x4,5

4(ε−1)ε2(3ε+2) x4,5

0
ε(5ε2−2ε−3)+(−6ε3+3ε2+6ε+1)x5,5

2(ε−1)ε(3ε+2)
(6ε+3)x5,5−5ε

6ε+4
ε(ε2+2ε−3)+(−12ε4−8ε3+5ε2+6ε+1)x5,5

4(ε−1)ε2(3ε+2) x5,5


and satisfies rk(Z) = 4 > rk(B). Then the matrix equation ZAB = B holds, but ZAZ = Z does
not hold.

Finally, consider the matrix Q obtained by the replacement x1,5 = x2,5 = x3,5 = x4,5 =
x5,5 = 0 in the matrix Z:

Q =



0 2ε3+ε2−2ε−1
2(ε−1)ε(3ε+2)

−2ε−3
6ε+4

4ε3−ε2−2ε−1
4(ε−1)ε2(3ε+2) 0

0 3ε−7ε3

2ε(3ε2−ε−2)
ε

6ε+4
12ε3+3ε2−6ε−1
4(ε−1)ε(3ε+2) 0

0 (ε+1)2

2(3ε2−ε−2)
5ε+4
6ε+4

−12ε4−3ε3+6ε2+ε
4(ε−1)ε2(3ε+2) 0

0 − (ε+1)2

2(3ε2−ε−2)
ε

6ε+4
7ε2+2ε−1

4(ε−1)ε(3ε+2) 0

0 5ε2−2ε−3
2(ε−1)(3ε+2) − 5ε

6ε+4
ε2+2ε−3

4(ε−1)ε(3ε+2) 0


.
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The matrix Q satisfies rk(Q) = 3 = rk(B). Then both the matrix equations QAB = B and
QAQ = Q are satisfied, which is in accordance with the results presented in Theorem 1.

Now, let us calculate the matrix X = BU, where U ∈ C5×3 is in generic form

U =

 u1,1 u1,2 u1,3 u1,4 u1,5
u2,1 u2,2 u2,3 u2,4 u2,5
u3,1 u3,2 u3,3 u3,4 u3,5

.

The set of solutions to BUAB = B with respect to U is given by
u1,1 u1,2

3ε((−2ε2+ε+1)u1,2+1)
6ε3−3ε2−6ε−1

u2,1 u2,2 − 3ε(2ε+1)((ε−1)u2,2+1)
6ε3−3ε2−6ε−1

u3,1 u3,2
6ε2+3(−2ε2+ε+1)u3,2ε−3ε−1

6ε3−3ε2−6ε−1

(12ε4+8ε3−5ε2−6ε−1)u1,2−ε(6ε2+9ε+1)
2ε(6ε3−3ε2−6ε−1)

3ε2+2(−3ε2+ε+2)u1,2ε+(−6ε3+3ε2+6ε+1)u1,1−1
6ε3−3ε2−6ε−1

24ε3+26ε2+9ε+(12ε4+8ε3−5ε2−6ε−1)u2,2+1
2ε(6ε3−3ε2−6ε−1)

(−6ε3+3ε2+6ε+1)u2,1−2ε(3ε+2)((ε−1)u2,2+1)
6ε3−3ε2−6ε−1

(12ε4+8ε3−5ε2−6ε−1)u3,2−4ε2(4ε+1)
2ε(6ε3−3ε2−6ε−1)

(−6ε3+3ε2+6ε+1)u3,1+2ε(ε+(−3ε2+ε+2)u3,2+1)
6ε3−3ε2−6ε−1

.

Then the set A{2}R(B),∗ coincides with the set Y = BU which is given in Appendix A.
The rank identities rk(Y) = rk(B) are satisfied.

4. Minimal Rank Outer Inverses with Prescribed Kernel

This section is devoted to the solvability of the system (7) as well as the minimiza-
tion problem (8). Besides some systems of matrix equations which are equivalent to the
system (7), we present in Theorem 5 that X is a solution to the system (7) iff X is an outer
inverse of A with the given kernel N (C).

