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Abstract: The two-dimensional discriminant locally preserved projections (2DDLPP) algorithm adds
a between-class weighted matrix and a within-class weighted matrix into the objective function
of the two-dimensional locally preserved projections (2DLPP) algorithm, which overcomes the
disadvantage of 2DLPP, i.e., that it cannot use the discrimination information. However, the small
sample size (SSS) problem still exists, and 2DDLPP processes the whole original image, which may
contain a large amount of redundant information in the retained features. Therefore, we propose
a new algorithm, two-dimensional exponential sparse discriminant local preserving projections
(2DESDLPP), to address these problems. This integrates 2DDLPP, matrix exponential function
and elastic net regression. Firstly, 2DESDLPP introduces the matrix exponential into the objective
function of 2DDLPP, making it positive definite. This is an effective method to solve the SSS problem.
Moreover, it uses distance diffusion mapping to convert the original image into a new subspace
to further expand the margin between labels. Thus more feature information will be retained for
classification. In addition, the elastic net regression method is used to find the optimal sparse
projection matrix to reduce redundant information. Finally, through high performance experiments
with the ORL, Yale and AR databases, it is proven that the 2DESDLPP algorithm is superior to the
other seven mainstream feature extraction algorithms. In particular, its accuracy rate is 3.15%, 2.97%
and 4.82% higher than that of 2DDLPP in the three databases, respectively.

Keywords: feature extraction; SSS problem; two-dimensional local discriminant preserving projections;
matrix exponential; elastic net regression

MSC: 68U10

1. Introduction

Feature extraction is an important part of pattern recognition. Therefore, extracting the
required features accurately and effectively has always been a concern of researchers [1–3].
In recent years, researchers have successfully discovered the inherent features of low-
dimensional nonlinear manifold structures and put forward some relevant algorithms [4,5].
For example, the classical algorithm locality preserving projections (LPP) [6] is widely
applied in feature extraction. However, because LPP is an algorithm based on a one-
dimensional vector, it is easy to encounter unusual problems in its solution process. There-
fore, scholars have proposed the two-dimensional locally preserving projection (2DLPP) [7]
algorithm. 2DLPP directly replaces 1D vectors with 2D image matrices. Although the
2DLPP algorithm can process sample data more effectively than the LPP algorithm, its
disadvantage is that it cannot use class label information to classify. The two-dimensional
discriminant locally preserving projection (2DDLPP) [8] algorithm proposed by Zhi et al.
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adds the inter-class scatter matrix and the intra-class discriminant matrix to the objective
function of 2DLPP. Although the 2DDLPP algorithm improves the accuracy of image
recognition, it is still restricted by the problem of small sample size when processing high
dimensional data. In the practical application of face feature extraction, the facial image
has high dimensional characteristics, but due to the influence of computer storage capacity
and shooting permission, the number of samples that can be used for classification training
is far less than the sample dimension. This is a classic small sample size problem. Limited
by the SSS problem, the generalization ability of the 2DDLPP algorithm is not strong, and
feature extraction ability is also affected, which leads to certain limitations in its application
scope. Therefore, the SSS problem has become urgent in the field of feature extraction of
high dimensional data.

In recent years, the matrix exponential has been of interest to researchers and widely
used to solve the small sample size problem in scientific computing. Firstly, in order to
solve the SSS problem of the linear discriminant analysis (LDA) algorithm [9], researchers
pre-processed the sample data with the principal component analysis (PCA) algorithm [10],
but some important feature information would be lost in this way. Therefore, the exponen-
tial discriminant analysis (EDA) [11] algorithm proposed by Zhang et al. used the matrix
exponential to address this problem skillfully. Considering that LPP may encounter the
same problem as LDA when the sample size is smaller than the sample dimension, singu-
larity of the matrix will be caused. Therefore, Wang et al. integrated LPP with the matrix
exponential, and then proposed the exponential locality preserving projection (ELPP) [12]
algorithm, with better performance. Similarly, exponential local discriminant embedding
(ELDE) [13] overcomes the SSS problem of local discriminant embedding (LDE) [14] by
invoking the matrix exponential. Matrix exponential based discriminant locality preserving
projections (MEDLPP) [15] introduce the matrix exponential into discriminant locality
preserving projections (DLPP) to solve the small sample size problem, with corresponding
improvements to shorten running time. In reference [16], the matrix exponential is added
to the accelerating algorithm and incremental algorithm of large-scale semi-supervised
discriminant embedding. In view of this, we use the matrix exponential to solve the SSS
problem of 2DDLPP.

