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Abstract: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Mycobacterium tu-
berculosis (Mtb) coinfection has been observed in a number of nations and it is connected with severe
illness and death. The paper studies a reaction–diffusion within-host Mtb/SARS-CoV-2 coinfection
model with immunity. This model explores the connections between uninfected epithelial cells,
latently Mtb-infected epithelial cells, productively Mtb-infected epithelial cells, SARS-CoV-2-infected
epithelial cells, free Mtb particles, free SARS-CoV-2 virions, and CTLs. The basic properties of the
model’s solutions are verified. All equilibrium points with the essential conditions for their existence
are calculated. The global stability of these equilibria is established by adopting compatible Lyapunov
functionals. The theoretical outcomes are enhanced by implementing numerical simulations. It is
found that the equilibrium points mirror the single infection and coinfection states of SARS-CoV-2
with Mtb. The threshold conditions that determine the movement from the monoinfection to the
coinfection state need to be tested when developing new treatments for coinfected patients. The
impact of the diffusion coefficients should be monitored at the beginning of coinfection as it affects
the initial distribution of particles in space.
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1. Introduction

Coronavirus disease 2019 (COVID-19) is a viral disease induced by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) and emerged in 2019. Although the
number of new cases decreased in the last few months, COVID-19 is continuing its spread
around the globe [1]. Following the World Health Organization (WHO) report issued
on 1 March 2023, above 758,000,000 affirmed cases and over 6,800,000 deaths have been
accounted globally [1]. COVID-19 coinfections with other viral or bacterial diseases are
common, which complicates the treatment of COVID-19 [2]. Tuberculosis (TB) is a bacterial
infection attributable to Mycobacterium tuberculosis (Mtb). Currently, COVID-19 co-
occurring with TB has been declared in a number of nations [3]. As COVID-19 and TB are
greatly infectious diseases, understanding Mtb/SARS-CoV-2 coinfection is very crucial for
protection and treatment of coinfection.

SARS-CoV-2 is an enveloped RNA virus which is linked with the Betacoronavirus
genus [4]. It breaks into the host cell using the angiotensin-converting enzyme 2 (ACE2)
receptor [5]. It primarily infects the alveolar epithelial type-II cells of the lungs [6]. Similar
to SARS-CoV-2, Mtb infects alveolar epithelial type-II cells through pattern recognition
receptors such as toll-like receptors, complement receptors, and CD14 receptors [7]. Thus,
the lung is the major infection site for these pathogens. Nevertheless, they can invade cells
within different organs [6]. Since SARS-CoV-2 and Mtb infect the same target, this could
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increase the seriousness of disease in coinfected people [4]. Both pathogens are dissemi-
nated through respiratory droplets [2]. The most dominant features of Mtb/SARS-CoV-2
co-occurring are fever, cough, and dyspenea [2]. Risk factors in coinfection include age
and comorbidities such as diabetes, HIV, and hypertension [2,3]. The immune response
in coinfection includes T cells [8]. Specifically, cytotoxic T lymphocytes (CTLs) work on
eliminating infected cells from the body. In the mild cases, the immune response can clear
both infections. It has been proposed that Mtb/SARS-CoV-2 patients are at higher risk of
death and developing severe disease than SARS-CoV-2 patients without Mtb [2,3,8]. More-
over, some studies reported that SARS-CoV-2 infection may cause latent Mtb to become
active in coinfected people [3,4]. Other studies also observed that coinfected patients have
low lymphocyte counts [2,8]. Thus, understanding the mechanism of coinfection is very
important to evolve treatments for coinfected patients.

Mathematical models have been utilized to assist experimental and medical studies
of different infections. These models are partitioned into epidemiological and within-host
models. Epidemiological systems consider the interactions between individuals at the
population level, while within-host systems explore the interplay between pathogens and
cells within the host’s body. A variety of COVID-19 epidemiological models (see for exam-
ple, [9–15]) and within-host models (see for example, [16–18]) have been introduced and
investigated. Similarly, TB models have been widely studied as epidemiological models
(see for example, [19–22]) and within-host models (see for example, [23–27]). Some coinfec-
tion models of COVID-19 with other diseases have been developed. For instance, Pinky and
Dobrovolny [28] analyzed a model that tests the impact of SARS-CoV-2 coinfection with
the influenza virus. Al Agha and Elaiw [29] established a within-host SARS-CoV-2/malaria
model with immune response. Elaiw et al. [30] developed a SARS-CoV-2/HIV coinfection
model that takes the latent stage of infected epithelial cells (EPCs) into consideration. Elaiw
and Al Agha [31] studied a SARS-CoV-2/cancer system with two immune responses.

Many epidemiological models of TB/COVID-19 coinfection have been proposed (see
for example, [32–34]). On the other hand, within-host models are not widely considered.
In [35], a within-host coinfection model has been formalized using ordinary differential
Equations (ODEs). This work develops a reaction–diffusion within-host Mtb/SARS-CoV-2
coinfection model. It depicts the interplay between uninfected EPCs, latently Mtb-infected
EPCs, productively Mtb-infected EPCs, SARS-CoV-2-infected EPCs, Mtb particles, SARS-
CoV-2 particles, and CTLs. Additionally, this model is formalized using partial differential
Equations (PDEs) which count the nonuniform distribution of cells and pathogens with
their ability to move. Thus, PDEs are more realistic than ODEs which assume the spatial
distribution homogeneity of cells and particles. Using the developed model, we (i) establish
the boundedness and nonnegativity of the solutions, (ii) determine all equilibrium points
and find the thresholds, (iii) confirm the global stability of each point, and (iv) use numerical
simulations to validate the theoretical observations.

The remaining sections are divided as follows. Section 2 represents the model.
Section 3 proves the boundedness and nonnegativity of the solutions. Moreover, it re-
counts all equilibrium points. Section 4 employs Lyapunov functionals to show the global
stability of each point. Section 5 implements numerical simulations. The last section
provides the conclusion with upcoming works.