Theorem 5. Let A ∈ Cm×n, X ∈ Cn×m and C ∈ Cl×m.
(a) The subsequent statements are mutually equivalent:

(i) CAX = C and rk(X) = rk(C);
(ii) CAX = C and N (X) = N (C);
(iii) X is a solution to (3), i.e., X ∈ A{2}∗,N (C);
(iv) X = XC†C and CAX = C;
(v) XAX = X, X = XC†C and CAX = C.

(b) In addition,
min{rk(X)| CAX = C} = rk(C)

{rk(X)| CAX = C} ⊆ [rk(C), rk(X)]

{rk(X)| X ∈ A{2} ∧ CAX = C} ⊆ [rk(C), rk(A)]

(17)

and the following set identities are valid:

A{2}∗,N (C) =
{

X ∈ Cn×m| CAX = C ∧ rk(X) = rk(C)
}

. (18)

A{2}∗,N (C) =
{

X := (CA)†C + (I − (CA)†CA)Y| Y ∈ Cn×m ∧ CAX = C ∧ rk(X) = rk(C)
}

. (19)

Proof. (i)⇒ (ii): The hypothesis CAX = C implies N (X) ⊆ N (C). Since rk(X) = rk(C),
we deduce that N (X) = N (C).

(ii)⇒ (iii): From N (X) = N (C), we haveit follows X = W2C for some W2 ∈ Cn×l .
Then XAX = W2CAX = W2C = X.

(iii)⇔ (iv)⇔ (v): These equivalences are clear by (Theorem 2.6 [34]).
(v) ⇒ (i): The assumptions X = XC†C and CAX = C give rk(X) = rk(C). Now,

CAX = CAXC†C = CC†C = C.
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The rest of the proof is analogous as the proof of Theorem 1.

In order to provide new systems of matrix equations, we can replace the conditions
X = XC†C and CAX = C of Theorem 5 with some of the equivalent conditions presented
in (Remark 2.7 [34]).

Proposition 3. If A ∈ Cm×n and C ∈ Cl×m, it follows

there exists X ∈ Cn×m satisfying CAX = C and rk(X) = rk(C)⇐⇒ rk(CA) = rk(C).

Because of (17), a solution X to (7) is called a minimal rank outer inverse with pre-
scribed kernel N (C).

Theorem 5 implies the following result.

Corollary 6. The next statements are equivalent each other for A, X ∈ Cn×n and k ∈ N:

(i) Ak+1X = Ak and rk(X) = rk(Ak);
(ii) Ak+1X = Ak and N (X) = N (Ak);
(iii) X ∈ A{2}∗,N (Ak);
(iv) X = X(Ak)† Ak and Ak+1X = Ak;
(v) XAX = X, X = X(Ak)† Ak and Ak+1X = Ak;
(vi) X is a minimal rank weak Drazin inverse of A.

We now consider the solvability of particular cases of the system (7). Firstly, we assume
that rk(X) = rk(C) = rk(A) holds in the system (7). Notice that the following result can
be proven as corresponding results of the previous section.

Theorem 6. Consider A ∈ Cm×n, X ∈ Cn×m and C ∈ Cl×m.
(a) The subsequent statements are mutually equivalent:

(i) CAX = C and rk(X) = rk(C) = rk(A);
(ii) XAX = X, N (X) = N (C) and N (A) = N (CA);
(iii) XAX = X, N (X) = N (C) and N (CA) ⊆ N (A);
(iv) XAX = X, N (X) = N (C) and A = A(CA)†CA;
(v) XAX = X, AXA = A and N (X) = N (C), i.e., X ∈ A{1, 2}∗,N (C).

