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Abstract: There is a manufacturing system where several parts are processed through machining
workstations and later assembled to form final products. In the event of disruptions such as machine
failure, the original flow-shop schedule needs to be revised and/or rescheduled. In such a scenario,
rescheduling methods based on right-shift rescheduling and affected operations rescheduling work
very well. Here in this study, the deviation of the make-span of the revised schedule from the
original schedule is used as a performance measure. We have proposed three rescheduling methods.
There are multiple factors that influence the performance of the rescheduling methodology. One
of them is the make-span deviation of the schedule, and the factors influencing it are optimality of
the initial solution, failure duration, deviation of make-span, rescheduling method, size, and instant
of failure. The initial schedule and problem size depend on the flow-shop manufacturing system
for which scheduling is performed, but the method of rescheduling depends on the decision as to
which rescheduling methodology is to be selected. Computations are performed using full factorial
experimentation. We also observed that right-shift rescheduling is the preferred rescheduling method
in the majority of situations. In contrast, the affected operation rescheduling method is also equally
suitable when the initial solution is created using modified bottleneck minimum idleness.

Keywords: scheduling; right-shift rescheduling; affected operations rescheduling; genetic
algorithm; heuristics

MSC: 90B50

1. Introduction

Schedules are prepared in advance to lead production operations and assist with
other planning activities. However, disruptions, which are inevitable for manufacturing
installations, result in unacceptable performance changes to the pre-decided schedules.
These disruptions compel rescheduling the operations for optimum performance, which
involves modifying an already-planned, possibly optimal schedule to take the disturbance
into account. Furthermore, it needs to be prepared in a short time, accommodate unforeseen
or urgent events, and adapt to the original schedule.

Nowadays, with multiple product lines consisting of multiple parts requiring different
workstations, the manufacturing parameters are far more complicated. This complexity
is strongly influenced by the product structure and manufacturing system. Although,
according to the product requirements, product structures can be simple or complex based
on the relationship between the parts and/or subassemblies and the final assembly in a
hierarchical manner (refer to the two examples presented in Figure 1). It is important to take
into account the type of production system available, whether it is a job-shop, open-shop,
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or flow-shop system [1]. In the open-shop system, there are no restrictions on the flow of
each work through the ‘m’ machines, whereas each job has a separate flow pattern in the
job-shop. The jobs can be processed either in a permutational way, where jobs are processed
by a series of ‘m’ machines in the same order, or in a non-permutational way, where jobs
are processed by a series of ‘m’ machines but not in the same order [2].
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In the case of the assembly job-shop problem with Product p1, only one operation
is performed on every part, parts j1, j2, j3, and j4 (refer to Figure 1a). Conversely, with
Product p2, these parts are processed simultaneously on multiple workstations: w1, w2, w3,
and w4. The complexity of the assembly job-shop problem increases with the number of
operations. From this example (refer to Figure 1b), it is evident that only one operation,
before assembly, is assumed for every part in the case of Product p1, whereas in the
complex product structure of Product p2, there could be more than two operations. Thus,
any manufacturing system that assembles multiple products (p1, p2 . . . so on) needs
several parts (j1, j2 . . . so on) and/or subassemblies that subsequently require a series of
machining/sub-assemblies at multiple work stations: w1, w2, . . . wn. Due to design and
technological constraints, machining operations are performed in the first stage, whereas
assembly operations are performed at later stages. Final assembly or sub-assembly may
have to wait not only for the machines but for their sub-components as well. However, the
problem of production planning for the job- and/or flow-shop with the machining and
assembly operations is called the assembly flow-shop problem. Similar complex structures
in the assembly job-shop problem are common in special and unique capital goods.

In the case of the assembly flow-shop problem, the workstation can be used to perform
exactly similar or different operations for multiple products (refer to Figure 2). Here, parts
are processed serially through the same set of workstations (w1, w2, . . . wn) to manufacture
products (p1, p2 . . . so on); these products need several parts (j1, j2 . . . so on) and/or
subassemblies that subsequently require a series of machining/sub-assemblies at multiple
work stations: w1, w2, . . . wn. For example [3,4], in gearbox processing, milling machines
at the first stage perform roughing operations, and then machining centers at the next stage
perform finishing operations. Finally, the product is assembled on the last workstation with
the remaining parts (say a team of workers assembles them with other parts, such as casing,
shaft, etc.), forming the final product. A consolidated survey of categories of assembly
flow-shop models and their solution methodologies is available in the literature [4,5]. There
are huge avenues for research in this area [5], as it has received less attention than other
areas of scheduling.
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Thus, there is a need to study and analyze the appropriate techniques for scheduling
and rescheduling of such assembly flow-shop problems in any manufacturing system.
Earlier studies [6–10] presented an analysis of scheduling techniques by considering the
largest possible size (nearly 1520) of number of operations [4] to minimize the make-span.
The objective of the present work is to study and analyze the appropriate technique for
rescheduling in the event of a system disruption. In this study, the performance measure of
percent deviation of make-span between the disrupted schedule and the new schedule gen-
erated by the proposed rescheduling methods is performed. Thus, our main contribution is
to study the influence of factors such as failure duration, rescheduling method, size, and
instant of failure that impact the make-span deviation of the disrupted reschedule. Addi-
tionally, another objective is to study the interactions between the rescheduling method and
the optimality of the initial solution for managing disruptions in a flow-shop manufacturing
system. Subsequently, we propose right-shift, break down machine heuristics, and the use
of a genetic algorithm in order to accommodate disruptions in the manufacturing and/or
assembly processes.

