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Abstract: Globally, the incidence of kidney stones (urolithiasis) has increased over time. Without
better treatment, stones in the kidneys could result in blockage of the ureters, repetitive infections in
the urinary tract, painful urination, and permanent deterioration of the kidneys. Hence, detecting
kidney stones is crucial to improving an individual’s life. Concurrently, ML (Machine Learning)
has gained extensive attention in this area due to its innate benefits in continuous enhancement, its
ability to deal with multi-dimensional data, and its automated learning. Researchers have employed
various ML-based approaches to better predict kidney stones. However, there is a scope for further
enhancement regarding accuracy. Moreover, studies seem to be lacking in this area. This study
proposes a smart toilet model in an IoT-fog (Internet of Things-fog) environment with suitable
ML-based algorithms for kidney stone detection from real-time urinary data to rectify this issue.
Significant features are selected using the proposed Improved MBPSO (Improved Modified Binary
Particle Swarm Optimization) to attain better classification. In this case, sigmoid functions are used
for better prediction with binary values. Finally, classification is performed using the proposed
Improved Modified XGBoost (Modified eXtreme Gradient Boosting) to prognosticate kidney stones.
In this case, the loss functions are updated to make the model learn effectively and classify accordingly.
The overall proposed system is assessed by internal comparison with DT (Decision Tree) and NB
(Naive Bayes), which reveals the efficient performance of the proposed system in kidney stone
prognostication.

Keywords: kidney stones; urolithiasis; Internet of Things; machine learning; particle swarm optimization;
eXtreme gradient boosting

MSC: 68T07; 68T09

1. Introduction

The kidneys are intricate organs that serve as a filter system of the human body. The
kidneys remove acids produced by body cells and maintain the balance of salts, minerals,
such as calcium, sodium, potassium, and phosphorus, and water in the blood [1]. Stones
form in the kidneys when urine comprises crystal-forming constituents, such as uric acid,
oxalate, and calcium. Concurrently, when urine lacks substances that prevent these crystals
from joining together, there exists a chance for the development of an optimal environment
for kidney stone formation. When a stone in the kidney becomes blocked in the ureters, it
might block urine flow and result in kidney swelling. This also results in ureter contraction.
This could be painful. Thus, it is crucial to prognosticate kidney stones. When such a
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circumstance is left untreated, it could block the ureters or narrow them [2]. This would
enhance infections, or urine might build up, adding strain to the kidneys. These issues are
rare as kidney stone treatments are accomplished before complications occur. However,
conventional techniques of gathering and testing urine infections seem to be a cumbersome
process. This might also affect the treatment level.

Moreover, following the reports claimed in [3], nearly 50% of women suffer from
urinary infections in their lifetime. Thus, identifying such infections is crucial. As conven-
tional process seems to be time consuming, adopting data-driven technologies, such as
IoT assisted by Al and ML [4], has revolutionized the medical sector by affording effective
healthcare solution wherein kidney stone prediction is no longer an exception [5]. The
IoT includes a collection of connected devices with transmission abilities and data collec-
tion by wireless media [6]. Such devices could generate huge amounts of health-related
patient-centric data. Processing these data demands third-party cloud data centers.

Nevertheless, transferring huge data volumes to the cloud demands huge bandwidth.
Besides, various cloud computing challenges, including location unawareness, less security,
high latency, and downtime, make it infeasible for sensitive applications. Hence, a comput-
ing archetype has evolved, namely fog computing, that exists as a backbone of sensitive
applications for affording users with services in real time [7]. Moreover, conventional works
have tried to regard various dimensions to prognosticate kidney stones by considering ML
and AL

The study [8] evaluated the differences amongst profiles of chemistries in the ini-
tial period of kidney stone formers and controls. High resolution-1H NMR (Nuclear
Magnetic Resonance) spectroscopy relying on metabolomic evaluation was undertaken
using 24 h urine samples. Covariance was utilized for determining the relationship of the
status of stone formers with urinary metabolites or chemistries after adjustment, while
correcting for FR (False Rate). In addition, GBM (Gradient Boosting Machine) with nested
cross-assessment was employed for identifying the status of stone formers. Though NMR-
quantified metabolites did not enhance discrimination, various urine metabolic summaries
were found that might enhance the comprehension of the development of kidney stones.
To construct the WISQOL-MLA (Wisconsin Stone Quality of Life-Machine Learning Al-
gorithm) for prognosticating the health quality of urolithiasis patients based on clinical
data, symptomatic and demographic data were gathered using the WISQL questionnaire,
and a HRQoL computation tool was designed for patients having kidney stones. The data
were gathered from 3206 patients from sixteen centers. DL (Deep Learning) and gradient
boosting frameworks were utilized for predicting HRQoL scores. The dataset was split
with formal training and testing ratios. The regression performance was assessed with
Pearson’s correlation. The classification performance was assessed with AUROC (Area
under Receiver Operating Characteristic) curve. In addition, Gradient Boosting attained
0.62 as a test correlation.

Furthermore, multivariate regression accomplished correlation at a rate of 0.44. Quin-
tile stratification in the WISQOL dataset attained an average value of 0.70. The suggested
model worked better in finding the high and low quintiles of the HRQoL. Evaluating the
feature significance exposed that the model weights were associated with factors used to
compute the HRQoL, such as BMI (Body Mass Index), age, and symptomatic status [9].

In addition, a retrospective study was undertaken by considering 358 patients who
underwent SWL for prognosticating urine stones. Probable prognostic features were
assessed inclusive of the patient population, characteristics of the urinary stone, etc. DT
(Decision Tree)-based ML algorithms, including RF (Random Forest), LightGBM (Light
Gradient Boosting), and XGBoost, were utilized. The accuracy rates were exposed to be
86%, 87.9%, and 87.5%. Among all the considered models, LightGBM had better accuracy
rate [10].