2. A Reaction–Diffusion Mtb/SARS-CoV-2 Coinfection Model

This part describes the model under consideration. In this model, we assume that
Mtb and SARS-CoV-2 have the same target, and CTLs kill infected cells at the same rate.
The model consists of seven PDEs as follows:
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∂U(x, t)
∂t

= DU∆U + λ− η1UB− η2UV − ε1U,

∂L(x, t)
∂t

= DL∆L + η1UB− aL,

∂IB(x, t)
∂t

= DIB ∆IB + aL− γIBZ− ε2 IB,

∂IV(x, t)
∂t

= DIV ∆IV + η2UV − γIV Z− ε3 IV ,

∂B(x, t)
∂t

= DB∆B + µ1ε2 IB − ε4B,

∂V(x, t)
∂t

= DV∆V + µ2 IV − ε5V,

∂Z(x, t)
∂t

= DZ∆Z + ωIBZ + ωIV Z− ε6Z,

(1)

where the time t > 0 and the position x ∈ Ψ. The domain Ψ is bounded and connected
with a smooth boundary ∂Ψ. The compartments U, L, IB, IV , B, V, and Z designate the
concentrations of uninfected EPCs, latently Mtb-infected EPCs, productively Mtb-infected
EPCs, SARS-CoV-2-infected EPCs, Mtb particles, SARS-CoV-2 particles, and CTLs at (x, t),
respectively. Uninfected EPCs are generated at rate λ. Mtb converts healthy EPCs into
latently infected cells at rate η1UB, while SARS-CoV-2 infects the same type of cells at rate
η2UV. Latently Mtb-infected cells become an active producer at rate aL. Mtb particles
are created at a total production rate µ1ε2 IB. SARS-CoV-2 virions are ejected from SARS-
CoV-2-infected cells at rate µ2 IV . CTLs remove Mtb and SARS-CoV-2 infected cells at rates
γIBZ and γIV Z, respectively. The corresponding stimulation rates are ωIBZ and ωIV Z,
respectively. The compartments U, IB, IV , B, V, and Z die at rates ε1U, ε2 IB, ε3 IV , ε4B,
ε5V, and ε6Z, respectively. We assume that each compartment K diffuses with a diffusion
coefficient DK. The operator ∆ = ∂2

∂x2 is the Laplacian operator. We presume that all
parameters of model (1) are positive. The initial conditions (ICs) of system (1) are

U(x, 0) = ν1(x), L(x, 0) = ν2(x), IB(x, 0) = ν3(x), IV(x, 0) = ν4(x),

B(x, 0) = ν5(x), V(x, 0) = ν6(x), Z(x, 0) = ν7(x), x ∈ Ψ̄, (2)

where νi(x) ≥ 0, i = 1, 2, . . . , 7, are continuous functions in Ψ̄. The boundary conditions
(BCs) of (1) are

∂U
∂~r

=
∂L
∂~r

=
∂IB

∂~r
=

∂IV

∂~r
=

∂B
∂~r

=
∂V
∂~r

=
∂Z
∂~r

= 0, t > 0, x ∈ ∂Ψ, (3)

where
∂

∂~r
is the outward normal derivative on ∂Ψ. These Neumann BCs suggest that the

boundary is isolated.
In the upcoming parts of the paper and for simplicity, we consider the contraction

K(x, t) ≡ K for each compartment K in model (1).

3. Basic Properties

This section certifies that the solutions of system (1)–(3) are unique, nonnegative,
and bounded. Additionally, it computes all equilibrium points of model (1).

Let S = BUC
(
Ψ̄,R7) be the set of functions that are bounded and continuous from

Ψ̄ to R7. The positive cone S+ = BUC
(
Ψ̄,R7

+

)
⊂ S forms a partial order on S. Define

‖ f ‖S = sup
x∈Ψ̄
| f (x)|. Consequently, (S, ‖ · ‖S) is a Banach lattice [36,37].

Theorem 1. Suppose that DU = DL = DIB = DIV = DZ = D1. Then, model (1) with any ICs
(2) has a unique, nonnegative, and bounded solution on Ψ̄× [0,+∞).
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Proof. For any ν = (ν1, ν2, ν3, ν4, ν5, ν6, ν7)
T ∈ S+, we define P = (P1, P2, P3, P4, P5, P6, P7)

T :
S+ → S by 

P1(ν)(x) = λ− η1ν1(x)ν5(x)− η2ν1(x)ν6(x)− ε1ν1(x),

P2(ν)(x) = η1ν1(x)ν5(x)− aν2(x),

P3(ν)(x) = aν2(x)− γν3(x)ν7(x)− ε2ν3(x),

P4(ν)(x) = η2ν1(x)ν6(x)− γν4(x)ν7(x)− ε3ν4(x),

P5(ν)(x) = µ1ε2ν3(x)− ε4ν5(x),

P6(ν)(x) = µ2ν4(x)− ε5ν6(x),

P7(ν)(x) = ων3(x)ν7(x) + ων4(x)ν7(x)− ε6ν7(x).

We observe that P is Lipschitz on S+. Therefore, it is possible to rewrite system (1)–(3)
as the abstract DE: 

dJ
dt

= DJ + P(J), t > 0,

J0 = ν ∈ S+,

where J = (U, L, IB, IV , B, V, Z)T and DJ = (DU∆U, DL∆L, DIB ∆IB, DIV ∆IV , DB∆B,
DV∆V, DZ∆Z)T . We can show that

lim
h→0+

1
h

dist(ν + hP(ν),S+) = 0, ν ∈ S+.

Hence, for any ν ∈ S+, model (1)–(3) has a unique nonnegative mild solution for the
time interval [0, Te).

To verify the boundedness, we consider the function

Υ1(x, t) = U + L + IV .

As DU = DL = DIV = D1, then by utilizing model (1) we obtain

∂Υ1

∂t
− D1∆Υ1 =λ− ε1U − aL− γIV Z− ε3 IV

≤λ− ε1U − aL− ε3 IV

≤λ− σ1

[
U + L + IV

]
=λ− σ1Υ1,

where σ1 = min{a, ε1, ε3}. Thus, Υ1 satisfies the system
∂Υ1

∂t
− D1∆Υ1 ≤ λ− σ1Υ1,

∂Υ1

∂~r
= 0,

Υ1(x, 0) ≥ 0.

Assume that Υ̃1(t) satisfies the system
dΥ̃1(t)

dt
= λ− σ1Υ̃1(t),

Υ̃1(0) = max
x∈Ψ̄

Υ1(x, 0),

which implies that Υ̃1(t) ≤ max
{

λ

σ1
, max

x∈Ψ̄
Υ1(x, 0)

}
. In accord with the comparison princi-

ple (CP) [38], we obtain Υ1(x, t) ≤ Υ̃1(t). As a result, we have
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Υ1(x, t) ≤ max
{

λ

σ1
, max

x∈Ψ̄
Υ1(x, 0)

}
:= Q1.