(b) In addition,{
X ∈ Cn×m| CAX = C, rk(X) = rk(C) = rk(A)

}
= A{1, 2}∗,N (C). (20)

Proposition 4. If A ∈ Cm×n and C ∈ Cl×m, it follows

there exists X ∈ Cn×m satisfying

CAX = C and rk(X) = rk(C) = rk(A)⇐⇒ rk(CA) = rk(C) = rk(A).

Several characterizations of a commuting minimal rank outer inverse with prescribed
kernel N (C) are proposed in Theorem 7.

Theorem 7. Let A, X, C ∈ Cn×n. The subsequent statements are mutually equivalent:

(i) CAX = C, rk(X) = rk(C) and AX = XA;
(ii) XAX = X, N (X) = N (C) and AX = XA;
(iii) X2 A = AX2 = X and N (X) = N (C);
(iv) X2 A = AX2 = X, X = XC†C and CAX = C.

Theorem 7 gives the next result which gives characterizations of the Drazin inverse.
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Corollary 7. The subsequent statements are equivalent for A, X, C ∈ Cn×n and k ∈ N:

(i) Ak+1X = Ak, rk(X) = rk(Ak) and AX = XA;
(ii) XAX = X, N (X) = N (Ak) and AX = XA;
(iii) X2 A = AX2 = X and N (X) = N (Ak);
(iv) X2 A = AX2 = X, X = X(Ak)† Ak and Ak+1X = Ak;
(v) X = AD.

Taking that XAC = C in the system (7), we establish some necessary and sufficient
conditions for a matrix X to be a solution to a novel system.

Theorem 8. Let A, X, C ∈ Cn×n. The subsequent statements are equivalent each other:

(i) CAX = XAC = C and rk(X) = rk(C);
(ii) CAX = C, N (X) = N (C) andR(X) = R(C);
(iii) CAX = C, N (X) = N (C) andR(X) ⊆ R(C);
(iv) CAX = C, N (X) = N (C) andR(C) ⊆ R(X);
(v) CAX = C andR(X) ⊆ R(C);
(vi) XAX = X, XAC = C and N (X) = N (C);

(vii) XAX = X, N (X) = N (C) andR(X) = R(C), i.e., X = A(2)
R(C),N (C);

(viii) XAX = X, N (X) = N (C) andR(X) ⊆ R(C);
(ix) N (X) = N (C) andR(C) ⊆ R(X).

Consequently, by Theorem 8, we derive the following characterizations for the Drazin
inverse.

Corollary 8. The next statements are equivalent for A, X ∈ Cn×n and k ∈ N:

(i) Ak+1X = Ak, N (X) = N (Ak) andR(X) = N (Ak);
(ii) Ak+1X = Ak, N (X) = N (Ak) andR(X) ⊆ R(Ak);
(iii) Ak+1X = Ak, N (X) = N (Ak) andR(Ak) ⊆ R(X);
(iv) Ak+1X = Ak and N (X) ⊆ N (Ak);
(v) XAX = X, XAk+1 = Ak and N (X) = N (Ak);

(vi) XAX=X, N (X) = N (Ak),R(X) = R(Ak), i.e., X = A(2)
R(Ak),N (Ak)

=AD;

(vii) XAX = X, N (X) = N (Ak) andR(X) ⊆ R(Ak);
(viii) XAX = X, N (X) = N (Ak) andR(Ak) ⊆ R(X).

By Corollary 8, we characterize the group inverse.

Corollary 9. The subsequent constrained equations are equivalent for A, X ∈ Cn×n:

(i) A2X = A, N (X) = N (A) andR(X) = N (A);
(ii) A2X = A, N (X) = N (A) andR(X) ⊆ R(A);
(iii) A2X = A, N (X) = N (A) andR(A) ⊆ R(X);
(iv) A2X = A and N (X) ⊆ N (A);
(v) XAX = X, XA2 = A and N (X) = N (A);

(vi) XAX = X, N (X) = N (A) andR(X) = R(A), i.e., X = A(2)
R(A),N (A)

= A#;

(vii) XAX = X, N (X) = N (A) andR(X) ⊆ R(A);
(viii) XAX = X, N (X) = N (A) andR(A) ⊆ R(X).