On the contrary, DL-based methods have also been used for predicting kidney stones.
Accordingly, the study [11] assessed the recall of the DL technique for the automatic detec-
tion of compositions of kidney stones. Overall, 63 kidney stones were attained from the
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laboratory, comprising CO monohydrate, uric acid, cystine stones, MAPH (Magnesium
Ammonium Phosphate Hexahydrate), and CHPD (Calcium Hydrogen Phosphate Dihy-
drate). Deep CNN (Deep Convolutional Neural Network)-ResNet-101 was employed as a
multi-classification framework. The overall prediction rate was exposed to be 85%. Thus,
the issues of conventional urine testing and preference for quick prognostication of kidney
stones require an immediate need for analyzing urine in an IoT-fog environment.

Though conventional research has endeavored to accomplish this, most of the studies
have not employed the suggested methods in an IoT-fog environment. In contrast, others
have lacked a focus on kidney stone prognostication. Though some studies have considered
their research work in this aspect, they have been deficient regarding accuracy rate. Hence,
there is a scope for enhancement in this area. Moreover, different IoT-permitted sensors
embedded in toilets exist to gather information related to urine in real time. Thus, this
study proposes a smart toilet monitoring framework that gathers urinary information and
evaluates it with real-time data to accomplish early prognostications of kidney stones based
on the below objectives. The main contributions of this study are as follows:

e  Todesign a smart toilet model in an IoT-fog environment with ML-based algorithms
for detecting kidney stones from real-time data.

o  To select significant features from real-time data using the proposed Improved MBPSO
(Improved Modified Binary Particle Swarm Optimization) for accomplishing better
classification.

e To prognosticate kidney stones with the proposed Modified XGBoost (Modified eX-
treme Gradient Boosting) for determining the existence and absence of kidney stones.

e To evaluate the performance of the proposed system by internal comparison with DT
(Decision Tree) and NB (Naive Bayes) for proving the efficacy of the proposed work.

The paper is organized in the following way, with Section 2 providing a review of
conventional works and problem identification. Section 3 presents the proposed work with
suitable flow, algorithm, and explanation. This is followed by Section 4, wherein the results,
dataset description, performance, and comparative analysis are described. Lastly, the entire
study is summarized in Section 5 with future recommendations.

2. Literature Review

Researchers have attempted to employ various ML-based approaches for detecting
kidney stones based on various dimensions. The problems found during the analysis
of conventional works are discussed in this section. ML algorithms could be utilized to
predict kidney disease in the initial phase by evaluating symptoms. Accordingly, the
study [12] suggested an integration of BPSO and CFS to select ideal features for enhancing
the accuracy rate of SVM to diagnose kidney disease. The outcomes exposed that the
accuracy rate of SVM was 63.75%, while CFS had 88.75% accuracy. Furthermore, the
accuracy rate of 10 SVM algorithms was attained by employing the integrations of selecting
features (BPSO + CFS), and it was exposed to be 95%. Hence, it could be summarized that
employing CFS-BPSO on SVM could enhance the outcomes. To optimize SVM, ensemble
AdaBoost and PSO have been employed for improvising accuracy. PSO has been utilized
for attaining ideal feature integration to perform classification, whereas AdaBoost has been
utilized as an ensemble approach to enhance the accuracy of SVM. Without optimization,
the accuracy rate seemed to be 63.3%, which increased after optimization [13]. The quest to
study the optimization issues have been considered in the long term [14].

To improve the performance rate, the research [15] used RFFS (Recursive Forest
Feature Selection)-based EL (Ensemble Learning) method for predicting kidney disease.
Additionally, DT (Decision Tree) was used for classification. Kappa scores and accuracy
rates were utilized for finding the classification outcomes. Based on the outcomes of the
suggested method’s performance analysis, EL classifiers outperformed other classifiers.
However, considering various factors for identifying kidney disease minimizes the efficacy
of the employed classifier, and suitable feature selection methods are suggested.
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Accordingly, the study [16] endorsed a model for classifying and predicting kidney
disease. Three methods were utilized for feature selection, including ACO (Ant Colony
Optimization), PSO (Particle Swarm Optimization), and GA (Genetic Algorithm). Follow-
ing this, an LR (Logistic Regression) classifier was applied to accomplish classification.
The efficacy of the suggested system was assessed, and the outcomes confirmed its better
performance. As kidney disease detection has gained widespread attention, recently, de-
tecting kidney stones has also gained huge attention. Correspondingly, the research [17]
intended to identify the existence of CO (Calcium Oxalate) kidney stones [18,19] based
on gut microbiota features. Clinical information and gut microbiota from 180 subjects
attending the WCH (West China Hospital) were gathered between June 2018 and January
2021. Following clinical data and microbiota collection, eight ML algorithms were assessed
to detect the existence of CO kidney stones. Through a 5-fold cross-validation, the RF
method showed better performance at a rate of 0.94. In addition, the study [20] presented
the implementation and design of multiple sensor platforms for computing and collecting
four parameters of urine samples for assessing the risk associated with urolithiasis in the
initial phase.

Additionally, a study used IoT (Internet of Things) based on data collection to assess
the risks of urine stone formation by computing and storing four urine parameters: to-
tal dissolved solids, uric acid, and pH concentrations corresponding to ionized calcium.
Computations gathered by the system from the results of healthy individuals and pa-
tients grouped by gender and age are maintained in the cloud. This will be utilized in
training Al-based ML processes to use the proposed LR model. Evaluation with general
solutions showed that the suggested system correlated with the computations from typical
instruments. Furthermore, a prediction model was suggested with ML models inclusive
of supervised classification and dimensionality reduction. Novel methodologies relying
on the integration of FDA (Fisher’s Discriminant Analysis) and SFS (Sequential Forward
Selection) were developed to minimize the feature space dimensionality, thereby enhancing
the system performance. The suggested system was assessed for cross-validation. The
outcomes were found to have 94.8% accuracy [21].