At present, sparse algorithms are one of the important research directions in feature ex-
traction. In the process of sparse learning, L 1 and L 2 norms are used to optimally represent
the relationship between samples and features, drawing on the idea of regression analysis.
This process can not only simplify the data but also retain the key information [17–20]. By
integrating sparse representation with classical algorithms, many new algorithms have been
proposed. Recently, Zhang et al. proposed a new unsupervised feature extraction method,
joint sparse representation and local preserving projection (JSRLPP) [21], which integrates a
graph structure and projection matrix into a general framework to learn graphs that are more
suitable for feature extraction. The performance of traditional L 1 and L 2 norms are reduced
by ignoring local geometric structure in addressing the SSS problem. Similarly, Liu et al. not
only used L 1 and L 2 norms for joint sparse regression but also used capped the L 2 norm in
the loss function of the locality preserving robust regression (LPRR) [22] algorithm to further
enhance its robustness, achieving good intelligibility and quality. Therefore, in this paper,
we use elastic net regression integrated with other algorithms for sparse feature extraction.

According to reference [23], 2D methods are not always superior to 1D methods.
Although the 2DDLPP algorithm is simple and efficient, it performs poorly with limited
training samples. When the dimension of the samples exceeds the sample size, singularity of
the matrix will be generated. It also appears to have limitations in some public databases. In
summary, we propose the two-dimension exponential sparse discriminant local preserving
projection (2DESDLPP) algorithm in this paper, which adds matrix exponential into the
2DDLPP objective function to improve performance. Based on the property of the matrix
function, 2DDLPP is reconstructed using the generalized matrix exponential function. If
2DESDLPP first uses PCA to reduce the dimension of the image data, it will lead to the loss
of a large amount of effective feature information and reduce the recognition performance of
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the 2DESDLPP algorithm. The matrix exponential function avoids the singular divergence
matrix in the generalized eigenvalue problem of the 2DDLPP algorithm by ensuring the
orthogonality of the basis vector obtained, so as to solve the SSS problem. Then, for each
test sample, Euclidean distance is used to measure the similarity relationship between the
test sample and each training sample, and as the weight of the training sample, in order
to form a weighted training sample set. This is equivalent to transforming the original
image to another new subspace, using distance diffusion mapping that further widens the
margins between labels. After solving the small sample problem, each row (or column)
of the 2D face image is then treated as a separate vector using the 2D expansion form
of elastic net regression, and these vectors are then used as independent model units to
perform the corresponding vector-based regression in order to obtain the optimal sparse
projection matrix. Finally, experiments were conducted on three face databases, ORL, Yale
and AR, to verify the effectiveness of the algorithm by comparing the average recognition
rate with two 1D algorithms (ELPP and MEDLPP) and five other 2D algorithms (2DPCA,
2DLDA, 2DLPP, 2DDLPP and 2DEDLPP). The development route for 2DESDLPP is shown
in Figure 1 below.

Figure 1. The development route of the 2DESDLPP algorithm.

The main contributions of the algorithm we propose are as follows:

(1) The 2DESDLPP algorithm not only retains the classification information between
samples satisfactorily, but also solves the SSS problem of the 2DDLPP algorithm by
integrating matrix exponential.

(2) We use the idea of sparse feature extraction not only to obtain the optimal projection
matrix through the 2D extended form of elastic net regression. but also to reduce the
computational complexity of 2DESDLPP.

(3) The 2DESDLPP algorithm can widen the distance between category labels and dis-
criminate the identification information contained in the zero space, so it has higher
recognition accuracy.

The content of this paper is arranged as follows. We briefly review three underlying algo-
rithms, namely 2DDLPP, matrix exponential and elastic net regression, in Section 2. Section 3
describes the proposed 2DESDLPP in detail. Section 4 is composed of seven experiments
designed to evaluate our 2DESDLPP algorithm. Finally, Section 5 provides conclusions.

2. Introduction of Underlying Algorithms

Assume that X = [X1, X2, · · · , XN ] is a training sample set, among which N is the
amount of training sample images whose size is m× n dimension. We aim to map the
initial space sized m× n into the space sized m× d by means of a linear transformation,
where d << n. Let A = [a1, a2, . . . , ad] be the matrix sized n× d, where ai is a cell column
vector. The projection applied to each data is as follows:

Yi = Xi A (1)
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Each Xi, i ∈ {1, 2, . . . , N} whose size is m × n dimension is mapped through the
projection matrix A to obtain matrix Yi whose size is m× d dimension.