According to Theorem 8, we have more characterizations of the Moore–Penrose
inverse.
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Corollary 10. The subsequent constrained equations are equivalent for A, X ∈ Cn×n:

(i) A∗AX = A∗, N (X) = N (A∗) andR(X) = R(A∗);
(ii) A∗AX = A∗, N (X) = N (A∗) andR(X) ⊆ R(A∗);
(iii) A∗AX = A∗, N (X) = N (A∗) andR(A∗) ⊆ R(X);
(iv) A∗AX = A∗ andR(X) ⊆ R(A∗);
(v) XAX = X, XAA∗ = A∗ and N (X) = N (A∗);

(vi) XAX = X, N (X) = N (A∗) andR(X) = R(A∗), i.e., X = A(2)
R(A∗),N (A∗) = A†;

(vii) XAX = X, N (X) = N (A∗) andR(X) ⊆ R(A∗);
(viii) XAX = X, N (X) = N (A∗) andR(A∗) ⊆ R(X).

Example 2. Consider the matrix A from Example 1 and the matrix C of rank 3 defined by

C =

 2 1 1 1 2
1 0 1 1 1
1 1 2 1 1


Let us generate the candidate solutions X in the generic form (16). The general solution X to
CAX = C is equal to

x1,1 x1,2 x1,3

− 2ε+(9ε+2)x3,1
9ε−2

−5ε−(9ε+2)x3,2+2
9ε−2

5ε−(9ε+2)x3,3+2
9ε−2

x3,1 x3,2 x3,3

− 3ε+(9ε+4)x3,1
9ε−2

6ε−(9ε+4)x3,2
9ε−2

3ε−(9ε+4)x3,3+4
9ε−2

5ε+(2−9ε)x1,1+(9ε−1)x3,1−1
9ε−2

−ε+(2−9ε)x1,2+(9ε−1)x3,2
9ε−2

−8ε+(2−9ε)x1,3+(9ε−1)x3,3+1
9ε−2

x1,4 x1,5

− 2ε+(9ε+2)x3,1
9ε−2

4ε−(9ε+2)x3,4
9ε−2 − 2ε+(9ε+2)x3,5

9ε−2
x3,4 x3,5

−3ε−(9ε+4)x3,4+2
9ε−2 − 3ε+(9ε+4)x3,5

9ε−2
−ε+(2−9ε)x1,4+(9ε−1)x3,4

9ε−2
5ε+(2−9ε)x1,5+(9ε−1)x3,5−1

9ε−2

.

The matrix X satisfies CAX = C but does not satisfy XAX = X. Ranks of relevant matrices are
equal to

rk(C) = rk(CA) = 3 < rk(A) = 4 < rk(X) = 5.

The matrix Z obtained by the replacement x1,1 = x1,2 = x1,3 = x1,4 = x1,5 = 0 in X satisfies
rk(Z) = 4 > rk(B). Then the matrix equation ZAB = B holds, but ZAZ = Z does not hold.

Finally, consider the matrix Q obtained by the replacement x3,1 = x3,2 = x3,3 = x3,4 =
x3,5 = 0 in Z:

Q =


0 0 0 0 0

− 2ε
9ε−2

2−5ε
9ε−2

5ε+2
9ε−2

4ε
9ε−2 − 2ε

9ε−2
0 0 0 0 0

− 3ε
9ε−2

6ε
9ε−2

3ε+4
9ε−2

2−3ε
9ε−2 − 3ε

9ε−2
5ε−1
9ε−2 − ε

9ε−2
1−8ε
9ε−2 − ε

9ε−2
5ε−1
9ε−2

.

The matrix Q satisfies rk(Q) = 3 = rk(B). Then both the matrix equations QAB = B and
QAQ = Q are satisfied, which is in accordance with the results presented in Theorem 5.