To evaluate the accuracy rate of ML models in prognosticating the composition of
kidney stones with variables obtained from EHR (Electronic Health Record), the study [22]
was undertaken. LR and XGBoost models were trained to determine stone composition
using 24 h urine data and comorbidity and demographic data. Performance was assessed
with AUC (Area under Curve)-ROC (Receiver Operating Characteristics). For discrim-
inating the compositions of binary stone, the XGBoost method worked better than the
LR, with 91% accuracy. Moreover, textural analysis was undertaken to determine the
abnormalities and normalities of the kidneys. An optimized, integrated feature model was
designed for identifying kidney stones. Each ROI (Region of Interest) obtained integrated
234 textural features. To resolve the data handling problem, a feature optimization system
was employed, and 30 optimized features were acquired for individual ROI. The optimized
integrated features of the dataset were utilized for four ML-based classifiers, namely MLP
(Multi-Layer Perceptron), NB (Naive Bayes), j48, and RF (Random Forest). It was found
that the RF classifier had better outcomes (90% accuracy rate) [23].

Similarly, the study [24] suggested a model for decision support. In this case, data were
gathered from 500 patients. The collected data were assessed with the WEKA toolkit, which
affords various DM (Data Mining) approaches, including j48, NB, and DT. The outcomes
confirmed the efficacy of the recommended system with NB for predicting kidney stones.
Furthermore, existing works have considered various DL-based approaches to detect
kidney stones [25,26]. By this, the article [27] introduced a recognition technique relying
on FCNN (Full Convolutional Neural Network) to evaluate the microscopic analysis of
CO crystals in urinary sediments. The suggested methodology could automatically find
the microscopic analysis of CO crystal computation, and the coincidence amount of fake
identification with medical experts seemed to be high, at a rate of 74%.
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To evaluate variables related to kidney stones, a univariate analysis was undertaken.
Statistical ML and multivariate LR models were utilized for inferring the predictive models.
Specific kidney stone compositions, laboratory results, and comprehensive demographics
(277 patients) were included in the analysis. Several variables were significantly related to
big stones in the univariate analysis. The overall model for prognosticating big stone size
involves various variables from different domains, comprising protein percentage in stone
composition, hypertension, and CO super-saturation. The endorsed model has an 83%
sensitivity rate and a 56% specificity rate. ML-based models have found similar predictors;
however, their performance has seemed to vary [28]. In addition, the research [29] was
undertaken, which involved gathering healthcare information on patients with kidney
stones, and their dietary behaviors were surveyed, including the quality of drinking water,
to select an appropriate model for classification. The WEKA-ML model was utilized to
assess the accuracy of the model, leading to better accuracy. Based on this research, C4.5
was found to be a robust classifier. To enhance the performance rate, the study [30] included
59 patients with non-infectious kidney stones and 98 patients with healthcare-confirmed
infectious kidney stones. A total of 54 radiomic features were retrieved and minimized to
27 features by the LASSO approach. To accomplish this, a radiomic signature was built
with EL using bagged trees. Then, multivariable LR was utilized to develop a radiomic
nomogram, including independent clinical variables and radiomic signatures. Radiomic
signatures encompassing textural and morphological features were significantly related to
infectious kidney stones. The EL-based bagged trees differentiated infectious kidney stones
and non-infectious kidney stones at a rate of 90.7% accuracy. The predictors included in the
distinct prediction nomograms encompassed radiomic signature, urine culture, and WBC
(White Blood Cell) count. Evaluating the decision curve exposed that a radiomic nomogram
has the potential to predict infectious kidney stones. Furthermore, identifying the existence
of kidney stones has been achieved by utilizing keras and CNN. Vital integration of these
methods has been confirmed to be a suitable approach for attaining better accuracy [31].

The main problems identified during the evaluation of conventional works are dis-
cussed in this section. Based on an extensive analysis, it is found that traditional research
for detecting kidney stones seems to be lacking. However, a few studies have endeavored
to predict kidney stones based on ML. Accordingly, the study [21] used FDA and SFS,
showing 94.8% accuracy. The research [22] employed LR and XGBoost, and the outcomes
showed the better performance of XGBoost at a rate of 91%. Furthermore, the article [9]
applied the WISQOL-MLA (Wisconsin Stone Quality of Life-Machine Learning Algorithm),
and the accuracy rate was found to be 0.83. Following this, RF was found to have 90%
accuracy [23], and NB showed 95% accuracy [24]. Additionally, RF, LightGBM, and XG-
Boost have been assessed, and the outcomes achieve 86%, 87.9%, and 87.5% accuracy [10].
Furthermore, DL-based prediction has also been undertaken. Accordingly, the study [27]
used fully CNN and found 74% accuracy. Despite several attempts by conventional works,
there exists a scope for further enhancement concerning accuracy.

3. Proposed Methodology

Kidney diseases, particularly kidney stones (urolithiasis), widely affect people through-
out the world. Kidney stones occur due to various factors, which include diet, lifestyle,
gender, socio-demographics, age, genetics, clinical features, and environmental features.
Though limited studies have been conducted in the field of kidney stone prediction, an
inclusive predictive model that identifies the fundamental features of kidney stones is
still lacking, and there is still scope for further enhancement. The proposed method is
undertaken in an IoT-fog environment that uses a real-time dataset. In the present study,
the proposed method is Improved MBPSO for feature selection and Modified XGBoost
algorithm for classification. The overall flow of the proposed system is shown in Figure 1.
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Figure 1. Overall flow of the proposed system.