2.1. 2DDLPP Algorithm

2DDLPP minimizes intra-class distances and maximizes inter-class distances by
adding inter-class dispersion constraints and class label discriminant information to the
2DLPP objective function. Suppose ci ∈ {1, 2, · · · , C} are the class labels of xi, among
which C is the amount of ci. Yc

i and Yc
j represent the c class projection image matrix of the

original images. According to reference [9], we know that the 2DDLPP objective function is
defined as follows:

J(Y) =

C
∑

c=1

nc
∑

i,j=1

∥∥Yc
i − Yc

j

∥∥∥2
Bc

ij

C
∑

i,j=1
‖Mi − Mj

∥∥2Wij

(2)

where Bc
ij and Wij are both weight matrices. The sample size of the category c is nc, and

Mi, Mj is the mean value matrix of the projection matrix of category i and j samples,
respectively: 

Mi =
1
ni

ni
∑

k=1
Yi

k

Mj =
1
nj

nj

∑
k=1

Y j
k

(3)

Referring to the algorithm idea of 2DDLPP, the 2DESDLPP algorithm proposed in
this paper not only ensures that adjacent points maintain a neighborhood relationship
after projection to maintain local information for the data, but also makes full use of label
information of data features to narrow the distance between data in the same category
and to increase the distance between data in different labels, which is more favorable for
feature extraction.

2.2. Matrix Exponential

A square matrix M(M ∈ Rm×n) whose size is m× n dimension is given. Its matrix
exponential is shown below:

exp(M) = I + M +
M2

2!
+ . . . +

Mm

m!
+ . . . (4)

I is a unit matrix whose size is n× n dimension. The properties of an exponential
matrix are as follows:

(1) exp(M) is the sum of a finite matrix sequence.
(2) exp(M) is the full rank matrix.
(3) Supposing that matrix M and matrix Q are commutative, like MQ = QM, then we

can have exp(M + Q) = exp(M) exp(Q).
(4) Assuming that the matrix Q is non-singular, we have exp(Q−1 AQ) = Q−1 exp(A)Q.
(5) For every eigenvector v1, v2, . . . , vn of M that corresponded to eigenvalues λ1, λ, . . . , λn,

with eλ1 , eλ2 , . . . , eλn as eigenvalues of exp(M) having the same eigenvectors, then the
matrix is non-singular.

The introduction of the matrix exponential function not only solves the SSS problem
of the 2DDLPP algorithm, but also stretches the distance between different categories
of samples, which makes the algorithm achieve better classification ability in the face of
recognition tasks.

2.3. Elastic Net Regression

Suppose there are datasets (Xi, yi), i = 1, 2, . . . , N, where N is the sample size.
Xi = (xi1, . . . xip)

T are the independent variables corresponding to the ith observations.



Mathematics 2023, 11, 1722 5 of 16

p is the number of columns of Xi. yi are corresponding variables. Its regression model is
defined as:

β̂ = argmin

 N

∑
i=1

(
yi − β0 −

p

∑
j=1

xijβ j

)2

+ λ1

p

∑
j=1

β2
j + λ2

p

∑
j=1

∣∣β j
∣∣ (5)

If ε = λ1 + λ2, θ = λ2
λ1+λ2

, then

β̂ = argmin

 N

∑
i=1

(
yi − β0 −

p

∑
j=1

xijβ j

)2

+ ε

(
θ

p

∑
j=1

∣∣β j
∣∣+ (1− θ)

p

∑
j=1

β2
j

) (6)

Here λ1, λ2 ≥ 0 are the penalty parameters, β j is the variable coefficient, and β0 is
the constant term, which can be generally ignored in the penalty function, because the
constant term does not affect the regression coefficient. Thus, the regular term of Elastic
Net regression is a convex linear combination of the regular terms of Lasso regression and
Ridge regression. When θ = 0, it is the Ridge regression algorithm. When θ = 1, it is the
Lasso regression algorithm. 2DESDLPP uses the elastic net regression method for face
recognition and classification. After sparse representation of the elastic net, the problem of
feature information redundancy can be solved, which not only reduces the computational
complexity of the 2DESDLPP algorithm, but also shortens its running time, and greatly
improves the efficiency of face recognition.