This ensures that U, L, and IV are bounded. From the third equation of (1), we have

∂IB

∂t
− DIB ∆IB =aL− γIBZ− ε2 IB

≤aL− ε2 IB

≤aQ1 − ε2 IB.

We can conclude from the CP [38] that

IB ≤ max
{

aQ1

ε2
, max

x∈Ψ̄
IB(x, 0)

}
:= Q2.

Thus, IB is bounded. From the fifth equation of (1), we have

∂B
∂t
− DB∆B =µ1ε2 IB − ε4B

≤µ1ε2Q2 − ε4B.

Based on the CP [38], we obtain

B ≤ max
{

µ1ε2Q2

ε4
, max

x∈Ψ̄
B(x, 0)

}
.

Hence, B is bounded. From the sixth equation of model (1), we obtain

∂V
∂t
− DV∆V =µ2 IV − ε5V

≤µ2Q1 − ε5V.

The CP [38] implies that

V ≤ max
{

µ2Q1

ε5
, max

x∈Ψ̄
V(x, 0)

}
:= Q3.

Thus, V is bounded. Finally, we introduce the function

Υ2(x, t) = IB + IV +
γ

ω
Z.

Then, we obtain

∂Υ2

∂t
− D1∆Υ2 =aL + η2UV − ε2 IB − ε3 IV − γε6

ω
Z

≤aQ1 + η2Q1Q3 − σ2Υ2,

where σ2 = min{ε2, ε3, ε6}. By the CP, [38], we obtain

Υ2(x, t) ≤ max
{

aQ1 + η2Q1Q3

σ2
, max

x∈Ψ̄
Υ2(x, 0)

}
.

This implies that Z is bounded. The above results show that all solutions are bounded
on Ψ̄× [0, Te), and so solutions are bounded on Ψ̄× [0,+∞). This conclusion is derived
from the standard theory for semi-linear parabolic Equations [39].

Proposition 1. The conditions R0B, R0V , R1B, R1V , and σ exist such that system (1) has six
equilibrium points:



Mathematics 2023, 11, 1715 6 of 25

(i) The uninfected equilibrium E0 always exists;
(ii) The Mtb immune-free equilibrium E1 is defined whenR0B > 1;
(iii) The COVID-19 immune-free equilibrium E2 is defined ifR0V > 1;
(iv) The Mtb equilibrium with immunity E3 exists ifR1B > 1;
(v) The COVID-19 equilibrium with immunity E4 exists ifR1V > 1;

(vi) The Mtb/SARS-CoV-2 coinfection equilibrium E5 exists if
ωλη2µ2ε4

ε2ε5[ωε1ε4 + η1µ1ε2ε6]
+ 1 >

ε3

ε2
+R1B,

ωλη1µ1ε2ε5

ε3ε4[ωε1ε5 + η2µ2ε6]
+ 1 >

ε2

ε3
+R1V ,

R0V
R0B

> 1, ε2 > ε3, and σ > 1.

Proof. The equilibrium points of Equation (1) can be drawn by solving the system:

0 = λ− η1UB− η2UV − ε1U,

0 = η1UB− aL,

0 = aL− γIBZ− ε2 IB,

0 = η2UV − γIV Z− ε3 IV ,

0 = µ1ε2 IB − ε4B,

0 = µ2 IV − ε5V,

0 = ωIBZ + ωIV Z− ε6Z.

Then, we obtain the following:

(i) The uninfected equilibrium E0 = (U0, 0, 0, 0, 0, 0, 0), where U0 =
λ

ε1
> 0. Thus, E0

always exists.
(ii) The Mtb immune-free equilibrium E1 =

(
U1, L1, IB

1 , 0, B1, 0, 0
)
. The components are

given as follows:

U1 =
ε4

η1µ1
, L1 =

ε1ε4

aη1µ1

(
R0B− 1

)
, IB

1 =
ε1ε4

η1µ1ε2

(
R0B− 1

)
, B1 =

ε1

η1

(
R0B− 1

)
,

where R0B =
λη1µ1

ε1ε4
. We note that U1 is positive, whilst L1, IB

1 , and B1 are positive

whenR0B > 1. Hence, E1 exists ifR0B > 1. The parameterR0B appoints the onset of
Mtb infection with inactive CTLs.

(iii) The COVID-19 immune-free equilibrium E2 =
(
U2, 0, 0, IV

2 , 0, V2, 0
)
. Its coordinates

are written as follows:

U2 =
ε3ε5

η2µ2
, IV

2 =
ε1ε5

η2µ2

(
R0V − 1

)
, V2 =

ε1

η2

(
R0V − 1

)
,

where R0V =
λη2µ2

ε1ε3ε5
. Thus, U2 > 0, whilst IV

2 > 0 and V2 > 0 when R0V > 1.

Accordingly, E2 is defined when R0V > 1. The threshold R0V locates the start of
COVID-19 infection, where the CTL immunity is inactive.

(iv) The Mtb equilibrium with immunity E3 =
(
U3, L3, IB

3 , 0, B3, 0, Z3
)
, where

U3 =
ωλε4

ωε1ε4 + η1µ1ε2ε6
, L3 =

λη1µ1ε2ε6

a[ωε1ε4 + η1µ1ε2ε6]
, IB

3 =
ε6

ω
,

B3 =
µ1ε2ε6

ωε4
, Z3 =

ε2

γ

(
R1B − 1

)
,

whereR1B =
ωλη1µ1

ωε1ε4 + η1µ1ε2ε6
. We note that U3, L3, IB

3 and B3 are always positive,

while Z3 > 0 if R1B > 1. This implies that E3 exists if R1B > 1. The threshold R1B
sets the activation of CTLs versus Mtb-infected EPCs.
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(v) The COVID-19 equilibrium with immunity E4 =
(
U4, 0, 0, IV

4 , 0, V4, Z4
)
. The compo-

nents are given as

U4 =
ωλε5

ωε1ε5 + η2µ2ε6
, IV

4 =
ε6

ω
, V4 =

µ2ε6

ωε5
, Z4 =

ε3

γ

(
R1V − 1

)
,

where R1V =
ωλη2µ2

ε3[ωε1ε5 + η2µ2ε6]
. We see that U4, IV

4 , V4 > 0, while Z4 > 0 if

R1V > 1. Hence, E4 is defined when R1V > 1. Here, the threshold R1V defines the
stimulation status of CTL immunity versus SARS-CoV-2-infected EPCs.