The real-time dataset is considered to perform kidney stone prediction based on
urine analysis. The data are presented for pre-processing. During pre-processing, the
data are checked for missing values, and categorical encoding is performed in which
the data are transformed into integer format. Thereafter, the converted categorical data
are given to the process of feature selection. The MBPSO method is utilized for feature
selection. Thereby, the selection of the appropriate features for further process is improved
and assists in the process of prediction of kidney stones. Feature selection is used to
perform an accurate process by eliminating irrelevant and redundant data, increasing the
prediction power. Then, 80% of the trained data and 20% of the test data are given to
the classification process. The classification is performed by using a modified XGBoost
algorithm, in which the algorithm is used to predict the presence of kidney stones with
utmost accuracy. Additionally, the efficiency of the proposed method, which uses modified
XGBoost, is evaluated based on an internal comparison with NB and DT classifiers. The
standard evaluation metrics are utilized to assess the effectiveness of the proposed model.

3.1. Feature Selection Using Improved MBPSO Algorithm

PSO algorithm is a heuristic global optimization algorithm, and the main advantage
of using PSO algorithm is its faster convergence capability and simple implementation.
Hence, PSO algorithm is widely used in the feature selection process. While considering the
standard PSO algorithm, every particle refers to a strong solution to the process around the
search space. The velocity vector and position vector of the ith particle in a D-dimensional
space are given as vel; = (vel;1, veljp, veljz ... ... ... vel;p) and pos; = (pos;1, posiz, pos;3 . ..
...... pos;p), respectively. The position and velocity of the ith particle after the particles
are randomly initialized are given as follows in Equations (1) and (2):

veli(t+ 1) = wvel(t) + ajrvy (wi — pv;(t)) + azrva (wg — pv; (1)) (1)

pos,(t+1) = pos;(t) + veli(t+ 1) )

where w refers to the inertia weight, which protects the new one from the previous velocity.

In addition, w; refers to the optimal previous position of ith individual; wg refers to
the optimal initial position of every particle in the present generation; and rv1 and rv2 refer
to the random values that are generated separately and distributed uniformly in the range
[0, 1]. The pseudo-code of the standard PSO is given below (Algorithm 1):
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Algorithm 1: Standard PSO.

init population

for k = 1: maximum generation

for i = 1: population size

if f(pos; p(k)) < f(wg(k) then wg(k) = pos; p(k)

f(wg (k) = min(f(w;(k)))

end

for D = 1: dimension

vel; p(k + 1) = wvel; p(k) + kyrvi(w; — pv;p(k)) + kprva(wg — pos; p(k))
posip(k + 1) = pos; p(k) + vel; p(k + 1)

if vel; p(k + 1) > velmax then vel; p(k + 1) = velpax
else if vv; p(k + 1) < vvpin then vv; p(k + 1) = velpin
end

if posj(k + 1) > posmax then pos;j(k + 1) = posmax
else if pos;(k + 1) > pospin then posj(k + 1) = posmin
end

end

end

end

Though the PSO algorithm has various benefits, PSO possesses a few disadvantages,
including it can get trapped easily in local optima while solving complex issues. Therefore,
the disadvantages reduce the applications of the standard PSO algorithm. Hence, the
present study uses an Improved MBPSO algorithm for feature selection as the standard
PSO possesses some disadvantages. In this case, the sigmoid function is used to interpret
the binary values better. It makes use of momentum and velocity to enhance performance.
ki, and k; parameters are two constants that are used to evaluate the weights of w; and
wg, and the significance of k1 and k2 parameters lies in the ability for controlling the
balance between exploration and exploitation at the optimization stage. A maximum k1
value affords a high weightage to the personal ideal solution of individual particles, which
enhances exploitation by assisting the particles toward reliable search space areas. On
the contrary, a maximum k2 value affords a high weightage to a global ideal solution that
enhances exploration by assisting particles toward better search space areas.

The overall pseudo-code for the MBPSO is given below (Algorithm 2):

Algorithm 2: Modified Binary PSO.

Init MBP
wi(i) = 0; wg(i) =0,k =0;
While k < Max_Gen and wg < Max_fit
foreachpi=1,... ndo
if f(i) > w;(i) then
wi(i) =f(i)
if f(i) > wg(i) then
wg(i) = f(i); wg =i
foreachpi=1,...,ndo
foreachdimd=1,...,Ndo
Vig(new) = w - velig(old) + @1 - U(0,1)(posig — Xiq(old) + @2 - U(0,1)(posgq — Xjq(0ld))
Via(new) = y[velig(old) + @1 - U(0,1)(posia — Xia(0ld) + @2 - U(0,1)(posgd — xiq(old)]
if velig(K + 1)E (Vinin, Vmax) then
velig(K + 1) = max(min(Vmax, velig(k + 1)), Vinin)
if (U(0,1) < S(vel;q(new) then x;q(new) = 1 else X;jq(new) =0
k=k+1;
Output wg
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Here, wiwg =[10111] and pi=[01101]. The difference between w;wy — p i =
[1 — 101 0] shows that the values of one should be selected and the value of negative one
should not be selected, but the process is reversed, and the difference is calculated. The
difference between the positive and negative values makes the particles highly explorative.
When the bit of the particles is changed into the requisite 1 and 0 and compared with the
distance value, the velocity of the sigmoid function is changed into the requisite 1 and 0
and compared with the random value with the interval [0.0, 1.0]. In this case, BPSO could
encode the feature subset straightforwardly as an individual bit in the position of a particle
as either 0 or 1. This represents if a feature is chosen or not. This approach iteratively places
a mask upon features in every certain generation to stop the features from evolving.

Optimization includes the initialization of a population with the candidate solutions.
Each of these are indicated by a binary string that encodes the absence or presence of
individual features. Then, the fitness for individual candidate solutions is assessed by
training and then testing the model with the respective binary string. The model is as-
sessed in accordance with the performance metrics. The optimization process is iteratively
proceeded, with each of the iterations involving the updation of velocity and position of
candidate solutions relying on the ideal solution determined so far. This step permits the
algorithm to expose effective search space and then converge toward an ideal solution. The
value could be computed by running the optimization method for enough iterations and
choosing the solution having a high fitness value.

