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Abstract: Graph regularized non-negative matrix factorization (GNMF) is widely used in feature
extraction. In the process of dimensionality reduction, GNMF can retain the internal manifold
structure of data by adding a regularizer to non-negative matrix factorization (NMF). Because Ga
NMF regularizer is implemented by local preserving projections (LPP), there are small sample size
problems (SSS). In view of the above problems, a new algorithm named robust exponential graph
regularized non-negative matrix factorization (REGNMF) is proposed in this paper. By adding a
matrix exponent to the regularizer of GNMF, the possible existing singular matrix will change into a
non-singular matrix. This model successfully solves the problems in the above algorithm. For the
optimization problem of the REGNMF algorithm, we use a multiplicative non-negative updating rule
to iteratively solve the REGNMF method. Finally, this method is applied to AR, COIL database, Yale
noise set, and AR occlusion dataset for performance test, and the experimental results are compared
with some existing methods. The results indicate that the proposed method is more significant.

Keywords: graph regularization non-negative matrix factorization (GNMF); non-negative matrix
factorization (NMF); local preserving projections (LPP); feature extraction; SSS problems

MSC: 68Q99

1. Introduction

In recent years, technologies such as computer vision and pattern recognition have
been widely used in all walks of life. In many application scenarios, the dimension
of the data matrix that needs to be calculated is very high. For example, a photo of
100 × 100 pixels has 10,000 dimensions in the computer, which enormously increases
the difficulty of data processing. For dealing with the problem of the “dimensionality
curse” [1] , many dimensionality reduction algorithms have been proposed, for instance,
principal component analysis (PCA) [2] and linear discriminant analysis (LDA) [3], in the
literature [4]. The linear dimensionality reduction algorithm has the advantages of being
simple to operate and easy to analyze, but it is no longer effective when the data have
non-linear structure. However, in reality, high-dimensional data are usually non-linear
structures. When using linear dimensionality reduction methods to extract features from
high-dimensional data, we often cannot get a good effect.

For dealing with high-dimensional non-linear data, manifold learning algorithms
show an ideal result. Scholars have paid attention to the fact that in practical applications,
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the neighborhood relationship of data plays an important role, considering that different
datasets have different manifold structures. The structure of the data is embedded in the
projected function, which can achieve more efficient dimensionality reduction. Examples
such as Laplacian Eigenmaps (LE) [5,6], local linear embedding (LLE) [7,8], local preserving
projections (LPP) [9,10], neighborhood preserving embedding (NPE) [11,12] and supervised
low-rank embedded regression (SLRER) [13] are all classical manifold learning algorithms.
LPP retains the local neighborhood information between sample points on the database
by constructing the neighborhood map of the sample points. After projection, the nearest
neighbor relationship of sample data in high-dimensional space is still maintained in the
low-dimensional subspace.

In addition to manifold learning algorithms, matrix factorization can also achieve the
purpose of dimensionality reduction. The matrix decomposition method hopes to seek out
two or more low-dimensional matrices so that their product can approximate the original
matrix. Typical matrix factorization technologies consist of singular value decomposition
(SVD) [14], NMF [15], etc. The NMF method is based on the principle of physiology that
the overall perception of human beings is composed of local perceptions (purely additive)
and is introduced into data processing to form global data by accumulating various parts
of the data [16,17]. The idea of the NMF algorithm is to represent the whole by the part.
NMF is a partial-based linear representation of non-negative data. Due to the strong
constraint of NMF on the non-negativity of the factor matrices, the NMF algorithm has
better interpretability and is more in line with human cognition. For any matrix A, NMF
can discover two non-negative factor matrices U and V, so that A is equal to the product
of U and V. Therefore, NMF can decompose a matrix into the form of the product of left
and right non-negative matrices. Different from SVD, the matrices obtained by SVD can be
positive or negative, whereas the matrices obtained by NMF are both non-negative, and
NMF only allows addition but not subtraction.