The manuscript presents, in Section 2, a brief background review on rescheduling
strategies. Section 3 presents the details of flow-shops with assembly operations. Next,
Section 4 describes the proposed three methods: right-shift, affected operations, and a
genetic algorithm for rescheduling flow-shops with assembly operations under system dis-
ruptions. Subsequently, Sections 5 and 6 present the computational experiments conducted
for larger-sized problems and discuss the combined effects of rescheduling methods having
different combination factors and their interaction effects, respectively. Lastly, Section 7
concludes our findings with the limitations of this and its future scope.

2. Background Review

Two common strategies for controlling production environments with disruptions
are dynamic (normal) and predictive–reactive (nominal) scheduling. Ouelhadj and Petro-
vic [11] have described dynamic scheduling as complete reactivity. Even though dynamic
scheduling is more popular for dealing with disruptions, it is not about optimizing schedul-
ing. Whereas, the original/initial schedule given is standard. Heuristics and optimization
concepts are typically the foundation of initial schedules. As a result, any strategy for
correction or repair will result in a departure from the initially planned schedule. Zhang
et al. [12] and Ghaleb et al. [13] presented the option to update schedules using right-shift
rescheduling (RSR), affected operation rescheduling (AOR), and total rescheduling (TR).
They selected the best rescheduling based on evaluation of different performance measures
such as schedule efficiency (i.e., make-span, mean tardiness, mean flow time, average
resource utilization, and maximum lateness), schedule stability (i.e., robustness and ner-
vousness), and cost (i.e., computational, setup, and transportation costs). The right-shift
rescheduling method delays or reschedules each affected task by the disruption, keeping
the initial sequence, and by the time required to make the reschedule plan workable. Thus,
there is no sequence deviation between schedule and reschedule. In affected operation
rescheduling, operations affected directly or indirectly by disruption are only rescheduled.
In order to maintain stability, affected operations rescheduling preserves the initial schedule
as much as possible. In total rescheduling, all job operations—those not processed before
disruptions and those not affected—are rescheduled.
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From published literature, it is evident that researchers adopted different performance
measures while evaluating rescheduling methods. Table 1 summarizes selected literature
and the adopted rescheduling strategies. Please refer to Appendix A for details regarding
the researchers adopted performance measures, the production system used for the study,
and the types of disruptions in the manufacturing system.

Table 1. Initial Schedule and Rescheduling Strategies.

Ref. Initial Schedule Rescheduling Strategy *

[14] Nominal AOR

[15] Nominal RSR/AOR/TR

[16] Nominal RSR/AOR

[17] Nominal AOR

[18] Nominal AOR

[19] Normal AOR

[20] Nominal RSR/AOR

[21] Nominal RSR/AOR/TR

[22] No schedule AOR

[23] Nominal AOR

[24] Nominal AOR

[25] Dispatching rule RSR/AOR

[26] Normal AOR

[27] Robust RSR

[28] Nominal RSR/AOR

[29] Nominal RSR/AOR

[30] Nominal AOR

[31] Nominal AOR

[32] Nominal AOR/RSR

[33] Normal AOR

[34] Nominal RSR AOR TR

[35] Nominal RSR/AOR

[36] Normal Periodic/event driven

[37] Normal AOR

[38] Normal AOR/RSR

[39] Normal Selection from trained data

[40] Normal AOR

[41] Normal RSR/AOR

[42] Normal Simulation

[43] Nominal Simulation
* Note: RSR—right-shift rescheduling, AOR—affected operation rescheduling, and TR—total rescheduling.

From Table 1, it is evident that AOR is the most preferred rescheduling approach
due to its stability and potential savings in CPU time. It is also evident that AOR finds
more applications in most of the heuristics developed to date. RSR can also be regarded
as a special case of AOR, where scheduled repair or recovery is very practical as it saves
CPU time and maintains the stability of the manufacturing system. Similarly, though TR
might, in principle, be better capable of maintaining optimality, its main disadvantage is
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excessive computational effort and CPU time. However, this approach is discouraged in
the industry as the new schedule is likely to differ considerably from the old one, and it is
not desirable since many other decisions, such as the assignment of personnel, the delivery
of raw materials, and the subsequent processing of jobs in other facilities, may be severely
disrupted. It is found that AOR demonstrates competitive performance for both efficiency
and stability measures [15,16,20–23]. TR uses a rescheduling procedure that is the same as
that used at the predictive stage for scheduling; it showed better performance for efficiency
measures. However, it is achieved at the expense of computation time [21]. From Table 1, it
is also evident that most researchers adopted machine failure as a disruption. This may
be due to the fact that a disruption due to machine failure includes other uncertainties
like disruption in the processing of operations on the machine for a period of time. The
scheduling complexity of AJSP and AFSP systems is mainly characterized by the number
of operations, the precedence relationship among operations (product structure), and
computing time. Only one instance of rescheduling work on such a manufacturing system
is seen in the literature [43]. In this paper, rescheduling methods are presented for the
assembly flow-shop problem (AFSP), which has machining operations in the first stage
and assembly operations at a later stage. Thus, in order to accommodate for disruptions in
the manufacturing process, the rescheduling process needs to have the facility to change
the initial schedule as and when the event occurs. The initially adopted assembly flow-
shop operation and the required scheduling as a problem on hand are discussed in the
following section.