Now, let us calculate the matrix X = UC, where U ∈ C5×3 is in generic form

U =


u1,1 u1,2 u1,3
u2,1 u2,2 u2,3
u3,1 u3,2 u3,3
u4,1 u4,2 u4,3
u5,1 u5,2 u5,3

.
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The set of solutions to CAUC = C with respect to U is given by

u1,1 u1,2 u1,3

u2,1 1− (9ε+2)u3,2
9ε−2 u2,3

(2−9ε)u2,1−6ε
9ε+2 u3,2

ε+(2−9ε)u2,3+2
9ε+2

6ε+(9ε+4)u2,1+2
9ε+2 − (9ε+4)u3,2

9ε−2 − 1 5ε +(9ε+4)u2,3+2
9ε+2

−(9ε+2)u1,1+(1−9ε)u2,1+1
9ε +2

(9ε−1)u3,2
9ε−2 − u1,2

−6ε−(9ε+2)u1,3+(1−9ε)u2,3
9 ε+2

.

Then the set A{2}∗,N (C) coincides with the set Y = UC is given in Appendix B. The rank identities
rk(Y) = rk(C) are satisfied.

5. Minimal Rank Outer Inverses with Prescribed Range and Kernel

Applying results of Sections 3 and 4, we are able to characterize solvability of the
system (9). In particular, by Theorem 1 and Theorem 5, the system (9) has a solution X iff X
is an outer inverse of A with the prescribed rangeR(B) and kernel N (C).

Corollary 11. Consider A ∈ Cm×n, X ∈ Cn×m and B ∈ Cn×k, C ∈ Cl×m.
(a) The subsequent constrained matrix equations are mutually equivalent:

(i) XAB = B, CAX = C and rk(X) = rk(B) = rk(C);
(ii) XAB = B, CAX = C,R(X) = R(B) and N (X) = N (C);

(iii) X is a solution to (4), i.e., X = A(2)
R(B),N (C);

(iv) X = BB†X = XC†C, XAB = B and CAX = C;
(v) XAX = X, X = BB†X = XC†C, XAB = B and CAX = C.

(b) In addition, the system (9) has the unique solution X = A(2)
R(B),N (C).

Theorem 2 and Theorem 6 imply the next characterizations of solution to the special
system of the system (9) with rk(X) = rk(B) = rk(C) = rk(A).

Corollary 12. (a) The subsequent constrained equations are equivalent for A ∈ Cm×n, X ∈ Cn×m,
B ∈ Cn×k and C ∈ Cl×m:

(i) XAB = B, CAX = C and rk(X) = rk(B) = rk(C) = rk(A);
(ii) XAX = X,R(X) = R(B), N (X) = N (C),R(A) = R(AB) and N (A) = N (CA);
(iii) XAX = X,R(X) = R(B), N (X) = N (C),R(A) ⊆ R(AB) and N (CA) ⊆ N (A);
(iv) XAX = X,R(X) = R(B), N (X) = N (C) and A = AB(AB)† A = A(CA)†CA;
(v) XAX = X, AXA = A,R(X) = R(B) and N (X) = N (C), i.e., X ∈ A{1, 2}R(B),N (C).

(b) In addition, the constrained system in (i) has the unique solution X = A(1,2)
R(B),N (C).

Using Theorem 3 and Theorem 7, we characterize the solvability of a new system
obtained from the system (9) adding an extra condition AX = XA.

Corollary 13. The subsequent constrained equations are equivalent for A, X, B, C ∈ Cn×n:

(i) XAB = B, CAX = C, rk(X) = rk(B) = rk(C) and AX = XA;
(ii) XAX = X,R(X) = R(B), N (X) = N (C) and AX = XA;
(iii) X2 A = AX2 = X,R(X) = R(B) and N (X) = N (C);
(iv) X2 A = AX2 = X, X = BB†X = XC†C, XAB = B and CAX = C.