(vi) The Mtb/SARS-CoV-2 coinfection equilibrium E5 =
(
U5, L5, IB

5 , IV
5 , B5, V5, Z5

)
. The

components are defined as

U5 =
(ε2 − ε3)ε5

η2µ2(σ− 1)
,

L5 =
η1µ1ε2ε3ε4ε5(ωε1ε5 + η2µ2ε6)

aω(η1µ1ε2ε5 − η2µ2ε4)
2

[
ωλη1µ1ε2ε5

ε3ε4(ωε1ε5 + η2µ2ε6)
+ 1− ε2

ε3
−R1V

]
,

IB
5 =

ε3(ωε1ε5 + η2µ2ε6)

ω(ε2 − ε3)η2µ2(σ− 1)

[
ωλη1µ1ε2ε5

ε3ε4(ωε1ε5 + η2µ2ε6)
+ 1− ε2

ε3
−R1V

]
,

IV
5 =

ε2ε5(ωε1ε4 + η1µ1ε2ε6)

ω(ε2 − ε3)η2µ2ε4(σ− 1)

[
ωλη2µ2ε4

ε2ε5(ωε1ε4 + η1µ1ε2ε6)
+ 1− ε3

ε2
−R1B

]
,

B5 =
µ1ε2ε3(ωε1ε5 + η2µ2ε6)

ω(ε2 − ε3)η2µ2ε4(σ− 1)

[
ωλη1µ1ε2ε5

ε3ε4(ωε1ε5 + η2µ2ε6)
+ 1− ε2

ε3
−R1V

]
,

V5 =
ε2(ωε1ε4 + η1µ1ε2ε6)

ω(ε2 − ε3)η2ε4(σ− 1)

[
ωλη2µ2ε4

ε2ε5(ωε1ε4 + η1µ1ε2ε6)
+ 1− ε3

ε2
−R1B

]
,

Z5 =
η1µ1ε2ε3ε5(R0V/R0B − 1)

γη2µ2ε4(σ− 1)
,

where σ =
η1µ1ε2ε5

η2µ2ε4
. We see that L5, IB

5 , and B5 are positive if
ωλη1µ1ε2ε5

ε3ε4(ωε1ε5 + η2µ2ε6)
+

1 >
ε2

ε3
+R1V , while IV

5 and V5 are positive if
ωλη2µ2ε4

ε2ε5(ωε1ε4 + η1µ1ε2ε6)
+ 1 >

ε3

ε2
+R1B,

and Z5 > 0 if
R0V
R0B

> 1. In addition, we need the two conditions ε2 > ε3 and σ > 1.

Hence, E5 exists when the above conditions are met.

4. Global Properties

This part is aimed to prove the global stability of all equilibria by adopting correct
Lyapunov functionals. The construction of these Lyapunov functionals follows the methods
presented in [40–42].

We consider a function Ξi(U, L, IB, IV , B, V, Z) and suppose that χ
′
i is the largest in-

variant subset of χi =

{
(U, L, IB, IV , B, V, Z) | dΞi

dt
= 0

}
, i = 0, 1, . . . , 5.

Theorem 2. The equilibrium E0 is globally asymptotically stable (GS) ifR0B ≤ 1 andR0V ≤ 1.

Proof. We opt a Lyapunov functional (LF)

Ξ0(t) =
∫

Ψ
Ξ̃0(x, t) dx, where

Ξ̃0 =U0

(
U
U0
− 1− ln

U
U0

)
+ L + IB + IV +

1
µ1

B +
ε3

µ2
V +

γ

ω
Z.
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By taking the partial derivative, we obtain

∂Ξ̃0

∂t
=

(
1− U0

U

)(
DU∆U + λ− η1UB− η2UV − ε1U

)
+ DL∆L + η1UB− aL + DIB ∆IB

+ aL− γIBZ− ε2 IB + DIV ∆IV + η2UV − γIV Z− ε3 IV +
1

µ1

(
DB∆B + µ1ε2 IB − ε4B

)
+

ε3

µ2

(
DV∆V + µ2 IV − ε5V

)
+

γ

ω

(
DZ∆Z + ωIBZ + ωIV Z− ε6Z

)
=

(
1− U0

U

)
(λ− ε1U) +

(
η1U0 −

ε4

µ1

)
B +

(
η2U0 −

ε3ε5

µ2

)
V − γε6

ω
Z +

(
1− U0

U

)
DU∆ U

+ DL∆L + DIB ∆IB + DIV ∆IV +
1

µ1
DB∆B +

ε3

µ2
DV∆V +

γ

ω
DZ∆Z.

The derivative
dΞ0

dt
is given by

dΞ0

dt
=− ε1

∫
Ψ

(U −U0)
2

U
dx +

ε4

µ1
(R0B − 1)

∫
Ψ

B dx +
ε3ε5

µ2
(R0V − 1)

∫
Ψ

V dx− γε6

ω

∫
Ψ

Z dx

+ DU

∫
Ψ

(
1− U0

U

)
∆U dx + DL

∫
Ψ

∆L dx + DIB

∫
Ψ

∆IB dx + DIV

∫
Ψ

∆IV dx

+
1

µ1
DB

∫
Ψ

∆B dx +
ε3

µ2
DV

∫
Ψ

∆V dx +
γ

ω
DZ

∫
Ψ

∆Z dx.

(4)

Based on the Divergence theorem and Neumann BCs, we obtain

0 =
∫

∂Ψ
∇Φ ·~r dx =

∫
Ψ

div(∇Φ) dx =
∫

Ψ
∆Φ dx,

0 =
∫

∂Ψ

1
Φ
∇Φ ·~r dx =

∫
Ψ

div(
1
Φ
∇Φ) dx =

∫
Ψ

[
∆Φ
Φ
− ‖OΦ‖2

Φ2

]
dx, for Φ ∈ {U, L, IB, IV , B, V, Z}.

(5)

As a result, the derivative in (4) is altered to

dΞ0

dt
=− ε1

∫
Ψ

(U −U0)
2

U
dx +

ε4

µ1
(R0B − 1)

∫
Ψ

B dx +
ε3ε5

µ2
(R0V − 1)

∫
Ψ

V dx− γε6

ω

∫
Ψ

Z dx

− DUU0

∫
Ψ

‖OU‖2

U2 dx.

We see that
dΞ0

dt
≤ 0 if R0B ≤ 1 and R0V ≤ 1. Furthermore,

dΞ0

dt
= 0 if U = U0

and B = V = Z = 0. The solutions approach χ
′
0 that has B = V = 0. Thus,

∂B
∂t

= 0 and
∂V
∂t

= 0. According to the fifth and sixth equations of system (1), we acquire IB = IV = 0.