Nevertheless, traditional NMF methods have some problems, such as poor robustness
to noise and outliers, lack of discriminative information, etc. In recent years, the improve-
ment of the NMF algorithm has become a research hotspot. Lu et al. proposed low-rank
non-negative factorization (LRNF) [18], which learns low-rank representations of data and
performs non-negative matrix factorization at the same time, eliminating the effect of noisy
data on dimensionality reduction. On the basis of LRNF, Lu et al. introduced structural
inconsistency and then proposed a new model, i.e., structurally incoherent low-rank NMF
(SILR-NMF) [19]. SILR-NMF is able to learn the global structure of samples and introduced
sample label information so as to ensure that the clean data points of different categories
shall be independent as far as possible. The semi-supervised NMF (SSNMF) method pro-
posed in reference [20] merges the label information and sample matrix into the traditional
NMF framework. Robust semi-supervised NMF (RSSNMF) [21] adopts the L2,1 norm as
the loss function and incorporates discriminant information into extra conditions. The algo-
rithm is better to accommodate noise and outliers. A semi-supervised non-negative matrix
factorization method [22] is proposed for dissimilarity and similarity regularization, which
can better utilize label information by introducing a pair of complementary regularizers for
matrix factorization.

However, the above NMF algorithms do not take the geometric structure into ac-
count in the initial data space when performing matrix decomposition. However, the
geometric structure inside the data plays an important part in practical applications. For
the sake of improving the recognition rate of NMF, a form of graph regularization is
introduced. GNMF [23] combines NMF with the objective function of LPP and adds a
regularization parameter on the basis of the original NMF. According to GNMF, robust
manifold NMF (RMNMF) [24] is proposed, which adopts the L1 norm to increase the
constraints on the noise matrix. Yi et al. [25] propose NMF with locality constrained adap-
tive graph (NMF-LCAG), in which two local constraints are used to adaptively optimize
the graph composition. NMF-LCAG can learn the weight matrix of the graph and the
low-dimensional properties of the samples at the same time. The combination of NMF and
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graph embedding can greatly improve the dimensionality reduction effect and bring both
into full play, maintaining the geometric structure of data while exploiting a parts-based
linear representation of non-negative information.

Most of the current non-negative matrix factorization algorithms for graph embedding
do not consider the problem of matrix singularity, therefore, graph embedding often causes
SSS problems [26]. In the past few decades, the analysis method according to matrix index
to solve the SSS problems has received extensive concern, for example, exponential locality
preserving projection (ELPP) [27], exponential elasticity preserving projection (EEPP) [28],
exponential local discriminant embedding (ELDE) [29], exponential discriminant analysis
(EDA) [30], exponential semi-spervised discriminant embedding (ESDE) [31], Krylov-
EDA [32], exponential marginal Fisher analysis (EMFA) [33], etc. The exponential operation
of matrices is also related to much scientific computing work and is widely used in nuclear
magnetic resonance spectroscopy, control theory, Markov chain analysis, and other fields.
For example, in boundary Fisher analysis, Guo et al. [34] transformed the inverse matrix
into a matrix exponent inverse matrix for training support vector machines (SVM) and
successfully solved the matrix singularity problem in the process of data optimization.
Ivanovs et al. [35] analyzed the number of zero points of the determinant composed of
the matrix index of the Markov addition process (MAP) with the unilateral jump, and
the theoretical model obtained was widely used in the financial field. MEDLPP [36]
introduced the matrix index into DLPP to solve its SSS problems and made corresponding
improvements to shorten the running time. Reference [37] proposed the exponential form
framework of the dimensionality reduction algorithm, and it pointed out that the index of
the matrix is non-singular, so the method based on the matrix index can effectively solve
the SSS problems. Many results show that the matrix index discriminant analysis method
often has a stronger discriminative ability than the original method.

To sum up, in GNMF, LPP will have the SSS problem, which greatly affects the di-
mensionality reduction effect. To handle the aforementioned problem, we propose a novel
method, i.e., a robust exponential graph regularization NMF algorithm (REGNMF). In REG-
NMF, the matrix exponent is added to the objection function so that the original Laplacian
matrix is not singular. The optimal solution of the model is obtained by the non-greedy
iterative method of Lagrangian, which successfully solves the SSS problems. Experiments
with this algorithm on multiple databases show that its image feature extraction effect is
better than some other algorithms.

The main contributions of this article are as follows:

(1) A new robust graph embedding algorithm, i.e., REGNMF, for unsupervised subspace
learning is proposed in this article. On the basis of Euclidean distance and exponential
Laplacian matrix as robustness criteria, we introduce an iterative algorithm to address
optimization problems.

(2) Different from the traditional GNMF algorithm, REGNMF can not only successfully
solve the SSS problems by introducing the matrix exponent but gain a part-based
representation of data. Test sample points are mapped into a novel subspace by
learning the base matrix without being affected by singular matrices.