3. Two-Dimensional Exponential Sparse Discriminant Local Preserving Projections

The 2DDLPP algorithm uses two-dimensional images to represent data, which is
beneficial in maintaining discriminant information about the local manifold structure of the
data. Although it has been successfully applied in many fields, matrix-based methods do
not always outperform vector-based methods, even with limited training samples. There
may be a lot of redundant information in the retained features of the 2DDLPP algorithm,
which requires a high computational cost. To address the above problems, we propose a new
algorithm, two-dimensional exponential sparse discriminant local preserving projections
(2DESDLPP), for feature extraction. This allows for the selection of salient features that
fit the current pattern from the abundant features in the original data, in order to find a
minimal subset of the original set of features for an optimal representation of the data.

Firstly, according to Equation (1), the molecule of Equation (2) can be simplified as:

C
∑

c=1

nc
∑

i,j=1

∥∥Yc
i − Yc

j

∥∥∥2
Bc

ij

=
C
∑

c=1

nc
∑

i,j=1

(
Xc

i A− Xc
j A
)T(

Xc
i A− Xc

j A
)

Bc
ij

= 2
C
∑

c=1
AT

[
nc
∑

i=1

(
Xc

i
)T Dc

iiX
c
i −

nc
∑

i,j=1

(
Xc

i
)T Bc

ijX
c
i

]
A

= 2AT
[

C
∑

c=1
XT

c ((Dc − Bc)⊗ In)XC

]
A

= 2ATXT(L⊗ In)XA

(7)

Here, Bc
ij is the weight matrix between any two samples in the cth class, which is

defined as follows:

Bc
ij =

{
exp

(∥∥xi − xj
∥∥2/t

)
, xi, xj ∈ c

0 otherwise
(8)

Consisting of the diagonal matrix, Dii is the sum of the rows or columns of B,
Dii = ∑

j
Bji. The symbol ⊗ represents the Kronecker product of a matrix. For the



Mathematics 2023, 11, 1722 6 of 16

ith point, the larger value of Dii, the more important is xi, because matrix D provides a
natural measure of the data point corresponding to raw images. L is a Laplace matrix,
L = D− B.

Next, the denominator of Equation (2) is simplified similarly:

C
∑

i,j=1
‖Mi − Mj

∥∥2Wij

=
C
∑

i,j=1

(
Mi −Mj

)T(Mi −Mj
)
Wij

=
C
∑

i,j=1
AT(Fi − Fj

)T(Fi − Fj
)

AWij

= 2AT FT(H ⊗ In)FA

(9)

Fi is the mean value matrix of the ith sample, Fi =
1
ni

ni
∑

k=1
Xi

k. Wij is the weight of the

means of any two kinds of sample, Wij = exp
(∥∥Fi − Fj

∥∥2/t
)

, while t is an adjustable
positive parameter. Consisting of the diagonal matrix Eii is the sum of the rows or columns
of W, Eii = ∑

j
Wji. H is a Laplace matrix, H = E−W.

Substituting the simplified Equation (7) as well as Equation (8) into Equation (2), the
objective function of 2DDLPP is:

J(A) =
ATXT(L⊗ In)XA
AT FT(H ⊗ In)FA

(10)

Minimizing Equation (10), then we can obtain:

A = argmin
A

ATXT(L⊗ In)XA
AT FT(H ⊗ In)FA

(11)

Next, the matrix exponential and sparse constraint are added to Equation (11) to obtain
the objective function of 2DESDLPP as:{

A = argmin
A

AT exp(XT(L⊗In)X)A
AT exp(FT(H⊗In)F)A

Card(A) = K
(12)

The number of non-zero elements in matrix A is K, K ≤ n. Therefore, Card(A) is the
sparse constraint on matrix A, using the elastic net regression. Equation (12) does not have
a solution in a closed form, so it can be expressed more simply:{

A = argmin
A

(AT exp(FT(H ⊗ In)F)A)
−1

(AT exp(XT(L⊗ In)X)A)

Card(A) = K
(13)

Inspired by the 2D-MELPP algorithm in reference [24], we solve the eigenvalues of
Equation (13) to obtain its solution.{

exp(XT(L⊗ In)X)A = λ exp(FT(H ⊗ In)F)A
Card(A) = K

(14)

After orthogonalizing the projection matrix A, we can achieve:{
exp(XT(L⊗ In)X)ai = λi exp(FT(H ⊗ In)F)ai

Card(A) = K
(15)
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where λi is the eigenvalue and ai is the eigenvector corresponding to λi. Then, we take the
eigenvectors corresponding to the first d minimum non-zero eigenvalues of Equation (15)
and combine them to obtain the projection matrix A.