3. Problem on Hand: Flow-Shop with Assembly Operation

The objective of the present work is to study and analyze the appropriate technique for
rescheduling in the event of a system disruption in any flow-shop with part manufacturing
and their subsequent assembly operations. Thus, the flow-shop manufacturing system
combined with the adopted assembly operations is presented in Figure 3. Where, the begin-
ning and end of the flow-shop are shown by dummy operations O1 and O38, respectively.
Operations O12, O26, and O37 performed on w5 represent final assembly and three products:
Product 1, Product 2, and Product 3. Each product is made up of several parts, and each
part is processed on workstations in a technological sequence. For example, Product 1
is made up of parts J11, J12, and J13, where the operations of the first part J11 follow the
sequence O2, O3, and O4 machining operations; O11 is a subassembly operation, and O12 is
an assembly operation of the product. Machining operations are performed on all worksta-
tions except the last two, which perform only assembly operations. Thus, the system on
hand has H total products and Jh parts per product with J total parts. The directed graph of
the operation-based representation of AFSP is shown, where O1 and O38 are dummy sets
of operations, O2 to O37 stand for actual operations as per the predefined manufacturing
flow, J11 to J33 represent parts, and w1 to w5 represent workstations (refer to Figure 3).
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In order to decide the start and finish times of each of the operations (machining,
subassembly, and assembly), first the order of parts for each product is decided, and
then the order of products is determined on the basis of the minimum completion time.
Scheduling the manufacturing system aims to minimize the completion time (make-span)
for all products by finding the optimal sequence of parts at each workstation. In this study,
the performance, i.e., percent deviation of make-span between the disrupted schedule
and the new schedule generated by the proposed rescheduling methods, is evaluated.
Here in this study, the initial schedule is generated using heuristics based on the genetic
algorithm (GA) and modified bottleneck minimum idleness (MBMI) heuristics developed
for AFSP with the objective of minimizing make-span time [5]. The problems are generated
by varying the number of operations (NOP), number of products (H), parts per product
(Jh), and number of workstations (W), as shown in Table 2.

Table 2. Problem sizes for the initial schedule.

Problem NOP H Jh W

1 290 10 10 5

2 1520 20 10 10

The initial schedule is generated using MBMI and GA methods, which are addressed in
earlier work [44]. In brief, the details on how these methods work are presented here below.

3.1. Genetic Algorithm

The genetic algorithm mechanism starts by encoding the feasible schedule to produce
a list of genes (parent chromosomes) as the initial solution space (refer to Figure 4). Where
each gene represents an operation and a chromosome (list of genes) represents a set of op-
erations for all workstations (the entire schedule). For deciding the sequence of operations,
the operations for each product are structured in a specific sequence (refer to Figure 3)
and are reproduced as chromosome structure. Such a chromosome structure for the first
product (h = 1) is depicted in Figure 4a, where each chromosome is divided into subchro-
mosomes that correspond to the sequence of operations on the wj workstation. Similarly,
for deciding the sequence of products, see Figure 3, and the operations corresponding to
the final assembly of all products are reproduced as a chromosome structure, as shown in
Figure 4b. In the first phase, the sequence of operations on all workstations is decided for
every individual product to minimize the make-span of each one. In the second phase, the
sequence of the product is decided by obtaining the minimum make-span of all products.
The adopted procedure to generate the initial schedule using a genetic algorithm-based
heuristic for both phases is presented in Figure 5.
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3.2. Modified Bottleneck Minimal Idleness

Here, the order of the parts (refer to Figure 3) to be processed for all products on every
workstation is collectively decided. Initially, the set of operations for every workstation
is identified for all products, and subsequently, the bottleneck workstation that consumes
the most processing time is identified. Secondly, for each part of the bottleneck station,
the sum of the processing times of the remaining operations, called the tail, is estimated.
Subsequently, the total processing time at the bottleneck station for every product is
calculated, and the sequence of the products is determined in decreasing order of time.
Followed and continued to club, the operations on parts at the bottleneck station belonging
to each product and arranging them in sequence is determined earlier. Thus, for each
product, the operations at the bottleneck station are sorted in decreasing order of closeness
to the secondary bottleneck workstation upstream. Finally, the schedule is set by aligning
the remaining operations before and after the bottleneck station and determining the
make-span.

4. Proposed Approach

For the above-stated assembly flow-shop problem with machining operations in the
first stage and assembly operations at a later stage, in order to accommodate disruptions
in the manufacturing and assembly processes, the rescheduling process needs to have the
facility to change the initial schedule as and when the event occurs. The framework of
the whole proposed approach begins with the given assembly flow-shop problem. The
schedule is generated using the MBMI and GA methods, the performances of which
are decided on the basis of the deviation of the make-span from the lower bound [44].
These schedules are rescheduled in the event of a disruption (machine failure: instant and
duration) using the proposed rescheduling methods. The deviation of the make-span of
the new schedule from the original schedule is used to measure the performance of these
proposed rescheduling methods. The proposed three methods—right-shift, break down
machine heuristics, and genetic algorithms—are presented below.

4.1. Right-Shift Rescheduling (RSR)

RSR simply postpones (shifts) all the affected operations by the amount equal to the
disruption duration by retaining the original sequence of operations on all workstations,
thereby maintaining the schedule’s stability. The procedural steps are as follows:
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Step A1: Determine the breakdown or disrupted workstation (DW), time of failure
(Tf), and duration of failure (Df).

Step A2: Determine the two sets of operations from the initial schedule for each
workstation, first S1 before Tf and another S2 after Tf. If operation is interrupted, the DW
during disruption is incomplete and is added to set S1.

Step A3: In the case of an incomplete interrupted operation, modify the processing time
of the interrupted operation by adding a failure duration as P(Jhi, DW) = Df + P(Jhi, DW).
Else, add an idle time of Df after a disrupted operation.

Step A4. Combine the operations of the workstations of sets S1 and S2.
Step A5: Determine the start and finish times of each operation for the combined set

with the same sequence of operations as the initial schedule.

4.2. Break down Machine Heuristics

After the rescheduling of the operations at the disrupted workstation is completed,
corresponding changes in the operations at another workstation are necessitated. Thus,
sequence stability is disturbed to some extent. In this scenario, two heuristics (a break down
machine and a genetic algorithm) are adopted. In this case, the sequence of parts in each
product may change, but the sequence of products in the flow-shop is maintained to ensure
system stability to the maximum possible extent. In the case of a disrupted break down
workstation, the operations on the subsequent workstations are rearranged accordingly.
This rearrangement is based on the break down machine heuristic and is performed step
by step as follows:

Step B1: Determine the breakdown or disrupted workstation, time of failure, and
duration of failure. It is the same procedure as mentioned above in Step A1.