(3) REGNMF improves the robust capacity of existing NMF algorithms based on graph
embedding. In the contrast to existing methods, REGNMF can recode part-based
geometric information of samples to classify. Extensive experiments show that our
proposed methods runs well and outperforms existing algorithms on most occasions,
especially on noisy and corrupted databases.

The remainder of the paper is organized as follows: For the convenience of understand-
ing, Section 2 describes some related work. Section 3 clarifies some details of REGNMF,
including the objective function, optimization process, etc. Section 4 gives the operation
results of relevant algorithms on different databases. Section 5 summarizes the article.
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2. Related Work

Suppose X = [x1, x2, .., xn] ∈ Rm×n is a sample dataset of the original space,
Y = [y1, y2, . . . , yn] ∈ Rd×n is the projection dataset, and d < n is the subspace dimen-
sion. Then we can obtain the formula as follows:

yi = VTxi, i ∈ (1, 2, . . . , n) (1)

2.1. Matrix Exponent [27]

The exponential operation of matrices is also related to much scientific computing
work and is widely used in nuclear magnetic resonance spectroscopy, control theory,
Markov chain analysis, and other fields. In this section, we give the definition of the matrix
exponent and its properties. Suppose D is a square matrix of n× n, the matrix exponent
formula of D is defined below:

exp(D) =
∞

∑
k=0

Dk

k!
= I + D +

D2

2!
+ · · ·+ Dk

k!
+ . . . , (2)

where I indicates an identity matrix of n × n. According to the Taylor series expansion
theorem, we can convert the matrix index into the form of infinite matrix series. By proving
the convergence and divergence of infinite matrix series, we get that ∑∞

k=0
Dk

k! is convergent.
In other words, exp(D) is a definite matrix. Matrix exponents have the following properties:

(1) exp(D) is a full rank matrix;
(2) If the matrices M and N are commutative, that is MN = NM, then exp(M + N) =

exp(M) · exp(N);
(3) For any matrix M, (exp(M))−1 exists, and (exp(M))−1 = exp(−M);
(4) Suppose that T is a non-singular matrix, then exp(T−1DT) = T−1exp(D)T;
(5) Assuming that a1, a2, . . . , an are the eigenvectors of D, and the corresponding to eigen-

values are β1, β2, . . . , βn, then a1, a2, . . . , an still are the eigenvectors corresponding to
the eigenvalues eβ1 , eβ2 , . . . , eβn of matrix exp(D).

2.2. Graph Regularization Non-Negative Matrix Factorization (GNMF) [23]

By combining NMF with a geometry-based regularizer, GNMF learns the geometric
structure between sample points while projecting.

The goal of NMF is to calculate two non-negative matrices U and V so that the product
of two factor matrices is as approximate as possible to X, i.e., X ≈ UVT . The loss after
matrix factorization is represented by Euclidean distance, so the calculation formula of
NMF is

min
U≥0,V≥0

∥∥∥X−UVT
∥∥∥2

. (3)

The regularizer part of GNMF is implemented by LPP. LPP is a linear approximation
of non-linear Laplacian characteristic projection. The ultimate aim of LPP is to obtain a
projection matrix V that can map high-dimensional sample points into a low-dimensional
subspace. LPP requires that the points with the nearest neighborhood relationship in the
original high-dimensional space are still maintained after mapping into low-dimensional
space. The calculated function of the LPP is

min
1
2 ∑

i,j
(vi − vj)

2Wij. (4)

The W is a graph containing information about the neighborhood of the dataset

Wij =

{
exp(−

∥∥xi − xj
∥∥2/t), xj ∈ Nk(xi)

0, otherwise,
(5)
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where Nk(xi) represents the set of K nearest neighbors of xi, and t is a real number. After
calculation, it can be simplified to

min
V

Tr(VT LV), (6)

where L = D−W, D is a diagonal matrix, and the elements on the diagonal are the sum of
each column in the weight matrix W, i.e., Dii = ∑j Wij. Tr(·) represents the trace of matrix.

Compared with traditional NMF, GNMF still maintains the underlying geometry of
the original data space when performing dimensionality reduction. GNMF integrates NMF
and LPP into a framework, and the calculation formula is as follows:

min
U≥0,V≥0

∥∥∥X−UVT
∥∥∥2

+ λTr(VT LV), (7)

where λ > 0 is the regularization parameter.