According to the properties of the matrix exponential, exp(XT(L⊗ In)X) and exp(FT(H⊗
In)F) are both full rank matrices. That is, even in the case of SSS problems, exp(XT(L⊗ In)X)
and exp(FT(H ⊗ In)F) are non-singular, although XT(L ⊗ In)X and FT(H ⊗ In)F are still
singular. Therefore, 2DESDLPP can extract the identification information contained in the
FT HF null space.

However, the resulting projection matrix A is not the sparsest at present. Therefore,
we take a 2D extension of elastic net regression by treating each row (or column) of a 2D
face image as a separate vector and then use these vectors as independent model units for
the corresponding vector-based regression. That is: ASparse = argmin

(
N
∑

i=1

m
∑

k=1
(xi(k, :)× A− yi)

2 + ε

(
d
∑

j=1
θ
∣∣aj
∣∣+ (1− θ)

d
∑

j=1
a2

j

))
Card

(
ASparse

)
= K

(16)

Now, the optimal sparse projection matrix A obtained not only has higher recognition
accuracy, because it is based on the image matrix, but also has a reduced computational
complexity. Next, we will carry out the specific analysis.

The time complexity of calculating exp(XT(L⊗ In)X) and exp(FT(H⊗ In)F) is O(d3).
Therefore, for the eigenvalue problem of Equation (15), the complexity of the operation is
also the same. Then, after sparse processing of Equation (16), the calculation complexity is
reduced to O(d2). Finally, the whole time complexity of the 2DESDLPP algorithm is O(d2),
while the calculation complexity of 2DEDLPP is O(d3).

4. Results and Analysis of the Experiment

The experiments in feature extraction were conducted on the three public face databases,
ORL, Yale and AR, using Euclidean distance and nearest neighbor classifiers. Then we
compared the performance of several other algorithms (ELPP, MEDLPP, 2DPCA, 2DLDA,
2DLPP, 2DDLPP and 2DEDLPP) to verify the effectiveness of the 2DESDLPP algorithm
proposed. In the experiments, we resized the images in each face database to 50 × 40 to
reduce the amount of computer memory used, and randomly selected l(l = 2, 3, 4, 5, 6)
images for each person as training samples. The rest were used as test samples.

We first set K = 10, which is used to count the number of non-zero elements in
the projection matrix, and the number of training samples was six. Then, a comparison
experiment was conducted with the original images with a size of 92 × 112, and the
resized images with a size of 50 × 40, in the ORL database to test how the accuracy of the
2DESDLPP algorithm depends on the size of the training sample. Finally, the comparison
results are recorded in Table 1.

Table 1. Max accuracy (%) of 2DESDLPP experimenting on original images and resized images, and
the corresponding number of dimensions in the ORL database.

l Original Images Resized Images

2 92.33
(92 × 85)

91.79
(50 × 16)

3 94.12
(92 × 86)

93.61
(50 × 18)

4 94.57
(92 × 98)

94.13
(50 × 26)

5 95.48
(92 × 95)

95.25
(50 × 22)

6 98.61
(92 × 110)

98.50
(50 × 20)
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It can be seen from Table 1 that the size of the training sample has little influence
on the accuracy of the 2DESDLPP algorithm, and its variation range is within 0.5, which
is acceptable.

4.1. Experiments to Determine the Value of K

First of all, we set K as 10, 20, 30 and 40. Next, six face images of each person in
ORL, Yale and AR databases were randomly selected as training samples, and finally their
average values were recorded and compared after ten experiments. Figures 2–4 show the
average recognition accuracy (%) of the 2DESDLPP algorithm, corresponding to different
feature dimensions in ORL, Yale and AR databases with different K values, respectively.
It is obvious that the average recognition accuracy reached the maximum in all three face
databases when K = 10. Therefore, this is selected in subsequent experiments.

Figure 2. Average recognition accuracy (%) of the 2DESDLPP algorithm corresponding to different
K values with feature dimensions when the training sample in the ORL database is 6.

Figure 3. Average recognition accuracy (%) of the 2DESDLPP algorithm corresponding to different
K values with feature dimensions when the training sample in the Yale database is 6.
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Figure 4. Average recognition accuracy (%) of the 2DESDLPP algorithm corresponding to different
K values with feature dimensions when the training sample in the AR database is 6.

4.2. Experiments in ORL Database

There are 400 grayscale faces images from 40 persons in the ORL database and ev-
eryone has ten images. All images were acquired under changing external conditions,
including lighting intensity, facial angle, posture change and expression changes. All face
images in the ORL database were unified into pure black-backed scenery with a gray scale
of 92 × 112 pixels, as shown in Figure 5.