Step B2: Determine two sets of operations from the initial schedule for each worksta-
tion, the first set of operations S1 being before time failure Tf and another set of operations
S2 being after time failure Tf. An interrupted incomplete operation, if any, on DW during
disruption is added to set S1 and modifies the processing time of an interrupted operation
by adding the failure duration Df (same as the above Step A3).

Step B3: Group the set of operations S2 after the time of failure for each product and
sort these operations product-wise on the disrupted workstation in increasing order of
processing time.

Step B4: Perform the aligning of the corresponding operations S2 of the parts on the
non-disrupted workstation.

Step B5: Finally, combine the operations on workstations from sets S1 and S2 and
determine the start and finish times of each operation for the combined set.

4.3. Use of Genetic Algorithm

Here, the use of a genetic algorithm is to treat the sequence of operations on disrupted
workstations as a representation scheme of chromosome structure. The number of gen-
erations is decided based on the time required for execution of the program, which is
maintained to a reasonable extent. The rearrangement/reschedule is based on a genetic
algorithm heuristic performed step by step as follows:

Step C1: Determine the breakdown or disrupted workstation (DW), time of failure
(Tf), and duration of failure (Df) (same as the above Step B1).

Step C2: Determine the two sets of operations from the initial schedule for each
workstation, first S1 before Tf and another S2 after Tf. An interrupted, incomplete operation,
if any, on DW during disruption is added to set S1 (same as the above Step B2).

Step C3: In the case of an incomplete operation, modify the processing time of the
interrupted operation by adding a failure duration, i.e., P (Jhi, DW) = Df + P(Jhi, DW) (same
as the above Step B2).

Step C4: For the operation set S2, generate two parent chromosomes, where the first
chromosome is generated as the sequence of operations of a disruptive machine using the
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breakdown rescheduling approach and another chromosome is generated randomly. These
two parent chromosomes will be used for the first generation.

Step C5: If the generation number has not reached the maximum set limit, use the
genetic operator as a one-point crossover to generate sequences of operation for a disruptive
machine and the shift mutation operator on the parent chromosomes to form the population.

Step C6: Align the corresponding operations of the parts in non-disruptive worksta-
tions with the set of operations obtained for the disruptive workstation for the
entire population.

Step C7: Combine the operations of the workstations related to operation sets S1 and
S2 and determine the start and finish times of each operation for the combined set.

Step C8: Finally, from the population, select two schedules with the least make-span
and determine their sequences of operations in the disruptive workstation, which will be
used as parent chromosomes in the next generation.

Step C9: Reach step C5, in the case that the generation number has not reached the
maximum limit.

In the above-proposed approach, the following assumptions are made and listed
as follows:

• Each part can handle up to one workstation at a time. All parts are stand-alone,
available for zero-time processing, and may or may not require all workstations.

• A workstation is continuously available and processes parts in the same order; for
example, if part jhi is processed on a workstation before part jhi+1, then all workstations
proceed in the same way.

• Setup times for the parts and assemblies are negligible and therefore ignored.
• It is permissible to keep inventory during the process.
• Transit time is zero, which makes a part available on a workstation wj+1 as soon as it

leaves workstation wj.
• All products have the same delivery dates.
• All the parts and machines immediately resume their execution once the reschedule is

made available.
• The duration of the breakdown is known as soon as it occurs.
• A machining workstation other than the first fails in a random manner.
• After rescheduling, an interrupted, incomplete operation, if any, will be completed on

the same machine.
• Disruption occurs only at machining workstations. Disruption at assembly worksta-

tions is assumed to be negligible as the number of operations at these workstations is
less than those at machining workstations.

The affected operation rescheduling is found to be the most suitable as it gives a better
performance in the efficiency and stability measures. Further, right-shift rescheduling being
a special case of the affected operation rescheduling requisites a comparative analysis of the
results obtained using these two methods, presented with machine failure as a disruption.
When studying the affected operation rescheduling method, two heuristics (BDM and ge-
netic algorithms) have evolved based on the concept of the affected operation rescheduling
method. Sequence deviation, a stability measure, is prevented in the procedure of the
affected operation rescheduling and right-shift rescheduling. Thus, only schedule efficiency
needs to be measured when comparing these methods. The schedule efficiency is estimated
on the basis of the percent deviation of the make-span (%DM) between the disrupted and
new schedules. The %DM is calculated using the following Equation (1): where Mr is the
make-span obtained by the rescheduling method and Mo is the make-span of the original
(disrupted) schedule.

%DM = [(Mr −Mo)/Mo] × 100 (1)

5. Performance of Rescheduling: Design of Experiments

Using the proposed right-shift, affected operations, and genetic algorithm, compu-
tational experiments are conducted on larger-sized problems in order to study the per-
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formance as the percent deviation of the make-span between the disrupted workstation
schedule and the new schedule generated by the above-proposed three rescheduling
methods (refer to Section 4). There are multiple factors that influence the effectiveness of
rescheduling. The selected details are presented herewith.

The size of the manufacturing system [15] refers to its problem size and is expressed
as the number of operations (NOP). The NOP in turn is decided by the number of products
(H), parts per product (Jh), and number of workstations (W). The NOP has already been
established as an important factor in scheduling and can range up to 1520. In order to cover
the entire range of sizes, two levels are considered in this experiment.