Therefore,
∂IB

∂t
= 0 and the third equation of (1) gives L = 0. Consequently, χ

′
0 = {E0} and

in compliance with LaSalle’s invariance principle (LIP) [43], the point E0 is GS ifR0B ≤ 1
andR0V ≤ 1.

Theorem 3. LetR0B > 1. Then, the equilibrium E1 is GS if
R0V
R0B

≤ 1 withR1B ≤ 1.

Proof. We adopt an LF

Ξ1(t) =
∫

Ψ
Ξ̃1(x, t) dx, where

Ξ̃1 =U1

(
U
U1
− 1− ln

U
U1

)
+ L1

(
L
L1
− 1− ln

L
L1

)
+ IB

1

(
IB

IB
1
− 1− ln

IB

IB
1

)
+ IV

+
1

µ1
B1

(
B
B1
− 1− ln

B
B1

)
+

ε3

µ2
V +

γ

ω
Z.
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By calculating the partial derivative, we obtain

∂Ξ̃1

∂t
=

(
1− U1

U

)(
DU∆U + λ− η1UB− η2UV − ε1U

)
+

(
1− L1

L

)(
DL∆L + η1UB− aL

)
+

(
1−

IB
1

IB

)(
DIB ∆IB + aL− γIBZ− ε2 IB

)
+ DIV ∆IV + η2UV − γIV Z− ε3 IV

+
1

µ1

(
1− B1

B

)(
DB∆B + µ1ε2 IB − ε4B

)
+

ε3

µ2

(
DV∆V + µ2 IV − ε5V

)
+

γ

ω

(
DZ∆Z + ωIBZ + ωIV Z− ε6Z

)
.

(6)

By employing the equilibrium conditions at E1, we obtain

λ = η1U1B1 + ε1U1,

η1U1B1 = aL1,

aL1 = ε2 IB
1 ,

ε2 IB
1 =

ε4

µ1
B1.

Hence, the derivative in (6) can be simplified to

∂Ξ̃1

∂t
=

(
1− U1

U

)
(ε1U1 − ε1U) + η1U1B1

(
4− U1

U
− UL1B

U1LB1
−

LIB
1

L1 IB −
IBB1

IB
1 B

)
+

(
η2U1 −

ε3ε5

µ2

)
V

+
(

γIB
1 −

γε6

ω

)
Z +

(
1− U1

U

)
DU∆U +

(
1− L1

L

)
DL∆L +

(
1−

IB
1

IB

)
DIB ∆IB

+ DIV ∆IV +
1

µ1

(
1− B1

B

)
DB∆B +

ε3

µ2
DV∆V +

γ

ω
DZ∆Z.

By using (5),
dΞ1

dt
is given by

dΞ1

dt
=− ε1

∫
Ψ

(U −U1)
2

U
dx + η1U1B1

∫
Ψ

(
4− U1

U
− UL1B

U1LB1
−

LIB
1

L1 IB −
IBB1

IB
1 B

)
dx +

ε3ε5

µ2

(
R0V
R0B

− 1
) ∫

Ψ
V dx

+
γ(ωε1ε4 + η1µ1ε2ε6)

ωη1µ1ε2
(R1B − 1)

∫
Ψ

Z dx− DUU1

∫
Ψ

‖OU‖2

U2 dx− DLL1

∫
Ψ

‖OL‖2

L2 dx

− DIB IB
1

∫
Ψ

‖OIB‖2

IB2 dx− DBB1

µ1

∫
Ψ

‖OB‖2

B2 dx.

In this situation,
dΞ1

dt
≤ 0 if

R0V
R0B

≤ 1 and R1B ≤ 1. In addition,
dΞ1

dt
= 0 when

U = U1, L = L1, IB = IB
1 , B = B1, while V = Z = 0. The solutions tend to χ

′
1 with V = 0

and therefore
∂V
∂t

= 0. The sixth equation of (1) yields IV = 0. Hence, χ
′
1 = {E1} and E1 is

GS whenR0B > 1,
R0V
R0B

≤ 1 andR1B ≤ 1 according to LIP [43].

Theorem 4. LetR0V > 1. The equilibrium E2 is GS if
R0B
R0V

≤ 1 andR1V ≤ 1.

Proof. We pick an LF

Ξ2(t) =
∫

Ψ
Ξ̃2(x, t) dx, where
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Ξ̃2 =U2

(
U
U2
− 1− ln

U
U2

)
+ L + IB + IV

2

(
IV

IV
2
− 1− ln

IV

IV
2

)
+

1
µ1

B +
ε3

µ2
V2

(
V
V2
− 1− ln

V
V2

)
+

γ

ω
Z.

Then,
∂Ξ̃2

∂t
is computed as

∂Ξ̃2

∂t
=

(
1− U2

U

)(
DU∆U + λ− η1UB− η2UV − ε1U

)
+ DL∆L + η1UB− aL + DIB ∆IB + aL

− γIBZ− ε2 IB +

(
1−

IV
2

IV

)(
DIV ∆IV + η2UV − γIV Z− ε3 IV

)
+

1
µ1

(
DB∆B + µ1ε2 IB − ε4B

)
+

ε3

µ2

(
1− V2

V

)(
DV∆V + µ2 IV − ε5V

)
+

γ

ω

(
DZ∆Z + ωIBZ + ωIV Z− ε6Z

)
.

(7)

By considering the equilibrium conditions at E2
λ = η2U2V2 + ε1U2,

η2U2V2 = ε3 IV
2 ,

ε3 IV
2 =

ε3ε5

µ2
V2,

the derivative in (7) becomes

∂Ξ̃2

∂t
=

(
1− U2

U

)
(ε1U2 − ε1U) + η2U2V2

(
3− U2

U
−

UIV
2 V

U2 IVV2
− IVV2

IV
2 V

)
+

(
η1U2 −

ε4

µ1

)
B

+
(

γIV
2 −

γε6

ω

)
Z +

(
1− U2

U

)
DU∆U + DL∆L + DIB ∆IB +

(
1−

IV
2

IV

)
DIV ∆IV

+
1

µ1
DB∆B +

ε3

µ2

(
1− V2

V

)
DV∆V +

γ

ω
DZ∆Z.