Figure 5. Face image of an individual in ORL face database.

We selected l(l = 2, 3, 4, 5, 6) training sample images randomly from the ORL database
and record the maximum average recognition rates and the number of dimensions in
Table 2. As can be seen from Table 2, with the increase of the number of training samples,
the recognition rate of the eight algorithms has improved. When the number of training
samples is two, the recognition rate of all algorithms is not high, but the highest recognition
rate of the 2DESDLPP algorithm is still 91.79%, 1.52 times that of the ELPP algorithm, and
about 5.54% higher than that of the 2DDLPP algorithm. Even when the number of training
samples is much smaller than the feature dimension, the 2DESDLPP algorithm can still
achieve better performance, which indicates that the 2DESDLPP algorithm can indeed
effectively solve the problem of the small sample size in the 2DDLPP algorithm. When the
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training sample size is six, the changes in 2DESDLPP recognition results and those of the
other seven comparison algorithms are shown in Figure 6.

Table 2. Maximum average recognition rate (%) of 2DESDLPP and other seven comparison algorithms
and the corresponding number of dimensions in the ORL database.

l ELPP MEDLPP 2DPCA 2DLDA 2DLPP 2DDLPP 2DEDLPP 2DESDLPP

2 60.36
(50 × 38)

91.20
(50 × 28)

74.85
(50 × 40)

83.75
(50 × 12)

81.40
(50 × 8)

86.25
(50 × 6)

90.22
(50 × 15)

91.79
(50 × 16)

3 75.10
(50 × 40)

92.00
(50 × 32)

85.19
(50 × 40)

88.63
(50 × 2)

86.21
(50 × 17)

90.12
(50 × 4)

91.30
(50 × 16)

93.61
(50 × 18)

4 80.21
(50 × 40)

94.95
(50 × 36)

79.85
(50 × 40)

89.33
(50 × 40)

92.25
(50 × 38)

92.38
(50 × 2)

92.48
(50 × 22)

94.13
(50 × 26)

5 85.96
(50 × 39)

95.18
(50 × 38)

83.76
(50 × 40)

90.96
(50 × 32)

93.49
(50 × 24)

94.18
(50 × 4)

93.90
(50 × 24)

95.25
(50 × 22)

6 90.33
(50 × 40)

95.20
(50 × 40)

92.39
(50 × 40)

95.30
(50 × 40)

94.10
(50 × 40)

94.60
(50 × 8)

96.88
(50 × 28)

98.50
(50 × 20)

Figure 6. Average recognition rate (%) with feature dimension for different algorithms when the
number of training samples in the ORL face database is 6.

It can be clearly seen from Figure 6 that the recognition rate of supervised algorithms
is higher than that of unsupervised algorithms, indicating that the use of label information
is indeed helpful in improving the accuracy of the algorithm. Especially when the feature
dimension is 20, the recognition rate of the 2DESDLPP algorithm is up to 98.5%, which is
about 6.2% higher than that of the 2DDLPP algorithm with the same dimensional number.
This is because 2DESDLPP converts the original image into a new subspace using distance
diffusion mapping, further expanding the boundaries between labels. This allows more
characteristic information to be retained for classification. In addition, the variation trend
for algorithm accuracy of 2DESDLPP is relatively flat, indicating that the algorithm has
strong robustness. Table 3 shows the average running time of each algorithm in the ORL
database when the number of training samples is six. It is not difficult to see that the
running time of the 2DESDLPP algorithm after sparse representation is shortened, and is
within the acceptable range.



Mathematics 2023, 11, 1722 11 of 16

Table 3. The runtime (s) of eight different algorithms when the number of training samples in the
ORL database is 6.

Algorithm ELPP MEDLPP 2DPCA 2DLDA 2DLPP 2DDLPP 2DEDLPP 2DESDLPP

Runtime 1.633 2.649 2.343 2.494 2.314 3.375 3.890 3.039

4.3. Experiment in Yale Database

In the Yale database, there are 15 different subjects and each has 11 images taken under
different external conditions, with a total of 165 grayscale images. Each image was created
under different conditions of expression, lighting, etc. Most of them were used to verify the
illumination robustness of the algorithm except for the face recognition rate, as shown in
Figure 7.

Figure 7. Face image of an individual in Yale face database.