Extent of the optimality of the initial schedule [15]: The schedule is referred to as
optimal if it gives the least deviation from the lower bounds. In this work, the optimality of
the initial schedule (OSI) depends on the deviation of the make-span from the lower bound
of the initial schedule method, viz., the GA, Disjunctive, and MBMI methods, which are
found to be least, moderate, and highest, respectively [5]. To cover the entire range, the
two extreme levels are selected for OSI, i.e., GA and MBMI.

A number of disruptions occur and workstations fail, which, in the manufacturing
system, results in parts being processed sequentially through several workstations. Dis-
rupted workstation (DW) refers to the workstation(s) where break down occurs. Idle time
available on each workstation varies, and hence workstations where disruptions occur
affect the rescheduling performance. Break down occurs on any one or more workstations
simultaneously. However, in this work, we only considered failures that occur one at
a time in a workstation. The selection level for disrupted workstations depends on the
number of machining workstations in the manufacturing system. A disrupted workstation
is a continuous variable, and the two levels are set, viz., an earlier or later machining
workstation. For a small-sized problem, i.e., 290 NOP, as shown in Table 1, only three
machining workstations exist, of which the first one is assumed not to be failing. Hence,
in the earlier workstation, failure begins in workstation two, and workstation three is the
later failing machining workstation. However, in the large size problem, i.e., NOP 1440,
eight machining workstations are considered. When defining earlier DW, it is assumed to
lie between two and four, and workstations five and onward are considered later. In such
cases, selection of failure workstation is made by generating random number as Earlier
DW ∈ [2~4] and Later DW ∈ [5~8].

The instant of disruption [15] is an instant (Tf) at which a failure occurs. The instant
can occur anywhere in the entire make-span period of a schedule. The earlier the failure
(Tf), the more the number of operations are affected, which extends the make-span of
the revised schedule significantly. If Mo is the make-span of the initial schedule, then
the available range for Tf is zero to Mo. Thus, the levels for continuous factor Tf are set,
i.e., early and late, which are selected randomly in the following two intervals: Early
Tf ∈ [0.05 Mo~0.4 Mo] and Late Tf ∈ [0.6 Mo~0.9 Mo].

The failure duration [15] is the time period (duration) for which the workstation is not
available and depends on the time required (Df) to repair the workstation. Workstation
failures that only occur during the make-span period result in the values of Df being taken
in proportion to Mo. As it is a continuous factor, the factor is set at two levels, and the
values are generated using random numbers of short or long duration as follows: short
duration Df ∈ [0.005 Mo~0.025 Mo] and long duration Df ∈ [0.04 Mo~0.06 Mo].

The rescheduling method [15], of which three methods, i.e., RSR, BDM, and GA, have
been proposed. Owing to the discrete nature of a factor and the necessity of considering all
the methods so as to assess their effect on the performance measure, the factor is set for
three levels.

The above multiple factors and their levels are summarized in Table 3. As one factor is
set at three levels and the remaining five factors at two levels, the experimental plan works
out to be a 31 × 25 statistical factorial design. A full factorial design, therefore, necessitates
2 × 2 × 2 × 2 × 2 × 3 = 96 experimental combinations. For the experimental combinations
of each of these levels in a full factorial experimental design, refer to Appendix B. The
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proposed rescheduling methods are required to produce revised schedules with the start
and finish times of each operation, along with a sequence of operations on workstations. The
appropriateness of the schedules generated by these methods is illustrated by a numerical
example tabulated in Table 4.

Table 3. Levels of rescheduling factors.

Factors Level 1 Level 2 Level 3

F1: Size of the manufacturing system (size) 290 1440

For experimentation, the
values are generated using
random numbers for each
replication independently.

F2: Extent of optimality of the initial schedule (OIS) GA MBMI

F3: Number of disruptions occur and the
workstations fail (DM) Earlier Later

F4: Instant of disruption (Tf) Early Late

F5: Failure duration (Df) Short Long

F6: Rescheduling method (RM) RSR GA BDM

Table 4. Numerical data.

Part No.

Processing Time of Operations on Workstations

Machining Work Stations Assembly Work Stations

w1 w2 w3 w4 w5

j11 O2 (12) O3 (14) O4 (9)

O9 (11) O10 (16)j12 O5 (9) O6 (14)

j13 O7 (5) O8 (12)

j21 O11 (9) O12 (7) O13 (11)

O21 (15) O22 (21)
j22 O14 (9) O15 (12)

j23 O16 (11) O17 (5)

j14 O18 (10) O19 (13) O20 (4)

j31 O23 (14) O24 (5) O25(9)

O30 (8) O31 (15)j32 O26 (12) O27 (13) O28 (6)

j33 O29 (12)

Though the data for disruption is generated randomly, for illustration, it is taken as
Tf = 20, and Df = 15 (refer arrow in the below Figure 6a) for the numerical example as
referred in the above Table 4. The data given in Table 4 is processed on the computational
programs for each of the three rescheduling methodologies, i.e., RSR, BDM, and GA,
developed for generating a new schedule. The computational program is coded in MATLAB
for each of the methodologies considered. Computations are executed on a system with
the Windows operating environment. The number of generations in GA is kept at ten,
as it does not show any significant improvement after ten generations. The original
schedule generated by the initial method and the rescheduled schedule generated by the
three rescheduling methods are represented using a Gantt chart (refer to Figure 4). The
arrow position in Figure 6a denotes the instant of failure, and the hatched region (refer to
Figure 6b–d) denotes the failure duration on the breakdown workstation (w2).
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Figure 6. Gantt chart for operations rescheduling.