By using (5), the derivative of Ξ2(t) is expressed as

dΞ2

dt
=− ε1

∫
Ψ

(U −U2)
2

U
dx + η2U2V2

∫
Ψ

(
3− U2

U
−

UIV
2 V

U2 IVV2
− IVV2

IV
2 V

)
dx +

ε4

µ1

(
R0B
R0V

− 1
) ∫

Ψ
B dx

+
γ(ωε1ε5 + η2µ2ε6)

ωη2µ2
(R1V − 1)

∫
Ψ

Z dx− DUU2

∫
Ψ

‖OU‖2

U2 dx

− DIV IV
2

∫
Ψ

‖OIV‖2

IV2 dx− DVV2ε3

µ2

∫
Ψ

‖OV‖2

V2 dx.

We note that
dΞ2

dt
≤ 0 if

R0B
R0V

≤ 1, and R1V ≤ 1. Moreover,
dΞ2

dt
= 0 when U = U2,

IV = IV
2 , V = V2 and B = Z = 0. The solutions approach χ

′
2, which has an element with

B = 0 and hence
∂B
∂t

= 0. From the fifth equation of (1), we have IB = 0. Consequently,

∂IB

∂t
= 0 and thus L = 0 according to the third equation of (1). Thereupon, χ

′
2 = {E2} and

E2 is GS whenR0V > 1,
R0B
R0V

≤ 1 andR1V ≤ 1 as attributed to LIP [43].

Theorem 5. Assume thatR1B > 1. Then, the equilibrium E3 is GS if
λωη2µ2ε4

ε2ε5[ωε1ε4 + η1µ1ε2ε6]
+

1 ≤ ε3

ε2
+R1B.
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Proof. We pick an LF

Ξ3(t) =
∫

Ψ
Ξ̃3(x, t) dx, where

Ξ̃3 =U3

(
U
U3
− 1− ln

U
U3

)
+ L3

(
L
L3
− 1− ln

L
L3

)
+ IB

3

(
IB

IB
3
− 1− ln

IB

IB
3

)
+ IV

+

(
1

µ1
+

γZ3

µ1ε2

)
B3

(
B
B3
− 1− ln

B
B3

)
+

(
ε3

µ2
+

γZ3

µ2

)
V +

γ

ω
Z3

(
Z
Z3
− 1− ln

Z
Z3

)
.

Then,
∂Ξ̃3

∂t
is written as

∂Ξ̃3

∂t
=

(
1− U3

U

)(
DU∆U + λ− η1UB− η2UV − ε1U

)
+

(
1− L3

L

)(
DL∆L + η1UB− aL

)
+

(
1−

IB
3

IB

)(
DIB ∆IB + aL− γIBZ− ε2 IB

)
+ DIV ∆IV + η2UV − γIV Z− ε3 IV

+

(
1

µ1
+

γZ3

µ1ε2

)(
1− B3

B

)(
DB∆B + µ1ε2 IB − ε4B

)
+

(
ε3

µ2
+

γZ3

µ2

)(
DV∆V + µ2 IV − ε5V

)
+

γ

ω

(
1− Z3

Z

)(
DZ∆Z + ωIBZ + ωIV Z− ε6Z

)
.

(8)

By utilizing the equilibrium requirements at E3 to add the terms of Equation (8)

λ = η1U3B3 + ε1U3,

η1U3B3 = aL3,

aL3 = γIB
3 Z3 + ε2 IB

3 ,

ε2 IB
3 =

ε4

µ1
B3,

γIB
3 Z3 =

γε6

ω
Z3,

we obtain

∂Ξ̃3

∂t
=

(
1− U3

U

)
(ε1U3 − ε1U) + η1U3B3

(
4− U3

U
− UL3B

U3LB3
−

LIB
3

L3 IB −
IBB3

IB
3 B

)

+

(
η2U3 −

ε3ε5

µ2
− γε5Z3

µ2

)
V +

(
1− U3

U

)
DU∆U +

(
1− L3

L

)
DL∆L +

(
1−

IB
3

IB

)
DIB ∆IB

+ DIV ∆IV +

(
1

µ1
+

γZ3

µ1ε2

)(
1− B3

B

)
DB∆B +

(
ε3

µ2
+

γZ3

µ2

)
DV∆ V

+
γ

ω

(
1− Z3

Z

)
DZ∆Z.

By using (5), the derivative of Ξ3(t) is presented as

dΞ3

dt
=− ε1

∫
Ψ

(U −U3)
2

U
dx + η1U3B3

∫
Ψ

(
4− U3

U
− UL3B

U3LB3
−

LIB
3

L3 IB −
IBB3

IB
3 B

)
dx

+
ε2ε5

µ2

(
λωη2µ2ε4

ε2ε5[ωε1ε4 + η1µ1ε2ε6]
+ 1− ε3

ε2
−R1B

) ∫
Ψ

V dx− DUU3

∫
Ψ

‖OU‖2

U2 dx

− DLL3

∫
Ψ

‖OL‖2

L2 dx− DIB IB
3

∫
Ψ

‖OIB‖2

IB2 dx− DBB3

(
1

µ1
+

γZ3

µ1ε2

) ∫
Ψ

‖OB‖2

B2 dx

− γDZZ3

ω

∫
Ψ

‖OZ‖2

Z2 dx.
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We see that
dΞ3

dt
≤ 0 if

λωη2µ2ε4

ε2ε5[ωε1ε4 + η1µ1ε2ε6]
+ 1 ≤ ε3

ε2
+R1B. In addition, it is

possible to show that
dΞ3

dt
= 0 when (U, L, IB, IV , B, V, Z) = (U3, L3, IB

3 , 0, B3, 0, Z3). Then,

χ
′
3 = {E3} and in reference to LIP [43], E3 is GS whenR1B > 1 and

λωη2µ2ε4

ε2ε5[ωε1ε4 + η1µ1ε2ε6]
+

1 ≤ ε3

ε2
+R1B.

Theorem 6. LetR1V > 1. Thereupon, the equilibrium E4 is GS if
λωη1µ1ε2ε5

ε3ε4[ωε1ε5 + η2µ2ε6]
+ 1 ≤

ε2

ε3
+R1V .

Proof. We nominate an LF

Ξ4(t) =
∫

Ψ
Ξ̃4(x, t) dx, where

Ξ̃4 =U4

(
U
U4
− 1− ln

U
U4

)
+ L + IB + IV

4

(
IV

IV
4
− 1− ln

IV

IV
4

)
+

(
1

µ1
+

γZ4

µ1ε2

)
B

+

(
ε3

µ2
+

γZ4

µ2

)
V4

(
V
V4
− 1− ln

V
V4

)
+

γ

ω
Z4

(
Z
Z4
− 1− ln

Z
Z4

)
.