2.3. Low Rank Non-Negative Factorization (LRNF) [18]

Because NMF is based on Euclidean distance, it has poor robustness to data containing
noise and corruption. For the purpose of decreasing the sensitivity of NMF to noise and
occlusion, LRNF utilizes low rank to learn the global structure of the sample points. In the
problem of image classification, compared with the local information contained in noise
data, the global geometry structure of the sample is provided with more robustness.

LRNF divides original data X into clean data A and noise data E. The low-rank
constraint on matrix A can learn the global structure of the original matrix X. Therefore,
A can replace X and act as a matrix that needs to be decomposed. We use the L1 norm
to realize the sparsity of the noise matrix and propose the objective function of LRNF
as below:

min
A,E,U≥0,V≥0

∥∥∥A−UVT
∥∥∥2

+ α‖Z‖∗ + β‖E‖1 s.t. X = A + E, (8)

where Z is a low-rank matrix with a block diagonal structure, α and β are two regularization
parameters, and both of them are greater than zero.

3. Robust Exponential Graph Regularization Non-Negative Matrix Factorization

In this section, we first describe the reason for our proposed method, then detail the
principle of the REGNMF algorithm and obtain an optimized solution by the Lagrange
multiplier iterative method.

3.1. The Motivation of REGNMF

NMF as a non-linear and non-negative constraint matrix factorization dimensionality
reduction method has the advantages of interpretability, simple calculation, physical mean-
ing, large-scale data processing, and small storage space, so it is extensively applied to blind
source separation, pattern recognition, time series segmentation, document clustering [38],
recommender systems [39], gene detection, and other fields [40]. Hence, the study of NMF
has a profound impact.

NMF measures the approximation of the original matrix and decomposed matrix
based on Euclidean distance, which indirectly results in a strong level of sensitivity of NMF
to noise and outliers. How to increase the robustness of NMF is the primary problem we
have to face. There are many ways to increase robustness, such as low rank representation
(LRR) [41], which learns the global structure of the samples through low rank and dictionary;
LRNF utilizes low rank to increase the robustness of the original NMF; latent low rank
representation (LatLRR) [42] divides original data into observed and unobserved data;
literature [43] separates clean data from noisy data; sparse preserving projection (SPP) [44]
uses sparsity to filter out redundant information; and MEDLPP [36] introduces matrix
exponents to solve the SSS problems. In the NMF of graph embedding, although the
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internal structure of the data is considered, according to the above analysis, it can be seen
that graph embedding will cause SSS problems, so the combination of graph embedding
and NMF requires a method to increase the robustness of the algorithm.

The small sample size is also a problem that researchers need to consider. When the
samples are insufficient, how to improve the dimensionality reduction effect has attracted
extensive attention. There are many solutions to the SSS problems, such as feature transfer,
metric learning, and others. The introduction of a matrix exponent is also an effective
solution. Compared with other methods, matrix exponent is more convenient and concise.

For example, as a classical supervised matrix dimensionality reduction method,
LDE’s [45] key idea is to maximize the similarity between similar sample points and
the divergence between different sample points. For overcoming the boundedness of the
LDE algorithm, the LDE algorithm with matrix exponent, namely ELDE [29], emerged as
the times required. In the extension algorithm of LDE, researchers added label information
and proposed a semi-supervised version of LDE, named SDE [46]. Although SDE has a
high discriminative ability, without regularization, SDE may encounter the SSS problems
when the number of samples is insufficient. For the purpose of addressing the above
problems, Dornaika et al. proposed the exponential SDE (ESDE) [31] method by exploiting
the property of the matrix exponent. Except for solving the SSS problems, ESDE expands
the gap between different categories of samples to increase the discrimination ability.

According to the above analysis, the matrix index can solve the SSS problems. For the
sake of dealing with SSS problems of NMF in graph embedding, we use a form of matrix
index to transform the possible singular matrix into a non-singular one and make the best
of the information of the null space to increase the robustness and discriminative power of
the algorithm.

3.2. Problem Formulation for REGNMF

In order to deal with the problems in real life and production, we need to obtain certain
data for analysis. However, in many scenarios, due to the difficulties in data collection and
the high cost of sample labeling, the data we obtain are not always sufficient or effective,
but often a small amount of data with little effective information, which makes the scale
of training samples small and will lead to overfitting of the model. Therefore, the SSS
problems have proved to be one of the most important exploration interests in the field of
artificial intelligence.