From Figure 6b–d, the processing time of the incomplete operation (O3: operation
number 3), interrupted during the disruption, is modified, and the processing of the
operation is resumed after the disruption. While Figure 6b shows the sequence of operations
on workstations remains the same with RSR, in the case of AOR methods, Figure 6c,d
show the sequences of some operations are changed (shaded region). This verifies that the
programming codes developed for the methods are working properly. Experimentation
is performed with different failures of the workstation, the instant of failure, and the
duration of failure. From these experiments, the methods are able to generate results
for all the variation among disruption data as discussed above. The make-span of the
original schedule and the make-span obtained by three rescheduling methods for various
disruptions are presented in Table 5.

Table 5. Make-span obtained by rescheduling.

Disruptions Make-Span of the
Original Schedule

Make-Span of Reschedule Using

Failure Workstation Number Instant of Failure Duration of Failure RSR BDM GA

2 20 15

125

135 133 133
2 40 5 130 126 126
2 40 15 140 136 136
3 20 15 138 130 130
3 40 15 138 130 130

6. Discussion and Interpretation of Results

This experiment yields values for the performance measures as well as the make-span
and computation time for each design of the experiment. With three replications, there will
be 288 observations for each performance measure. The results of the computational exper-
iment include the original make-span (the make-span of the schedule before disruption
occurs), the make-span obtained in ith replication, and the percent deviation of make-span.
The effects of the factors on the percent deviation of the make-span are determined using
statistical techniques, such as the plotting method and the analysis of variance, as discussed
below [45]. The plotting method is used to study the influence of individual factors and
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the interaction effects of the different factors on the performance measure. The plot ob-
tained using the mean percent deviation of make-span values for all factors is shown in
Figure 7, which shows that the least slope of the plot is for Tf, whereas OIS indicates the
highest slope.
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The mean percent deviation of the make-span is lower in the case of smaller-sized
problems and increases with greater problem size, which is expected. Disruptions that
occur at earlier workstations affect the mean percent deviation of the make-span more than
those that occur later. An earlier disruption affects the entire schedule, thereby increasing
the mean percent deviation of the make-span. The duration of failure at that particular
workstation affects the percent deviation of the make-span to a greater extent, which is
highly expected. Though the genetic algorithm is preferred over the bottleneck minimum
idleness in scheduling problems, the modified bottleneck minimum idleness indicates a
lower mean percent deviation of the make-span. Since the genetic algorithm, in itself, has
a lesser idle time than the modified bottleneck minimum idleness. Hence, the modified
bottleneck minimum idleness can accommodate disruption more than the genetic algorithm.
RSR performs better than the other two methods used for rescheduling (refer to Figure 8).
In order to study the combined effect of rescheduling methods with different combinations
of other factors, interaction effects are evaluated. The interaction effects of combinations of
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factors, i.e., RM x OIS, RM x Df, RM x DW, RM x size, and RM x Tf, are studied. The plot
obtained for the interaction of RM x OIS using the mean percent deviation of the make-span
values is shown in Figure 8a. As the effect of RM is to be studied on OIS, plots obtained for
OIS are for the three RM levels separately. Similarly, plots obtained for the other interactions
are shown in Figure 8a–e. The horizontal plots of right-shift rescheduling with respect to
size and Tf (refer to Figure 8d) indicate that the percent deviation of the make-span remains
unaffected, irrespective of level. The interaction effects of Df x RM, Tf x RM, DW x RM, and
size x RM are not significant. The intersection of the lines in Figure 6a is an indication of a
major interaction effect between the levels of factors OIS and DM. Once the initial schedule
is obtained by the modified bottleneck minimum idleness method, affected operation
rescheduling methods improve schedule performance. Thus, the right-shift rescheduling,
as indicated in above Figure 8b, performs better when the initial schedule is prepared
using a modified bottleneck minimum idleness approach. This is because when the initial
schedule is suboptimal, there is more idle time available on the machining workstation
to accommodate disruptions and reduce the make-span. However, the differences seen
between the performances of right-shift rescheduling and affected operation rescheduling
are quite negligible. Subsequently, an ANOVA is used to do statistical analysis of the results,
and the FEst value and estimated FTab value are compared, as shown in Table 6. The FEst
values are higher than the corresponding FTab values at a 95% confidence level for all factors
except for the factor Tf. Therefore, the size, RM, OIS, Df, and DW contribute significantly
to the %DM variation. Among these interactions, only the RM x OIS interaction is found
to be significant.
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Table 6. Statistical analysis of the factors influencing disruptions and their interactions.

Name of Factors/Source of Variation Sum of Squares DOF Mean Sum of Squares FEst
FTab

(95%)