The experimental performance of the algorithm will be affected by external factors such
as the facial expression changes of each subject and the different lighting conditions during
shooting. Therefore, we chose to test whether 2DESDLPP is susceptible to random factors
in the Yale database in order to evaluate its accuracy and robustness on small sample size
data. In the experiments, l(l = 2, 3, 4, 5, 6) images of every person were selected as training
sample sets randomly, and the rest were used as the test. The recognition performances
of 2DESDLPP and the other seven comparison algorithms are shown in Figure 8 when
the number of training samples is six. As can be seen, the average recognition rate of
2DESDLPP is highest when the feature dimension is 40, at about 98.33%. Moreover, when
the feature dimension is greater than 16, the recognition rate of 2DESDLPP fluctuates little
and is relatively stable.

For convenience of comparison, the specific values of the maximum average recog-
nition rates of eight algorithms and the corresponding projected dimension numbers (in
brackets) in the Yale database when the training sample sizes are 2, 3, 4, 5 and 6 are shown
in Table 4 respectively. When the number of training samples is 2 or 3, the performance of
2DESDLLP is better than the two one-dimensional algorithms and five two-dimensional
algorithms used for comparison. After this improvement, the recognition rate of 2DESDLPP
is about 3.7% higher than that of 2DDLPP. This indicates that, even when tested on small
sample size data affected by external factors such as illumination changes, 2DESDLPP can
obtain the best results compared with other algorithms. Table 5 shows the average running
time of each algorithm in the Yale database when the number of training samples is six.
Compared with 2DDLPP, the computation speed of 2DESDLPP is improved. Although it is
not the fastest algorithm, it has the best comprehensive performance when combined with
the recognition rate.
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Figure 8. Average recognition rate (%) with feature dimension for different algorithms when the
number of training samples in the Yale face database is 6.

Table 4. Maximum average recognition rate (%) of 2DESDLPP and other seven comparison algorithms
and the corresponding number of dimensions in the Yale database.

l ELPP MEDLPP 2DPCA 2DLDA 2DLPP 2DDLPP 2DEDLPP 2DESDLPP

2 73.22
(50 × 36)

85.92
(50 × 36)

88.67
(50 × 36)

89.72
(50 × 16)

83.93
(50 × 6)

89.61
(50 × 8)

90.45
(50 × 36)

92.96
(50 × 38)

3 74.59
(50 × 38)

86.33
(50 × 38)

90.58
(50 × 36)

91.57
(50 × 18)

86.00
(50 × 4)

90.08
(50 × 3)

91.69
(50 × 36)

94.20
(50 × 39)

4 77.03
(50 × 38)

87.62
(50 × 40)

91.05
(50 × 36)

92.14
(50 × 20)

94.1
(50 × 4)

93.20
(50 × 38)

93.35
(50 × 38)

95.48
(50 × 38)

5 78.48
(50 × 39)

91.80
(50 × 40)

92.00
(50 × 36)

93.22
(50 × 20)

93.11
(50 × 12)

94.08
(50 × 38)

95.77
(50 × 38)

97.08
(50 × 37)

6 79.65
(50 × 40)

93.65
(50 × 40)

93.43
(50 × 36)

95.73
(50 × 32)

94.87
(50 × 16)

96.23
(50 × 40)

96.41
(50 × 40)

98.33
(50 × 40)

Table 5. The runtime(s) of eight different algorithms when the number of training samples in the Yale
database is 6.

Algorithm ELPP MEDLPP 2DPCA 2DLDA 2DLPP 2DDLPP 2DEDLPP 2DESDLPP

Runtime 1.332 2.512 2.258 2.397 2.416 3.985 4.026 3.335

4.4. Experiment in AR Database

The AR database includes 126 people (70 male and 56 female) with a total of more than
3000 frontal face images. The photos of each person were taken under different conditions
of expression, lighting and occlusion. It is worth noting that the most significant external
factors for the AR database focus on expression changes and facial occlusion, so its use
consists mainly of face and expression recognition. Everyone has 15 images, as shown in
Figure 9.
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Figure 9. Facial image of an individual in the AR face database.