The Improved MBPSO modifies the encoding scheme by including an additional
parameter termed as the velocity vector. This indicates the magnitude and direction of
movement corresponding to individual feature in a solution. During optimization, velocity
vector updation is performed, which is eventually utilized for assisting in searching the
ideal solution. Contrarily, in the Improved MBPSO, the decoding method is altered by
including a threshold factor, which finds if a feature exists or not in a solution. Furthermore,
the threshold factor is utilized for acclimatizing the feature probability existing in a solution
relying on the velocity vector. Alteration in the encoding mechanism permits robust
optimization with the inclusion of the velocity vector as an added factor. On the contrary,
the decoding mechanism permits the algorithm to procure a definite solution from the
binary form. Modification is performed by including a threshold factor that confirms that
an optimized solution is attained in accordance with the velocity vector. This strategy could
narrow the search space at the evolution stage, which is beneficial for the Modified Binary
PSO to expose the optimal solutions in the search space.

3.2. Classification Using Modified XGBoost

XGBoost is generally capable of working in an effective form for both classification
and regression. XGBoost is performed by using the framework of gradient boosting in
which, to fit a value, new decision trees are used with residuals of multiple iterations, which
enhances the efficiency of the classifier. In contrast to gradient boosting, Taylor expansion
is used in XGBoost to approximate the loss function. In the Modified XGBoost, a group
of ensemble decision trees is created in different iterations in which the final predicted
residual from every iteration is considered to perform the objective function. The new
iteration is started by calculating a new fitting model, which considers the residual fitting
of the 1st and 2nd derivatives of the loss function matrix. The overall pseudo-code for the
Modified XGBoost is given below (Algorithm 3):
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Algorithm 3: Modified XGBoost algorithm.

Input : Initializes particles PV; = ((pvi1, PUi2, PUB v vvnerens puip) with
pos; = (posi1, poSip, POS3 -+ v. .. posip) — — — — — position vector
vel; = (vely, velp,veliz.......... vel;p) — — — — — velocity vector

fori=1,i<N;i=i+1do
compute the local density p;, distance x;; 5(i)& p(i)— — p i, ¥
choose particles with high p; & relatively high u; as the center acc to h; =
i * pj assign remaining particles and get Subg subgroups
initialize
the XGBoost with instances nodes set k on training data, the hypapameter— — current optimal value
forp=Lp<m;p=p+1do
Gai -0, G=Y, Gai; - 0,H =Y Gai; >0
ieL ieL
for j in sorted (L by pvj;; )do
Gy — Gy +gr/Hr — Hy +hy;
Gy -+ G+ Gy, Hy = H+ Hy;
G2 G2

max| score, 7 + o~ + %
SCW( 'H, T H, T H¥A

Update particles state (BFbest!", GPbest™) refer to advanced loss function
forl=11<D;l=1+1do
if particle is local optimal then

vW=wx vl +eovy xrvy (Bl:bes’c}D - ipf) +cvp X v (é dgl GPbestP — ipf)

ipf = ipf’ + v}

else

V}D =w X Vf 4+ cvq X rvq (BFbestf - ipf) + vy X rvy (GPbes’cP — ipip>
ip} = ip!’ + v}

Output : Optimal value of the presence and absence of kidney stone

3.3. Classification Using DT (Decision Tree) Classifier

DT is referred to as a supervised learning algorithm that could be used for both classi-
fication and regression issues. In general, it is promptly suitable for solving classification
issues. The internal nodes of DT denote the dataset features, the branches denote the
decision rules, and each leaf node denotes the outcome of the classifier. A DT algorithm
splits data into branches for building a tree, which increases the accuracy of prediction.
Input data are split into various subgroups, and the step is repeated in every node of the
leaf until the tree is completely built. Typically, a DT model is a simple and automatic
algorithm. It requires minimum exertion to prepare the data during pre-processing. DT
does not need data standardization. Hence, DT is considered in this study for internal
comparison. The algorithm for the DT classifier is given as follows:

From Algorithm 4, it is clear that the sample (Sp) and features (Fs) are taken as the
input for the DT algorithm. The training dataset is split based on the optimal criterion.
During the pruning phase, successive branches are minimized upon which the general
model of the tree is built. The roots are formed based on the created node. With the help of
the test condition, the optimal features and samples are selected. The completely grown
tree is accessed, and the root represents the output of the classifier, which predicts the
presence of kidney stones.

Algorithm 4: Decision Tree Classifier.

DT (Sample Sp, Features Fs)
Step 1: If stopping_condition (Sp, Fs) = true then
a. Leaf = createNode()
b. leafLabel = classify(s)
c. return leaf
Step 2. root = createNode()
Step 3. root.tes_condition = findBestSplit(Sp,Fs)
Step 4. V = {v|v a possible outcomefroot.test_condition}
Step 5. For each value veV:
a. Spy = {s | root.test_condition(s) = v and seSp};
b. Child(ch) = TreeGrowth (Spy,Fs);
c. Add ch as descent of root and edges are labelled {root — ch} as v
Step 6. return root
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3.4. Classification Using NB (Naive Bayes) Classifier

NB is a simple learning algorithm but shows effective performance in the process
of classification. In an NB classifier, the class that has a higher probability is returned to
classify the instance. Training data are generally used to find the probability values, which
follow Bayes’ rule. Improved classification accuracy can be attained by using an enhanced
instance-weighting algorithm.

NB uses Bayes’ rule to classify the instance (71, 42, ... ... gm) and to find the class in
which a higher probability delivers the attribute values of the instances.