Size 26.26 1 26.26 11.23 3.84

RM 23.34 2 11.67 4.99 3.0

OIS 279.72 1 279.72 119.64 3.84

DW 55.36 1 55.36 23.68 3.84

Tf 8.42 1 8.42 3.60 3.84

Df 240.98 1 240.98 103.07 3.84

OIS × RM 30.55 3 10.18 4.36 2.6

Size × RM 8.94 3 2.98 1.27 2.6

Df × RM 1.54 3 0.51 0.22 2.6

Tf × RM 2.83 3 0.94 0.40 2.6

DW × RM 1.87 3 0.62 0.27 2.6

Error 633.58 271 2.34

7. Conclusions

On the occurrence of disruptions like machine failure, the original schedule of the
flow-shop needs to be revised and/or rescheduled. In such a scenario, rescheduling meth-
ods based on right-shift rescheduling and the affected operations rescheduling strategy
work very well. Here in this study, the deviation of the make-span of the revised schedule
from the original schedule is used as a performance measure. The severity of the influ-
ence of different factors on the percent deviation, i.e., the extent to which make-span of
the original schedule is natural, where factors influencing make-span deviation of the
schedule are optimality of the initial solution; failure duration; deviation of make-span;
and rescheduling method, size, and instant of failure. The initial schedule and problem
size depend on the manufacturing system for which scheduling is performed, but the
method of rescheduling depends on the decision as to which rescheduling approach is to
be selected. The higher severity of effect of duration of failure is quite natural. However,
the considerable influence of the make-span deviation and instant of failure is worth noting.
Similarly, the percent deviation of make-span is directly proportional to failure duration,
instant of failure, rescheduling method, and problem size, whereas it is inversely propor-
tional to the optimality of the initial solution and disrupted workstation. The investigation
into the interactions revealed that a major interaction exists between the rescheduling
method and the optimality of the initial solution. They indicate that, though right-shift
rescheduling is the preferred method in the majority of situations, the affected operation
rescheduling method is also equally suitable when the initial solution is created using
modified bottleneck minimum idleness. The setup time, changeover time, and transport
time are not considered in this work. Our method can be applied to other performance
measures, such as due dates. This work may be extended to include other disruptions, such
as alterations in order priority, multiple machine failures, new orders, the modification or
cancellation of orders, etc.

Author Contributions: Conceptualization, A.S.B. and P.M.K.; Data curation, M.D.N. and P.D.P.;
Formal analysis, P.M.K. and M.D.N.; Funding acquisition, A.U.R.; Investigation, A.S.B. and P.D.P.;
Methodology, A.S.B., P.M.K., M.D.N. and P.D.P.; Project administration, A.S.B. and A.U.R.; Software,
A.S.B. and A.U.R.; Supervision, P.M.K. and A.U.R.; Validation, A.U.R. and P.S.; Visualization, A.S.B.,
P.S. and A.U.R.; Writing—original draft, A.S.B. and P.M.K.; Writing—review and editing, A.S.B., P.S.
and A.U.R. All authors have read and agreed to the published version of the manuscript.



Mathematics 2023, 11, 1731 16 of 22

Funding: This research was funded by the Researchers Supporting Project number (RSPD2023R701),
King Saud University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within this article.

Acknowledgments: The authors are thankful to the King Saud University for funding this work
through the Researchers Supporting Project number (RSPD2023R701), King Saud University, Riyadh,
Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2023, 11, 1731 17 of 22

Appendix A

Table A1. Rescheduling overview.

Ref. Initial Schedule Rescheduling Strategy * Performance Measure Disruptions ** Production System Findings/Remarks

[14] Nominal AOR Flow time, tardiness, and
machine utilization

MF, NJ, JC, urgent job Flexible manufacturing
system (FMS)

Shortlisted dispatching rules performed better
than the early due date for rescheduling

[15] Nominal RSR/AOR/TR Efficiency and stability MF Job-shop AOR demonstrated superior performance over
all other methods in most situations

[16] Nominal RSR/AOR Earliness, tardiness, and
stability

MF Flow-shop Used the embedded dominance rule
for rescheduling

[17] Nominal AOR Robustness MF Flow-shop Determined trigger value for
deciding rescheduling

[18] Nominal AOR Machine utilization, setup,
and rescheduling frequency

MF Parallel machine Used periodic, event-driven, and hybrid
rescheduling strategies

[19] Normal AOR Tardiness MF, NJ, JC Job-shop FMS An adaptive genetic algorithm is applied

[20] Nominal RSR/AOR Make-span and deviation of
the start times

MF, NJ, PT vary, urgent job Job-shop AOR performed better. Experimented with up to
500 operations for various sizes and
incidences of disruptions

[21] Nominal RSR/AOR/TR Total weighted tardiness MF Job-shop TR outperformed other methods. Used a
modified shifting bottleneck method for
scheduling and rescheduling.

[22] No schedule AOR make-span, tardiness, and
start time deviation

NJ Job-shop Used the genetic local search method for
periodic rescheduling

[23] Nominal AOR Total flow time and number
of disrupted jobs

MF Parallel machine Used the shortest processing time
for rescheduling

[24] Nominal AOR Cost deviation related to
part and
machine preparation

MF, NJ FMS/Job-shop Used an agent-based approach

[25] Dispatching rule RSR/AOR Tardiness and
degree of similarity

MF Job-shop The proposed method of message passing and
the local search algorithm performed well

[26] Normal AOR Efficiency NJ Job-shop Genetic algorithm-based reactive scheduling

[27] Robust RSR Robustness and deviation of
completion times

MF Single
machine

Applied to the predictive schedule
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Table A1. Cont.

Ref. Initial Schedule Rescheduling Strategy * Performance Measure Disruptions ** Production System Findings/Remarks

[28] Nominal RSR AOR Make-span and lateness NJ, delay in processing time Flow-shop with
parallel machines

Initial schedule was generated with a commercial
constraint programming solver and a low impact
rescheduling algorithm was proposed

[29] Nominal RSR
AOR

Earliness, tardiness, and
cost and deviation of
completion time

MF Parallel machine A linear programming model for scheduling and
a minimum-cost network flow algorithm were
used for reactive scheduling.

[30] Nominal AOR Flowtime and stability in
tooling cost

MF Unrelated parallel machines Used algorithms by incorporating powerful
reduction and bounding mechanisms

[31] Nominal AOR Tardiness, flowtime, and
make-span and stability in
start times

MF Job-shop Dispatching rules generated an initial schedule

[32] Nominal AOR/RSR Tardiness, number of tardy
jobs, setup time, total idle
time of machines, total flow
time, start time deviation,
and change in
operations sequence

NJ Job-shop The match-up algorithms proposed
performed well

[33] Normal AOR Make-span and tardiness,
start time and process
sequence deviation, and
change in
machine allocation

NJ FMS A genetic algorithm was proposed for match up
scheduling with a non-reshuffle strategy and
performed better than the reshuffle and
TR methods

[34] Nominal RSR AOR TR Make-span and deviation of
the start times

MF, NJ, Job ready time
variation

Flow-shop An iterated greedy algorithm was used for
predictive and reactive scheduling. It performed
better than the local search and repair method

[35] Nominal RSR/AOR No. of disrupted jobs and
cost due to additional
resources

MF Unidentical parallel
machines

Heuristics for the initial schedule and
improvement used the local search algorithm

[36] Normal Periodic/event driven Make-span, tardiness, and
start time deviation,
and cost

NJ Job-shop A non-dominated sorting algorithm was used.
Length of the scheduling interval, no. of jobs
added, and shop utilization showed influence on
efficiency measures



Mathematics 2023, 11, 1731 19 of 22

Table A1. Cont.