Example 3. Consider

A =

 1
ε θ 0
0 1 θ
0 0 0

, B =

 0 0
1 1
0 ε3

, C =

[
1 0 1
1 1 1

]
.
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Let us generate the possible solutions Q in the generic form

Q =

 q1,1 q1,2 q1,3
q2,1 q2,2 q2,3
q3,1 q3,2 q3,3

,

where qi,j, i, j = 1, . . . , 3 are unevaluated symbols. The general solution Q to the system of matrix
equations QAB = B, CAQ = C is equal to

Q =

 0 0 ε− εθ q2,3
1
θ 0 x2,3
− 1

θ2
1
θ − q2,3

θ

.

Ranks of relevant matrices are equal to

rk(B) = rk(AB) = rk(C) = rk(CA) = rk(A) = 2 < rk(Q) = 3.

Consequently, the system of matrix equations QAB = B, CAQ = C holds, but

QAQ =

 0 0 0
1
θ 0 1

θ
− 1

θ2
1
θ − 1

θ2

 6= Q.

The important requirement in Corollary 11 is rk(B) = rk(C) = rk(A) = rk(X). To reduce rk(Q)
to rk(A) we use the matrix X obtained by the replacements q2,3 → 1/θ in Q, which gives

X =

 0 0 0
1
θ 0 1

θ
− 1

θ2
1
θ − 1

θ2

.

All requirements in Corollary 11 are satisfied and all the matrix equations XAX = X, X =
BB†X = XC†C, XAB = B and CAX = C are fulfilled. Furthermore, the matrix equation
AXA = A is satisfied, which means X = A(1,2)

R(B),N (C).

It is important to mention that B(CAB)†C coincides with X, which is in accordance with the
Urquhart representation [36] and its generalizations from [16].

6. Conclusions

The aim of this paper is to investigate solvability of systems of constrained matrix
equations. The main novelty of this paper is the establishment of correlations between
solutions of certain constrained matrix equations with corresponding minimization prob-
lems. Some well-known results and several new results for the weak Drazin inverse are
obtained in particular cases. certain characterizations for the Drazin inverse, group inverse
and Moore–Penrose inverse are obtained as corollaries.

Implementation of the stated research highlights can be summarized as follows.

- Conditions (i)–(vi) in Theorem 1 are solutions to (5), while (6) is solved in (12)
and (13).

- Conditions (i)–(vi) in Theorem 5 are solutions to (7), while (8) is solved in (17)
and (18).

- The unique solution to (9) is X = A(2)
R(B),N (C) and conditions (i)–(vi) in Corollary 11

are conditions for solvability of (9).
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Appendix A


(2ε + 1)u1,1 + ε(u2,1 + u3,1) (2ε + 1)u1,2 + ε(u2,2 + u3,2)
εu1,1 + (2ε− 1)u2,1 + εu3,1 εu1,2 + (2ε− 1)u2,2 + εu3,2
εu1,1 + εu2,1 + (2ε + 1)u3,1 εu1,2 + εu2,2 + (2ε + 1)u3,2

ε(u1,1 + u2,1 + u3,1) ε(u1,2 + u2,2 + u3,2)
ε(3u1,1 + u2,1 + u3,1) ε(3u1,2 + u2,2 + u3,2)

ε(−6u3,2ε3+3u3,2ε2+3(−2ε2+ε+1)u2,2ε+3u3,2ε+(−12ε3+9ε+3)u1,2+2)
6ε3−3ε2−6ε−1

ε(−6u3,2ε3+3u3,2ε2−6ε2+3(−2ε2+ε+1)u1,2ε+3u3,2ε−3(4ε3−4ε2−ε+1)u2,2+2)
6ε3−3ε2−6ε−1

− (ε−1)(12u3,2ε3+3(2ε+1)u1,2ε2+3(2ε+1)u2,2ε2+12u3,2ε2−6ε2+3u3,2ε−6ε−1)
6ε3−3ε2−6ε−1