We know that graph embedding will cause the SSS problems. Although the traditional
GNMF method based on Euclidean distance considers the manifold structure of the sample,
the problem of small sample size will also occur in the procedure of matrix dimensionality
reduction. In the above analysis, we know that the matrix exponent is an effective means to
address SSS problems. Therefore, we adopt the form of introducing the matrix exponent to
solve the SSS problems in GNMF. Based on this, we make improvements on the basis of the
original GNMF, introduce the matrix exponent, and propose the REGNMF method. The
objective function of our proposed method is displayed as follows:

L = min
U≥0,V≥0

∥∥∥X−UVT
∥∥∥2

+ λTr(VTexp(L)V), λ > 0. (9)

In the above formulation, matrix X is composed of training samples arranged in
columns. An additional condition U, V ≥ 0 restricts two matrix factors U and V to both
non-negative matrices: U is a base matrix, and V is a coefficient matrix. The product of
U and V is used to approximate X. The parameter λ is a regularization parameter to
avoid over-fitting in the proceeding of data dimensionality reduction. The expression
VTexp(L)V adds a matrix exponent to the objective function of the LPP algorithm; and L is
a Laplacian matrix of sample data, i.e., L = D−W.

The Laplacian matrix in traditional LPP may be singular. When a matrix exponent is
added, according to the properties of the matrix exponent, it can be seen that exp(L) is a
full-rank matrix. Therefore, exp(L) must be a non-singular matrix, which greatly solves
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the SSS problems in LPP. The first item in model (9) represents the reconstruction error
of the decomposed matrix and the original matrix. In practical applications, the smaller
the reconstruction error is, the more decomposed matrices retain the information of the
original data. The second term indicates the manifold structure of samples introduced by a
regularizer, and the matrix exponent is mixed to increase the robust ability of our method.

Therefore, in the progress of data dimensionality reduction, REGNMF not only main-
tains the internal geometric structure between sample points, but reduces the sensitivity
to noise and outlier data. The next subsection shows how to solve model (9) with an
iterative algorithm.

3.3. The Optimal Solution

As both U and V in the objective function (9) of REGNMF are not convex, we cannot
expect to find an algorithm to get a global minimum solution; instead we use a gradient
descent method [47] to obtain local minimum values, so we can obtain the following rules:

uik ← uik + φik
∂L
∂uik

, vjk ← vjk + ψjk
∂L
∂vjk

, (10)

where φ and ψ represent the learning rate, which determines the step size of each gradient
descent, and when the choice of φ and ψ are both small enough, it can be guaranteed that
each iteration is decreasing until the objective function converges to a stationary point.
Thus, we set φik = − uik

2(UVTV)ik
, vjk = −

vjk
2(VUTU+λexp(L)V)jk

. Then the update rules for φ and
ψ are

uik + φik
∂L
∂uik

= uik −
uik

(2UVTV)ik

∂L
∂uik

= uik −
uik

(2UVTV)ik
(−2(XV)ik + 2(UVTV)ik) = uik

(XV)ik
(UVTV)ik

(11)

vjk + ψjk
∂L
∂vjk

= vjk −
vjk

2(VUTU + λexp(L)V)jk
(−2(XTU)jk

+ 2(VUTU)jk + 2(λexp(L)V)jk) = vjk
(XTU)jk

(VUTU + λexp(L)V)jk

(12)

According to the convergence proof of NMF in the paper of Lee and Seung [17], the ob-
jective function in formulation (7) is not increasing under the update rule in
formulations (11) and (12). Our proof of convergence basically follows the thought of
the original NMF in Lee and Seung’s paper, which will not be repeated here. However,
many studies have shown that the multiplication algorithm of the original NMF cannot
guarantee convergence to a stable point. In order to make our algorithm converge, we
further demand that each column vector in the matrix U (or V) has a Euclidean distance
of length 1. The matrix V (or U) updates automatically to prevent U from changing. The
implementation is as follows:

uik ←
uik√
∑i u2

ik

, vjk ← vjk

√
∑

i
u2

ik. (13)

This strategy is also adopted in GNMF, and it is still the same after adding the matrix
exponent. After the multiplicative update process has converged, this paper fits the length
of Euclidean distance of every column vector in matrix U to 1 and tunes up matrix V to
ensure that U is invariant. We prove the convergence of our proposed REGNMF through
experiments, as displayed in Figure 1. It can be seen that on different databases, when
the number of algorithmic iterations to 200 times, the reconstruction error of the objective
function is almost unchanged. Therefore, 200 is used as the number of iterations of the
experiment in this paper.
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Figure 1. Relationship between reconstruction error and iteration times.