41,92, qmlc)-p(c) 3)

class = arg. ¢c max

where c refers to the vector of class, p(c) refers to the probability of class ¢, and p(q1, 42, . ..
... gm | c) refers to the probability of attributes 1, 2, ... m, which has the values of 1, q2, . . .
... gm given the class c instance.

Every attribute has class values by using naive assumptions in the algorithm. Hence,

P q2 - qmle) = [T, p(gjlc) )

Moreover, as a certain instance is given, for every class, the denominator is equal to
(g1, 92, - - gm); then, Equation (5) can be given as

class = arg_ .- max p(c) * Hj p (qj |c) (5)

The probability terms p(c) and p(q; | c) are estimated by using the training data, as
shown in Equations (6) and (7), respectively:

Y 8(c,0)+1

p(C) = Z?:l n+ne (6)
Y1 8(a; ) 8(circ) +1
p(gc) = T 5(c, ) oy @

The accurate estimation of p(c) and p(q; c) is responsible for the classification accuracy.
A large weight instance has a higher influence in the estimation of p(c) and p(q; ¢) in
comparison with a small weight. Generally, NB possesses several merits, including easy
execution, and probabilities could be computed directly with speed training. Due to these
advantages, this study considers NB for internal comparison. The stepwise operation of
the NB classifier is given in Algorithm 5.

Algorithm 5: Naive Bayes Classifier.

Input : set of training instance C and no. of iteration T
output : Weight updated tuned Naive Bayes WNB
Step 1. initialize the weights of all training instances in C to 1
Step 2. train the naive Bayes using C
Step 3. — 1 for each training instance x of class c
Step 4. Use the trained nave Bayes to estimate p(c|x)
Step 5. (x)t = (x)t — 1+ (1 — p(c|x))
_ X 0(ci0)+1

p(c) = Y

Y 6(qiq;)0(cic)+1
r(o0) = Sl
Step 6. Train an WNB again using C
End fort
Return the NB classifier(predicted data)

For a better understanding, the proposed work is presented using the illustrative
diagram in Figure 2. The illustrative diagram consists of images, notes, features to be
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selected, and the method used. The present work considers a real-time dataset. The smart
toilet considers several attributes for the prediction of diseases. To perform that, the smart
toilet consists of cameras, gas and odor sensors, a thermometer scale for stool and urine
analysis, stored profiles of multiple users, motion sensors, dipsticks, data links to a health
provider, and self-cleaning and online data sharing services.

By using sensors and various devices, data are collected. The collected data are
analysed, and the collected data, including pH of urine, osmolality of urine, conductivity
of urine, specific gravity of urine, concentration of calcium in urine, and concentration
of urea in urine, are sent to the caretaker or user. ML algorithms are utilized for the
prediction of kidney stones. For feature selection, an improved MBPSO method is used
for selecting features, such as pH, calcium osmolality, and others. For classification, the
Modified XGBoost classifier is utilized with the loss function updated for the prediction of
kidney stones, and the outcomes show the presence and absence of kidney stones.

FUTURE PERSPECTIVE OF CONTINUOUS HEALTH MONITORING USING SMART TOILETS FOR KIDNEY STONE PREDICTION

Data Analysis S ° 2 Data sent out using online device to user or caretaker Data collected from device given to
f%}\- @Q(S: Collected data Machine learning based classification
e 0

* Specific gravity of urine techniques in order to predict the health
* Ph of urine N issues.
* Osmolality of urine [ ]
@ * Conductivity of urine
\ * Concentration of urea in urine @ @
« Concentration of calcium in urine
v
For classifying the data we have use the Modified ‘We used several techniques to predict

XGBoost classifier with loss function updation. For feature selection we use the Improved
: MBPSO got some important feature
'4 — o @ selected like Osmo, ph, calcium @

MBPSO

SMART TOILET . 2]

+ Multiple user Profile stored T a g a1 le  ouof
* Cameras Py
* Motion sensor

* Gas and odour sensor

ess

0176 {

Fit

0174 {

+ Dipsticks —

+ Thermometer scale stool and urine analysis o012 {

* Data link to health provider 01701 |
* Self cleaning Finally got the presence or absence of kidney stone %5 S0 15 W 1S o us A0
* Online data sharing devices prediction.

Figure 2. Illustrative diagram of the proposed model.

4. Results and Discussion

The results that have been attained by implementing the proposed system for the
prediction of kidney stones are included in this section with dataset description, perfor-
mance metrics, exploratory data analysis, implementation results, performance analysis,
and internal results.

4.1. Dataset Description

The initial phase is to collect real-time data using the sensors to predict the existence of
kidney stones (urolithiasis) based on urine analysis. IoT-based data collection is performed
for the assessment or prediction of urolithiasis. Six characteristics of urine, including the
pH of urine (pH), the osmolality of urine (osmo), the conductivity of urine (cond), the
specific gravity of urine (gravity), the concentration of calcium in the urine (calc) and the
concentration of urea in urine (urea), are considered. The values collected from both healthy
persons and patients by using the system are used for the prediction of kidney stones.

4.2. Performance Metrics
4.2.1. Accuracy

The term accuracy can be referred to as the model classification rate that is provided
through the proportion of correctly classified instances (Trupositive + TruNegative) to the sum
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of instances in the dataset (Trupesitive + Falpositive + TruNegative + FalNegative)- The following
Equation (8) can be used to calculate the accuracy range:

Tr UNegative + Trupositive
+ Trupositive + 1:"alNegative + Falpositive

®)

Accuracy =
Y TruNegative

4.2.2. Precision

The term precision is defined as the degree of covariance of the system that results
from the correctly identified instances Trupygsiye to the total number of instances that are
correctly classified (Trupysitive + Falpositive)- It is measured by Equation (9) as follows:

Trupesitive )

Precision =
Trupositive + Falpositive

In this equation, the variables are defined as Falnegative—False Negative, Falpositive—
False Positive, Trunegative—True Negative, and Trupgsitive—True Positive.