ε(−6u3,2ε3+3u3,2ε2+3(−2ε2+ε+1)u1,2ε+3(−2ε2+ε+1)u2,2ε+3u3,2ε−3ε−1)
6ε3−3ε2−6ε−1

ε(−6u3,2ε3+3u3,2ε2+9(−2ε2+ε+1)u1,2ε+3(−2ε2+ε+1)u2,2ε+3u3,2ε+3ε−1)
6ε3−3ε2−6ε−1

(24ε5+28ε4−2ε3−17ε2−8ε−1)u1,2+ε(−2ε(2ε2+ε+1)+(12ε4+8ε3−5ε2−6ε−1)u2,2+(12ε4+8ε3−5ε2−6ε−1)u3,2)
2ε(6ε3−3ε2−6ε−1)

12u3,2ε5+8u3,2ε4+26ε4−5u3,2ε3+15ε3−6u3,2ε2−9ε2+(12ε4+8ε3−5ε2−6ε−1)u1,2ε−u3,2ε−7ε+(24ε5+4ε4−18ε3−7ε2+4ε+1)u2,2−1

2ε(6ε3−3ε2−6ε−1)
24u3,2ε5+28u3,2ε4−14ε4−2u3,2ε3−7ε3−17u3,2ε2+4ε2+(12ε4+8ε3−5ε2−6ε−1)u1,2ε+(12ε4+8ε3−5ε2−6ε−1)u2,2ε−8u3,2ε+ε−u3,2

2ε(6ε3−3ε2−6ε−1)
12u3,2ε4+8u3,2ε3+2ε3−5u3,2ε2+13ε2−6u3,2ε+8ε+(12ε4+8ε3−5ε2−6ε−1)u1,2+(12ε4+8ε3−5ε2−6ε−1)u2,2−u3,2+1

2(6ε3−3ε2−6ε−1)
12u3,2ε4+8u3,2ε3−10ε3−5u3,2ε2−5ε2−6u3,2ε+6ε+3(12ε4+8ε3−5ε2−6ε−1)u1,2+(12ε4+8ε3−5ε2−6ε−1)u2,2−u3,2+1

2(6ε3−3ε2−6ε−1)

(2ε+1)(3ε2+2(−3ε2+ε+2)u1,2ε+(−6ε3+3ε2+6ε+1)u1,1−1)+ε((−6ε3+3ε2+6ε+1)u2,1−2ε(3ε+2)((ε−1)u2,2+1))+ε((−6ε3+3ε2+6ε+1)u3,1+2ε(ε+(−3ε2+ε+2)u3,2+1))
6ε3−3ε2−6ε−1

ε(3ε2+2(−3ε2+ε+2)u1,2ε+(−6ε3+3ε2+6ε+1)u1,1−1)+(2ε−1)((−6ε3+3ε2+6ε+1)u2,1−2ε(3ε+2)((ε−1)u2,2+1))+ε((−6ε3+3ε2+6ε+1)u3,1+2ε(ε+(−3ε2+ε+2)u3,2+1))
6ε3−3ε2−6ε−1

ε(3ε2+2(−3ε2+ε+2)u1,2ε+(−6ε3+3ε2+6ε+1)u1,1−1)+ε((−6ε3+3ε2+6ε+1)u2,1−2ε(3ε+2)((ε−1)u2,2+1))+(2ε+1)((−6ε3+3ε2+6ε+1)u3,1+2ε(ε+(−3ε2+ε+2)u3,2+1))
6ε3−3ε2−6ε−1

ε(−6u2,1ε3−6u2,2ε3−6u3,1ε3−6u3,2ε3+3u2,1ε2+2u2,2ε2+3u3,1ε2+2u3,2ε2−ε2+2(−3ε2+ε+2)u1,2ε+6u2,1ε+4u2,2ε+6u3,1ε+4u3,2ε−2ε+(−6ε3+3ε2+6ε+1)u1,1+u2,1+u3,1−1)
6ε3−3ε2−6ε−1