According to our derivation process, the following solution algorithm (Algorithm 1)
is obtained.

Algorithm 1 REGNMF Algorithm.
Input:

Training set X, subspace dimensions d, the number of iterations iter, the
current iteration number s, the regularization term coefficient λ, the matrices U
and V, the weight matrix W, and the Laplacian matrix L.

Initialization:
The number of sample rows m and sample columns n, U = 0, V = 0,

iter = 200, W = L = 0, s = 0;
1. Use random functions to generate U and V factor matrices,

U = rand(m, d), V = rand(n, d);
2. Use the K-nearest neighbor algorithm to select the neighbor points of the

xi to construct a neighborhood graph W;
3. According to L = D−W, construct the Laplacian matrix L;
4. When s <= iter, loop:

1© Iterate and Update U:
uik ← uik

(XV)ik
(UVTV)ik

;
2© Iterate and Update V:

vjk ← vjk
XTU

(VUTU+λexp(L)V)jk
;

3© s = s + 1;
5. If s > iter: end the loop;
6. Normalize matrices U and V:

uik ← uik√
∑i u2

ik

, vjk ← vjk

√
∑i u2

ik.

Output: base matrix U and coefficient matrix V

4. Experiment

For the purpose of testing the ability of REGNMF’s feature extraction and its robustness
to noise and outliers, REGNMF, GNMF, NMF, LPP, ELPP, LRR, and LRNF are used to
extract main features on the AR, COIL, and Yale databases with random noise and AR
database with occlusion for recognition experiments. We use MATLAB to carry out our
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experiments, the device processor used in the experiment is Intel Core i5-7200U, 64-bit
Windows operating system, and the running memory is 4G. During the experiments, we
use the kNN method for classification. In this paper, we fix the parameter k (number of
nearest neighbor nodes of each data instance) in the kNN method to 10, so that the graph
structure constructed by the model is consistent each time, thus avoiding the influence of
irrelevant parameters on the model performance.

4.1. The AR Database Experiment

The AR face database includes more than 4000 images of 70 men and 56 women,
totaling 126 people. The characteristics of these images are that the faces in the front view
have different facial expressions, lighting conditions, and occlusion (sunglasses, etc.). Each
image is 50 × 40 pixels. Figure 2 shows a partial image from the AR database. From the AR
database, we randomly select 24 images in each category as the training set. The recognition
rate curve of diverse face recognition algorithms under different feature dimensions is
displayed in Figure 3.

Figure 2. A partial image from the AR database.

Figure 3. Comparison of face recognition rate curves of diverse feature extraction algorithms for the
AR database.

4.2. The COIL Database Experiment

The COIL database consists of 20 objects, each with 72 images, which are collected
from distinct angles of the object. Each image is 128 × 128 pixels. A partial image from
the COIL database is shown in Figure 4. From the COIL database, we randomly select
60 images in each class as the training set and the remaining 12 images as the test set.
Figure 5 shows the comparison of the recognition rates of each algorithm under different
feature dimensions. We know that the number of samples in the COIL database is less
than the sample dimension, and we can see from Figure 5 that our model is effective and
performs far better than other models, which indicates that REGNMF successfully solves
the SSS problem.
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Figure 4. A partial image from the COIL database.

Figure 5. Comparison of face recognition rate curves of different feature extraction methods for the
COIL database.

4.3. Robustness Test for Random Pixel Destruction

In order to further evaluate the robust capability of the REGNMF algorithm to noise
and outliers, this paper adds Gaussian noise with a density of 0.2 and salt and pepper noise
with a density of 0.1, respectively, to the Yale database. Figure 6 shows, respectively, a
Yale clean image and after adding different noise Yale images. The Yale dataset includes
165 images in 15 categories, and each category contains 11 images from different lighting,
expressions, and shooting angles, and the resolution of each image is 80 × 100. In this
paper, different train sample numbers (2, 3, 4, 5, 6) are casually chosen as train sets to test
the robustness of each algorithm when reduced to the same dimension (six dimensions).
Table 1 gives the face recognition rate of each algorithm. It can be proved that our model
can perfectly solve the SSS problem.