We use AR database photos to test whether the 2DESDLPP algorithm is affected by
the changes in human expressions and the occlusion of human faces, so as to evaluate its
performance on high-dimensional noisy data. In the experiments, we performed a random
selection of l(l = 2, 3, 4, 5, 6) images among all images of every person as a training sample
set, and the rest are used as a test set, and then recorded 2DESDLPP, as well as the other
seven comparison methods’, maximum average recognition rates and the number of
dimensions in Table 6. Although the accuracy of all experimental algorithms in the AR
database is lower than the ORL database and the Yale database due to the challenges of
the database itself, no matter how small the number of training samples, the accuracy of
2DESDLPP is always slightly higher than that of the other algorithms. When the number
of training samples was two, the highest accuracy of 2DESDLPP was 88.24% when the
feature dimension was 24. When the number of training samples was three, the highest
accuracy of 2DESDLPP was 89.98% when the feature dimension was 26. When the number
of training samples was four, the highest accuracy of 2DESDLPP was 90.75% when the
feature dimension was 25. When the training sample size is six, the changes are shown in
Figure 10. The average highest recognition rate obtained by 2DESDLPP is 97.56% when the
number of training samples is six, and its feature dimension is 20 at this time. The highest
recognition rate of 2DESDLPP is about 5.06% higher than that of 2DDLPP, and 1.27 times
higher than that of ELPP. Table 7 shows the average running time of each algorithm in the
AR database when the number of training samples is six. Although facial occlusion in AR
database improves the difficulty of face recognition, resulting in an increase in the running
time of the eight algorithms, the operation of the 2DESDLPP algorithm does not take too
much time.

Table 6. Maximum average recognition rate (%) of 2DESDLPP and other seven comparison algorithms
and the corresponding number of dimensions in AR database.

l ELPP MEDLPP 2DPCA 2DLDA 2DLPP 2DDLPP 2DEDLPP 2DESDLPP

2 69.82
(50 × 36)

87.08
(50 × 26)

77.18
(50 × 36)

80.75
(50 × 30)

79.00
(50 × 32)

80.08
(50 × 26)

83.77
(50 × 26)

88.24
(50 × 24)

3 72.75
(50 × 38)

87.61
(50 × 25)

80.67
(50 × 34)

84.38
(50 × 38)

82.93
(50 × 28)

84.61
(50 × 40)

86.20
(50 × 28)

89.98
(50 × 26)

4 74.91
(50 × 38)

88.28
(50 × 23)

83.04
(50 × 38)

86.36
(50 × 40)

85,70
(50 × 30)

87.28
(50 × 20)

89.51
(50 × 32)

90.75
(50 × 25)

5 75.33
(50 × 39)

89.32
(50 × 26)

87.63
(50 × 36)

89.98
(50 × 40)

87.75
(50 × 32)

89.76
(50 × 24)

90.33
(50 × 36)

92.11
(50 × 22)

6 76.80
(50 × 40)

91.50
(50 × 32)

90.06
(50 × 38)

92.04
(50 × 40)

89.12
(50 × 40)

92.80
(50 × 40)

94.65
(50 × 40)

97.56
(50 × 20)

Table 7. The runtime (s) of eight different algorithms when the number of training samples in the AR
database is 6.

Algorithm ELPP MEDLPP 2DPCA 2DLDA 2DLPP 2DDLPP 2DEDLPP 2DESDLPP

Runtime 4.868 5.865 4.201 4.5385 5.251 6.748 7.027 6.199
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Figure 10. Average recognition rate (%) with feature dimension for different algorithms when the
number of training samples in the AR face database is 6.

4.5. Summary of Experimental Results

The following conclusions are drawn by analyzing the results of the experiments on
the three public face databases mentioned above:

(1) From Figures 2–4, we can see that, when K = 10, 2DESDLPP achieves the maximum
recognition rate in three face databases, ORL, Yale and AR, indicating that 2DESDLPP
has the best feature extraction ability at this time.

(2) As can be seen from the data in Tables 2, 4 and 6, with the increase in training sample
size, the maximum average recognition accuracy increases to some extent for most
experiments. As can be seen from the data in Tables 3, 5 and 7, the running time of
the 2DESDLPP algorithm after sparse representation is shortened, and is within the
acceptable range.

(3) It is not difficult to find that the recognition accuracy of 2DESDLPP outperforms
the other 1D algorithms (ELPP and MEDLPP) and 2D algorithms (2DPCA, 2DLDA,
2DLPP, 2DDLPP and 2DEDLPP) for the same training sample size from Figures 8–10.

5. Conclusions

The 2DESDLPP algorithm we propose is an image-based method that uses sample label
discrimination information to satisfy the “minimum within-class distance“ and “maximum
between-class distance” characteristics without destroying the local structural features of
the face, while overcoming the SSS problem by using matrix exponential. Then, elastic net
regression is used to remove a large amount of redundant information in the face images,
and an optimally sparse result is obtained, further mining the features that are more
critical for recognition and classification, making the subspace obtained by the algorithm
more discriminative than that of other algorithms. In the final analysis, the results of
the comparison experiments in ORL, Yale and AR databases show that the 2DESDLPP
algorithm has better feature extraction ability.
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