By computing the partial derivative, we obtain

∂Ξ4

∂t
=

(
1− U4

U

)(
DU∆U + λ− η1UB− η2UV − ε1U

)
+ DL∆L + η1UB− aL + DIB ∆IB + aL

− γIBZ− ε2 IB +

(
1−

IV
4

IV

)(
DIV ∆IV + η2UV − γIV Z− ε3 IV

)
+

(
1

µ1
+

γZ4

µ1ε2

)(
DB∆B + µ1ε2 IB − ε4B

)
+

(
ε3

µ2
+

γZ4

µ2

)(
1− V4

V

)(
DV∆V + µ2 IV − ε5V

)
+

γ

ω

(
1− Z4

Z

)(
DZ∆Z + ωIBZ + ωIV Z− ε6Z

)
.

(9)

By considering the equilibrium conditions at E4

λ = η2U4V4 + ε1U4,

η2U4V4 = γIV
4 Z4 + ε3 IV

4 ,

ε3 IV
4 =

ε3ε5

µ2
V4,

γIV
4 Z4 =

γε6

ω
Z4,

the derivative in (9) is transformed to

∂Ξ4

∂t
=

(
1− U4

U

)
(ε1U4 − ε1U) + η2U4V4

(
3− U4

U
−

UIV
4 V

U4 IVV4
− IVV4

IV
4 V

)
+

(
η1U4 −

ε4

µ1
− γε4Z4

µ1ε2

)
B

+

(
1− U4

U

)
DU∆U + DL∆L + DIB ∆IB +

(
1−

IV
4

IV

)
DIV ∆IV +

(
1

µ1
+

γZ4

µ1ε2

)
DB∆ B

+

(
ε3

µ2
+

γZ4

µ2

)(
1− V4

V

)
DV∆V +

γ

ω

(
1− Z4

Z

)
DZ∆Z.

By using (5), the derivative of Ξ4(t) has the form
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dΞ4

dt
=− ε1

∫
Ψ

(U −U4)
2

U
dx + η2U4V4

∫
Ψ

(
3− U4

U
−

UIV
4 V

U4 IVV4
− IVV4

IV
4 V

)
dx

+
ε3ε4

µ1ε2

(
λωη1µ1ε2ε5

ε3ε4[ωε1ε5 + η2µ2ε6]
+ 1− ε2

ε3
−R1V

) ∫
Ψ

B dx− DUU4

∫
Ψ

‖OU‖2

U2 dx

− DIV IV
4

∫
Ψ

‖OIV‖2

IV 2 dx− DVV4

(
ε3

µ2
+

γZ4

µ2

) ∫
Ψ

‖OV‖2

V2 dx− γDZZ4

ω

∫
Ψ

‖OZ‖2

Z2 dx.

It follows that
dΞ4

dt
≤ 0 if

λωη1µ1ε2ε5

ε3ε4[ωε1ε5 + η2µ2ε6]
+ 1 ≤ ε2

ε3
+R1V . In addition,

dΞ4

dt
= 0

when (U, L, IB, IV , B, V, Z) = (U4, 0, 0, IV
4 , 0, V4, Z4). Hence, χ

′
4 = {E4} and E4 is GS if

R1V > 1 and
λωη1µ1ε2ε5

ε3ε4[ωε1ε5 + η2µ2ε6]
+ 1 ≤ ε2

ε3
+R1V based on LIP [43].

Theorem 7. Suppose that
λωη2µ2ε4

ε2ε5[ωε1ε4 + η1µ1ε2ε6]
+ 1 >

ε3

ε2
+R1B,

λωη1µ1ε2ε5

ε3ε4[ωε1ε5 + η2µ2ε6]
+

1 >
ε2

ε3
+R1V ,

R0V
R0B

> 1, ε2 > ε3, and σ > 1. Then, the equilibrium E5 is GS.

Proof. We start with an LF

Ξ5(t) =
∫

Ψ
Ξ̃5(x, t) dx, where

Ξ̃5 =U5

(
U
U5
− 1− ln

U
U5

)
+ L5

(
L
L5
− 1− ln

L
L5

)
+ IB

5

(
IB

IB
5
− 1− ln

IB

IB
5

)
+ IV

5

(
IV

IV
5
− 1− ln

IV

IV
5

)

+

(
1

µ1
+

γZ5
µ1ε2

)
B5

(
B
B5
− 1− ln

B
B5

)
+

(
ε3
µ2

+
γZ5
µ2

)
V5

(
V
V5
− 1− ln

V
V5

)
+

γ

ω
Z5

(
Z
Z5
− 1− ln

Z
Z5

)
.

By computing the partial derivative, we obtain

∂Ξ5
∂t

=

(
1− U5

U

)(
DU∆U + λ− η1UB− η2UV − ε1U

)
+

(
1− L5

L

)(
DL∆L + η1UB− aL

)
+

(
1−

IB
5

IB

)(
DIB ∆IB + aL− γIBZ− ε2 IB

)
+

(
1−

IV
5

IV

)(
DIV ∆IV + η2UV − γIV Z− ε3 IV

)
+

(
1

µ1
+

γZ5
µ1ε2

)(
1− B5

B

)(
DB∆B + µ1ε2 IB − ε4B

)
+

(
ε3
µ2

+
γZ5
µ2

)(
1− V5

V

)(
DV∆V + µ2 IV − ε5V

)
+

γ

ω

(
1− Z5

Z

)(
DZ∆Z + ωIBZ + ωIV Z− ε6Z

)
.

At equilibrium, the following conditions are satisfied:

λ = η1U5B5 + η2U5V5 + ε1U5,

η1U5B5 = aL5,

aL5 = γIB
5 Z5 + ε2 IB

5 ,

η2U5V5 = γIV
5 Z5 + ε3 IV

5 ,

ε2 IB
5 =

ε4
µ1

B5,

ε3 IV
5 =

ε3ε5
µ2

V5,

γIB
5 Z5 + γIV

5 Z5 =
γε6
ω

Z5.
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By using the above conditions with (5), the time derivative of Ξ5(t) is written as

dΞ5

dt
=− ε1

∫
Ψ

(U −U5)
2

U
dx + η1U5B5

∫
Ψ

(
4− U5

U
− UL5B

U5LB5
−

LIB
5

L5 IB −
IBB5

IB
5 B

)
dx

+ η2U5V5

∫
Ψ

(
3− U5

U
−

UIV
5 V

U5 IVV5
− IVV5

IV
5 V

)
dx− DUU5

∫
Ψ

‖OU‖2

U2 dx− DLL5

∫
Ψ

‖OL‖2

L2 dx

− DIB IB
5

∫
Ψ

‖OIB‖2

IB2 dx− DIV IV
5

∫
Ψ

‖OIV‖2

IV2 dx− DBB5

(
1

µ1
+

γZ5

µ1ε2

) ∫
Ψ

‖OB‖2

B2 dx

− DVV5

(
ε3

µ2
+

γZ5

µ2

) ∫
Ψ

‖OV‖2

V2 dx− γDZZ5

ω

∫
Ψ

‖OZ‖2

Z2 dx.