(a)

(b)

(c)

Figure 6. A partial image of Yale database. (a) Yale clean image; (b) Yale image with Gaussian noise
density = 0.2; (c) Yale image with salt and pepper noise density = 0.1.
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Table 1. Face recognition rate of each algorithm under different noise densities.

Methods
“Salt and Pepper” Noise (Density = 0.1) Gaussian Noise (Density = 0.2)

2 3 4 5 6 2 3 4 5 6

LRR 69.63 73.33 80.00 82.22 78.67 60.00 65.83 71.43 78.89 74.67
LPP 40.74 40.74 35.24 43.33 50.67 37.78 51.67 41.90 55.56 56.00

ELPP 49.30 51.67 54.76 61.11 69.33 47.04 50.00 52.86 61.11 63.33
NMF 65.93 70.00 79.05 82.22 73.33 64.44 67.50 73.33 81.11 80.00

GNMF 67.41 71.67 82.86 79.05 77.33 58.52 77.50 70.48 82.22 73.33
RMNMF 71.85 72.5 74.67 76.67 77.14 63.70 68.33 77.14 78.89 78.67

LRNF 72.59 76.67 76.19 81.11 74.67 70.37 68.33 79.05 74.44 73.33
REGNMF 74.07 76.67 83.81 85.56 81.33 75.56 75 80.95 83.33 82.67

The bolded part indicates the recognition rate of our proposed method.

4.4. Robustness Test of Continuous Pixel Occlusion

For the sake of testing the sensitivity of the REGNMF method to occlusion data, we
add the 5 × 5 and 10 × 10 occlusion blocks to the AR database for the face recognition rate
experiment. Figure 7a,b are the images after adding different occlusion blocks to the AR
database. This paper selects 24 samples as the training set and then assesses the robustness
of each algorithm under different feature dimensions. Figures 8 and 9, respectively, show
the face recognition rates of each algorithm under different occlusions.

(a)

(b)
Figure 7. (a,b) AR images with 5 × 5 and 10 × 10 occlusion blocks, respectively.

Figure 8. Classification accuracy of different feature dimensions for the AR database based on
5 × 5 occlusion.
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Figure 9. Classification accuracy of different feature dimensions for the AR database based on
10 × 10 occlusion.

4.5. Analysis of Results

(1) For the noiseless data, Figures 2 and 4 show the variation of each algorithm with the
feature dimension for the AR and COIL databases. It can be seen that in most cases,
the effect of REGNMF is significantly better than other algorithms, and the experiment
on the COIL database indicates that the SSS problems are successfully solved.

(2) In the experiment of adding noise, as shown in Table 1, the effect of the REGNMF
method is far more effective than other algorithms under different noise densi-
ties, and the classification accuracy of image recognition is about 1–4% higher than
other algorithms.

(3) In the experiment with occlusion, it is clear from Figures 8 and 9 that the REGNMF
algorithm has better robustness and a higher face recognition rate, so it is more
discriminative. In most cases, the classification accuracy of REGNMF and GNMF is
much higher than that of other algorithms. This is because REGNMF, RMNMF, and
GNMF join a graph regularizer, which takes the structure of the data into account
while reducing the dimension. Therefore, the accuracy is higher.

5. Conclusions

Manifold learning and matrix factorization methods are effective in feature extraction,
and the GNMF is a generalization based on manifold learning. On this basis, this paper pro-
poses an improved model for the GNMF, i.e., REGNMF. REGNMF integrates the manifold
learning model with the NMF model together and still maintains the manifold geometry
of data space in the progress of dimension reduction. At the same time, considering the
impact of SSS problems caused by matrix singularity on face recognition rate, the author
successfully solves the SSS problems by introducing a matrix index to make the Laplacian
matrix into a non-singular matrix, which greatly increases the robustness and discrimina-
tion of the method. In this paper, the iterative update optimization algorithm is used to
derive and certificate the formulation of the proposed REGNMF method, and the optimal
solution is obtained. The algorithm is applied to image databases such as AR, Yale Salt and
Pepper, Yale Gaussian, and COIL. A large number of experimental results indicate that, in
comparison with traditional algorithms, image features extracted by REGNMF have higher
recognition rates when used for classification and recognition, especially on datasets with
noise and occlusion.
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