Ref. Initial Schedule Rescheduling Strategy * Performance Measure Disruptions ** Production System Findings/Remarks

[37] Normal AOR Make-span and
energy consumption

Job-shop Applied match-up and memetic algorithms in a
sustainable environment

[38] Normal AOR/RSR Equipment utilization and
degree of similarity

MF Job-shop with
parallel machines

The concept of match-up scheduling was used
for single and group machines, for partial repair
of affected segment(s) of the schedule

[39] Normal Selection from trained data Tardiness NJ Job-shop The knowledge gathered with the deep learning
reinforcement method was used for the optimal
sequence and repair of operations

[40] Normal AOR Make-span and deviation of
no. of job allocations

Hybrid flow-shop A multi-objective evolutionary algorithm
was employed

[41] Normal RSR/AOR Make-span, computational
time, energy consumption,
and setup time

MF Unidentical
parallel machines

Used greedy heuristics and metaheuristics

[42] Normal Simulation Delivery due dates Change in delivery plan Hybrid flow-shop Multimethod modeling was used, which
involved simulation of interacting agents with
any logic software

[43] Nominal Simulation Make-span and
completion time

MF Assembly flow-shop Used an adaptive evolutionary algorithm on a
two-stage assembly flow-shop scheduling
problem with random breakdowns

* Note: RSR—right-shift rescheduling, AOR—affected operation rescheduling, and TR—total rescheduling. ** Note: MF—Machine failure, NJ—New job, OC—Order cancellation,
PT—processing time.
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Appendix B

Table A2. Full factorial experimental design.

# F1 $ F2 F3 F4 F5 F6 # F1 F2 F3 F4 F5 F6 # F1 F2 F3 F4 F5 F6 # F1 F2 F3 F4 F5 F6

1 1 1 1 1 1 1 25 1 2 1 1 1 2 49 2 1 1 1 1 1 73 2 2 1 1 1 2

2 1 1 2 1 1 1 26 1 2 2 1 1 2 50 2 1 2 1 1 1 74 2 2 2 1 1 2

3 1 1 1 1 2 1 27 1 2 1 1 2 2 51 2 1 1 1 2 1 75 2 2 1 1 2 2

4 1 1 2 1 2 1 28 1 2 2 1 2 2 52 2 1 2 1 2 1 76 2 2 2 1 2 2

5 1 1 1 2 1 1 29 1 2 1 2 1 2 53 2 1 1 2 1 1 77 2 2 1 2 1 2

6 1 1 2 2 1 1 30 1 2 2 2 1 2 54 2 1 2 2 1 1 78 2 2 2 2 1 2

7 1 1 1 2 2 1 31 1 2 1 2 2 2 55 2 1 1 2 2 1 79 2 2 1 2 2 2

8 1 1 2 2 2 1 32 1 2 2 2 2 2 56 2 1 2 2 2 1 80 2 2 2 2 2 2

9 1 2 1 1 1 1 33 1 1 1 1 1 3 57 2 2 1 1 1 1 81 2 1 1 1 1 3

10 1 2 2 1 1 1 34 1 1 2 1 1 3 58 2 2 2 1 1 1 82 2 1 2 1 1 3

11 1 2 1 1 2 1 35 1 1 1 1 2 3 59 2 2 1 1 2 1 83 2 1 1 1 2 3

12 1 2 2 1 2 1 36 1 1 2 1 2 3 60 2 2 2 1 2 1 84 2 1 2 1 2 3

13 1 2 1 2 1 1 37 1 1 1 2 1 3 61 2 2 1 2 1 1 85 2 1 1 2 1 3

14 1 2 2 2 1 1 38 1 1 2 2 1 3 62 2 2 2 2 1 1 86 2 1 2 2 1 3

15 1 2 1 2 2 1 39 1 1 1 2 2 3 63 2 2 1 2 2 1 87 2 1 1 2 2 3

16 1 2 2 2 2 1 40 1 1 2 2 2 3 64 2 2 2 2 2 1 88 2 1 2 2 2 3

17 1 1 1 1 1 2 41 1 2 1 1 1 3 65 2 1 1 1 1 2 89 2 2 1 1 1 3

18 1 1 2 1 1 2 42 1 2 2 1 1 3 66 2 1 2 1 1 2 90 2 2 2 1 1 3

19 1 1 1 1 2 2 43 1 2 1 1 2 3 67 2 1 1 1 2 2 91 2 2 1 1 2 3

20 1 1 2 1 2 2 44 1 2 2 1 2 3 68 2 1 2 1 2 2 92 2 2 2 1 2 3

21 1 1 1 2 1 2 45 1 2 1 2 1 3 69 2 1 1 2 1 2 93 2 2 1 2 1 3

22 1 1 2 2 1 2 46 1 2 2 2 1 3 70 2 1 2 2 1 2 94 2 2 2 2 1 3

23 1 1 1 2 2 2 47 1 2 1 2 2 3 71 2 1 1 2 2 2 95 2 2 1 2 2 3

24 1 1 2 2 2 2 48 1 2 2 2 2 3 72 2 1 2 2 2 2 96 2 2 2 2 2 3

Note: $ Refer to Table 3; #: Experiment number.
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