4.2.3. F-Measure

F1-Score denotes the weighted harmonic mean value of (Rec) recall and (Prec) preci-
sion, and it is calculated using Equation (10):

2 x Rec * Prec
F— == 10
measure Rec + Prec (10)

4.2.4. Recall
The term recall refers to the ratio of real and retrieved data to the real data. It is

computed using Equation (11):

real data N ret data
real data

(Rec)Recall = (11)

where ‘ret’ refers to the retrieved data.

4.3. Exploratory Data Analysis

EDA denotes the necessary procedure of performing primary investigations on the
data to realize patterns, experiment hypotheses, verify assumptions, and denote data
characteristics with the help of graphical representations and summary statistics. This
section discusses the exploratory data analysis of the proposed model in the present study
by using an SNS plot, as shown in Figure 3.

In the SNS plot, the significant features of the figure-level functions are specified and
easily created by using multiple sub-plots. Selected features including (calc, gravity, Osmo,
pH, cond, urea, and target) are represented in detail by using the SNS plot, as shown in
Figure 3.

The correlation coefficients of the selected variables (calc, gravity, Osmo, pH, cond,
urea and target) are shown in the correlation matrix. The correlations among the possible
pairs are depicted in the matrix shown in Figure 4.

A box plot depicts a set of numerical data and provides a visual form of the data. By
using a box plot, the attributes can be compared easily. It provides a graphical summary of
the attributes, and the average value of the data is easily identified in the box plot of the
selected data, as shown in Figure 5.
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Figure 5. Box plot.

Target 0 represents the absence of kidney stones and target 1 represents the presence
of kidney stones, which have been found by using the collected dataset and by analyzing

the features of the data. The histogram that represents the presence and absence of kidney
stones is shown in Figure 6.

175 1

150 1

25 1

target

Figure 6. Histogram representing the targeted values.

4.4. Implementation Results

During the implementation process, the required data from the collected values (calc,
gravity, Osmo, pH, cond, and urea) are given. Based on the values, the proposed model
predicts the results. If a kidney stone is present, the outcome will be shown as ‘presence’;

otherwise, it will show as ‘absence’. Figure 7 show the implementation results of the
proposed model.
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Figure 7. (a—c) Implementation results.

4.5. Performance Analysis

The performance of the proposed system is assessed based on the ROC curve and
confusion matrix. The corresponding outcomes are discussed in this section.

The data features, which include calc, gravity, Osmo, pH, cond, urea, and their relative
importance, are shown in Figure 8. From Figure 8, it is observed that the calc feature has
more importance in comparison with other features.

Feature importance using Modified Binary PSO

lc

gravity |

mo-
m-

cond

uea

20 40 [21] & 100
relative importance

Figure 8. Feature importance of MBPSO.
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The feature selection process concerning the iterations is shown in Figure 9. From
Figure 9, it is clear that during the initial iterations, the fitness of the features has some
variations. After iteration (7.5), the fitness saturates, and the optimal features are selected.

0.182 + *0—0—-0—\‘

0.180 - e

MBPSO

0.178 A -

0.176

Fitness

0.174 A + —

0172 A ‘
0.170 A L—o—o—wo—o—o—o—o—o—o« : >

25 5.0 5 10.0 125 150 175 20.0
Number of Iterations

Figure 9. Feature selection of MBPSO.

Figure 10 shows the confusion matrix of the Modified XGBoost classifier, which
illustrates the prediction of kidney stones. By using the Modified XGBoost classifier, the
correct predictions are given as 53—the absence of kidney stones and 28—the presence of
kidney stones. However, three classifications have been misinterpreted as having no kidney
stones, but the Modified XGBoost classifier predicts wrongly. Additionally, Figure 11 shows
the confusion matrix of the DT classifier, which illustrates the prediction of kidney stones.
Using the DT classifier, the correct predictions are 53—the absence of kidney stones and
18—the presence of kidney stones. However, 13 classifications are made wrongly in that
the absence of kidney stones is predicted wrongly as the presence of kidney stones.

-50
=) ] - 40
- 30
- 20
— 3
10
" T -0
0 1

Figure 10. Confusion matrix of the Modified XGBoost.
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Figure 11. Confusion matrix of DT.
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Figure 12 shows the confusion matrix of the NB classifier, which illustrates the predic-
tion of kidney stones. Using the NB classifier, the correct predictions are 49—the absence
of kidney stones and 13—the presence of kidney stones. However, 18 classifications are
made wrongly in that the absence of a kidney stone is predicted wrongly as the presence
of a kidney stone, and 4 wrong classifications are made in which the presence of a kidney
stone is predicted wrongly as an absence.

0 1

Figure 12. Confusion matrix of NB.

The performance of the classification technique by using a graph at each classification
threshold is shown in the ROC curve. The curve uses two parameters (false positive rate
and true positive rate). The ROC curve of the Modified XGBoost is shown in Figure 13.
The proposed model has attained the value of ‘1’, which indicates that the model has the
utmost correct predictions.

10 //

o o o
- (=] (=]

Tue Positive Rate

o
N

—— Modified XGBOOST

0.0 1

0.0 0.2 04 0.6 08 10
False Positive Rate

Figure 13. ROC curve.

4.6. Internal Comparison

The performance metrics of the Modified XGBoost classifier attain 97% of accuracy,
96% of F1-Score, 95% of recall, and 97% of precision. Table 1 and Figure 14 show the
performance metrics of the Modified XGBoost classifier.

Table 1. Performance metrics of the Modified XGBoost Classifier.

Accuracy Precision Recall F1-Score

Proposed Modified

XGBOOST Classifier 0.97 0.97 0.95 0.96
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Figure 14. Performance metrics of the Modified XGBoost Classifier.