ε(−6u2,1ε3−6u2,2ε3−6u3,1ε3−6u3,2ε3+3u2,1ε2+2u2,2ε2+3u3,1ε2+2u3,2ε2+5ε2+6(−3ε2+ε+2)u1,2ε+6u2,1ε+4u2,2ε+6u3,1ε+4u3,2ε−2ε+(−18ε3+9ε2+18ε+3)u1,1+u2,1+u3,1−3)
6ε3−3ε2−6ε−1


.
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Appendix B



2u1,1 + u1,2 + u1,3 u1,1 + u1,3

2u2,1 + u2,3 −
(9ε+2)u3,2

9ε−2 + 1 u2,1 + u2,3
9u3,2ε−11ε+(4−18ε)u2,1+(2−9ε)u2,3+2u3,2+2

9ε+2
−5ε+(2−9ε)u2,1+(2−9ε)u2,3+2

9ε+2
2(6ε+(9ε+4)u2,1+2)

9ε+2 +
5ε+(9ε+4)u2,3+2

9ε+2 − (9ε+4)u3,2
9ε−2 − 1 11ε+(9ε+4)u2,1+(9ε+4)u2,3+4

9ε+2

−u1,2 +
2(−(9ε+2)u1,1+(1−9ε)u2,1+1)

9ε+2 +
−6ε−(9ε+2)u1,3+(1−9ε)u2,3

9ε+2 +
(9ε−1)u3,2

9ε−2
−9u2,1ε−9u2,3ε−6ε−(9ε+2)u1,1−(9ε+2)u1,3+u2,1+u2,3+1

9ε+2

u1,1 + u1,2 + 2u1,3 u1,1 + u1,2 + u1,3

u2,1 + 2u2,3 −
(9ε+2)u3,2

9ε−2 + 1 u2,1 + u2,3 −
(9ε+2)u3,2

9ε−2 + 1
9u3,2ε−4ε+(2−9ε)u2,1+(4−18ε)u2,3+2u3,2+4

9ε+2
9u3,2ε−5ε+(2−9ε)u2,1+(2−9ε)u2,3+2u3,2+2

9ε+2
6ε+(9ε+4)u2,1+2

9ε+2 +
2(5ε+(9ε+4)u2,3+2)

9ε+2 − (9ε+4)u3,2
9ε−2 − 1 6ε+(9ε+4)u2,1+2

9ε+2 +
5ε+(9ε+4)u2,3+2

9ε+2 − (9ε+4)u3,2
9ε−2 − 1

−u1,2 +
−(9ε+2)u1,1+(1−9ε)u2,1+1

9ε+2 − 2(6ε+(9ε+2)u1,3+(9ε−1)u2,3)
9ε+2 +

(9ε−1)u3,2
9ε−2 −u1,2 +

−(9ε+2)u1,1+(1−9ε)u2,1+1
9ε+2 +

−6ε−(9ε+2)u1,3+(1−9ε)u2,3
9ε+2 +

(9ε−1)u3,2
9ε−2

2u1,1 + u1,2 + u1,3

2u2,1 + u2,3 −
(9ε+2)u3,2

9ε−2 + 1
9u3,2ε−11ε+(4−18ε)u2,1+(2−9ε)u2,3+2u3,2+2

9ε+2
2(6ε+(9ε+4)u2,1+2)

9ε+2 +
5ε+(9ε+4)u2,3+2

9ε+2 − (9ε+4)u3,2
9ε−2 − 1

−u1,2 +
2(−(9ε+2)u1,1+(1−9ε)u2,1+1)

9ε+2 +
−6ε−(9ε+2)u1,3+(1−9ε)u2,3

9ε+2 +
(9ε−1)u3,2

9ε−2


.
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