From the extensive analysis, it has been found that, the studies in the field of prediction
of kidney stones seems to be lagging, and the dataset used in the present study is a real-time
dataset. Hence, it is difficult to perform a comparison with other studies. For that, to assess
the efficiency of the present study, the proposed model is compared internally by using the
DT and NB classifiers.

The performance metrics of the NB classifier attain 74% of accuracy, 68% of F1-Score,
67% of recall, and 75% of precision. The accuracy of the NB classifier is lower in comparison
with the Modified XGBoost classifier. Table 2 and Figure 15 show the performance metrics
of the NB classifier.

Table 2. Performance metrics of the NB classifier.

Accuracy Precision Recall F1-Score

Naive Bayes Classifier 0.74 0.75 0.67 0.68

Performance Analysis
0.76

0.74 -
0.72 -

w 0.7

5068 -

; 0.66 - I E = Navie
0.64 - Bayies
0.62 - ‘ ‘ : Classifier

Accuracy Precision Recall  Fl-score
Metrics

Figure 15. Performance Analysis of the NB classifier.

The performance metrics of the DT classifier attain 75% of accuracy, 69% of F1-Score,
68% of recall, and 77% of precision. The accuracy of the DT classifier is lower in comparison
with the Modified XGBoost classifier. Table 3 and Figure 16 show the performance metrics
of the DT classifier.
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Table 3. Performance metrics of the DT classifier.

Accuracy Precision Recall F1-Score

Decision tree classifier 0.75 0.77 0.68 0.69

Performance Analysis

0.78

0.76

0.74 -
w 0.72 - B Decision
)
= i tree
E 0.7 classifier

0.68 -

0.66 -

0.64 -

0.62 -

Accuracy Precision Recall F1-score
Metrics

Figure 16. Performance analysis of the DT classifier.

From the internal comparison, it is evident that the proposed method (Modified
XGBoost) has attained better values in all the performance metrics, including precision,
recall, accuracy, and F1-Score. Table 4 shows the accuracy of the different classifiers with
and without feature selection.

Table 4. Accuracy of different classifiers with and without feature selection.

With Feature Selection and Without Feature Selection
with MBPSO and with MBPSO
Modified XGBOOST Classifier 97% 85.269%
Naive Bayes Classifier 73.571% 60.841%
Decision Tree Classifier 74.745% 65.789%

From Table 4, the accuracy of the Modified XGBoost, NB, and DT classifiers with
feature selection (MBPSO) is 97%, 73.571%, and 74.745%, respectively, whereas without
feature selection (MBPSO), the accuracy of the Modified XGBoost, NB, and DT classifiers
is 85.269%, 60.841%, and 65.789%, respectively. Hence, using the feature selection with
MBPSO and the loss update function of the Modified XGBoost has tremendously increased
the accuracy of the proposed model.

5. Conclusions

The present study aimed to predict the presence and absence of kidney stones in an
IoT-fog environment by designing a smart toilet-based model. Several processes were
undertaken to accomplish this. Accordingly, the optimal features were selected by using
the Improved MBPSO, and classification was performed by using the Modified XGBoost
technique. The dataset used in the proposed algorithm was a real-time dataset. Several
features, such as the pH of urine, the osmolality of urine, the conductivity of urine, the
specific gravity of urine, the concentration of calcium in urine, and the concentration of
urea in urine, were selected by using the proposed MBPSO method. Some features, such
as the concentration of calcium and the concentration of urea in urine, were responsible
for crystal formation in the kidneys, which leads to the occurrence of kidney stones. The
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modified XGBoost algorithm was used to perform classification in an IoT-fog environment,
and the attained accuracy of the proposed system was 97%. The efficiency of the proposed
system was assessed by performing an internal comparison with the DT and NB classifiers,
which showed the effectiveness of the proposed model. From the internal comparison, the
DT classifier showed an accuracy rate of 0.75, while the NB classifier attainted an accuracy
of 0.74. However, the proposed system revealed high accuracy rate of 0.97. Moreover,
accuracy rate was assessed for the different classifiers with and without feature selection.
The results revealed that the proposed method attained a high accuracy value with feature
selection at a rate of 97%, whereas without feature selection, it was 85.269%.

This study possesses advantages with regard to speed and accuracy. However, it also
comprises certain pitfalls. The proposed work was specifically outlined to prognosticate
kidney stone and might not be applicable for other disease diagnoses. The proposed
system demands expertise in XGBoost and PSO. This indicates that it might not be available
to non-experts, which might restrict its acceptance in certain settings. Overall, though
the proposed algorithm possesses various merits for prognosticating kidney stone, it
also possesses certain limitations in terms of restricted applicability and requirement for
expertise, which have to be considered for effective usage.

In the future, Al-based DL methods could be used as an alternative method to con-
ventional analysis of kidney stones and in digital endoscopic platforms. Furthermore, the
performance of the proposed work can be enhanced by gathering numerous data from
several sources, which would assist in enhancing the model’s accuracy, thereby minimize
overfitting. Moreover, with regard to feature selection, the proposed model could be
optimized further with the usage of feature selection methods. This would assist in deter-
mining the crucial features that would contribute in predicting kidney stones. In addition,
as interpretability is a significant factor in medical diagnosis, researchers could concentrate
on making the Improved MBPSO more interpretable through which medical experts could
comprehend the way in which the algorithm has evolved in its analysis. This work can be
extended for application in other medical areas to perform prediction or diagnosis. For
instance, the proposed approach could be utilized for predicting the possibility of devel-
oping various kinds of diseases or stones. Moreover, as the traditional way of predicting
kidney stones seems to be a tedious process and requires human intervention, the effective
performance of the proposed algorithm is capable of producing faster and more effective
outcomes. It is also capable of becoming a useful tool to medical experts in treating and
diagnosing kidney stones inclusive of other medical diagnoses.
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