Thus,
dΞ5

dt
≤ 0 and

dΞ5

dt
= 0 when (U, L, IB, IV , B, V, Z) = (U5, L5, IB

5 , IV
5 , B5, V5, Z5).

This implies that χ
′
5 = {E5} and E5 is GS when it exists in regard to LIP [43].

5. Numerical Simulations

In this part, we implement numerical simulations using MATLB PDE solver (pdepe)
to validate the theoretical observations attained in the previous parts. This solver solves
initial boundary value problems for systems of PDEs in one spatial variable x and time t.
The domain of x is provided as Ψ = [0, 2] with step sizes ∆x = 0.02 and ∆t = 0.1. The ICs
of system (1) are determined as the following:

U(x, 0) = 105(1 + 0.2 cos2(πx)), L(x, 0) = 104(1 + 0.2 cos2(πx)), IB(x, 0) = 103(1 + 0.2 cos2(πx)),

IV(x, 0) = 103(1 + 0.2 cos2(πx)), B(x, 0) = 500(1 + 0.2 cos2(πx)), V(x, 0) = 500(1 + 0.2 cos2(πx)),

Z(x, 0) = 0.1(1 + 0.2 cos2(πx)).

To present the global stability of the equilibria of system (1), the results are divided
into six cases. In each case, we change the values of η1, η2, and ω while keeping all other
values as shown in Table 1. These cases are stated as follows:

(i) We choose η1 = 2.5× 10−9, η2 = 1× 10−11, and ω = 8× 10−3. This gives R0B =

0.1923 < 1 andR0V = 0.4667 < 1. This indicates that E0 =
(
4× 105, 0, 0, 0, 0, 0, 0

)
is

GS (Figure 1), which comes to an agreement with Theorem 2. This case simulates the
condition of an individual with no Mtb and SARS-CoV-2 infections.

(ii) We select η1 = 2.5 × 10−7, η2 = 1 × 10−11, and ω = 8 × 10−7 to obtain R0B =

19.2308 > 1,
R0V
R0B

= 0.0243 < 1, and R1B = 0.0638 < 1. The result agrees with The-

orem 3 that the equilibrium E1 = (20,800, 9480, 7584, 0, 729,231, 0, 0) is GS (Figure 2).
In this situation, the patient has Mtb monoinfection and the CTL immunity is inefficient.

(iii) We take η1 = 2.5 × 10−9, η2 = 1 × 10−9, and ω = 1 × 10−8. We obtain R0V =

46.6667 > 1,
R0B
R0V

= 0.0041 < 1, andR1V = 0.04 < 1. These conditions implicate the

global stability of E2 =
(
8571.43, 0, 0, 391,429, 0, 4.56667× 108, 0

)
, which harmonizes

with Theorem 4 (Figure 3). In this case, the patient has SARS-CoV-2 monoinfection in
the absence of CTLs.

(iv) We choose η1 = 2.5× 10−7, η2 = 1× 10−11, and ω = 1× 10−4. This gives R1B =

5.6497 > 1 and
λωη2µ2ε4

ε2ε5[ωε1ε4 + η1µ1ε2ε6]
+ 1 = 1.0027 < 5.6697 =

ε3

ε2
+R1B. This

implies that the equilibrium E3 = (117,514, 7062.15, 1000, 0, 96,153.8, 0, 4.64972) is GS
(Figure 4), which comes to an agreement with Theorem 5. Here, the CTL immunity
is turned on to exterminate the Mtb infection. Consequently, the densities of Mtb-
infected cells and Mtb particles decrease, whilst the density of healthy cells increases.
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(v) We consider η1 = 2.5× 10−9, η2 = 1× 10−9, and ω = 1× 10−6. Thus, we obtain

R1V = 3.6842 > 1 and
λωη1µ1ε2ε5

ε3ε4[ωε1ε5 + η2µ2ε6]
+ 1 = 1.7591 < 53.6842 =

ε2

ε3
+R1V .

In favor of Theorem 6, E4 =
(
31,578.9, 0, 0, 1× 105, 0, 1.16667× 108, 0.05368

)
is GS

(Figure 5). This case mimics the condition of a COVID-19 patient with active CTLs
which work on removing SARS-CoV-2-infected cells.

(vi) We choose η1 = 2× 10−7, η2 = 1× 10−9, and ω = 2× 10−6. These values give
λωη2µ2ε4

ε2ε5[ωε1ε4 + η1µ1ε2ε6]
+ 1 = 1.0096 > 0.1784 =

ε3

ε2
+R1B,

λωη1µ1ε2ε5

ε3ε4[ωε1ε5 + η2µ2ε6]
+

1 = 113.5704 > 56.8293 =
ε2

ε3
+R1V ,

R0V
R0B

= 3.0333 > 1, and σ = 16.4835 > 1.

This implicates the global stability of E5 = (27,125.6, 5712.6, 4380.44, 45,619.6, 421,196,
5.322× 107, 0.043), which is compatible with Theorem 7 (Figure 6). In this situation,
the person has SARS-CoV-2/Mtb coinfection with robust CTL immunity.

5.1. The Movement from the Monoinfection to the Coinfection State

From the results above, we see that increasing the infection rate of EPCs by SARS-
CoV-2, η2, forces the system to move from Mtb monoinfection state to SARS-CoV-2/Mtb
coinfection state. In other words, E3 loses its stability and E5 becomes GS. Similarly,
increasing the infection rate by Mtb, η1, pushes the system from SARS-CoV-2 monoinfection
state to the coinfection state. In this case, E4 loses its stability and E5 becomes GS. Therefore,
the values of these parameters need to be controlled as they have a powerful effect in
converting the system from the monoinfection zone to the coinfection zone.

5.2. The Impact of the Diffusion Coefficients On Coinfection

To test the impact of the diffusion coefficients in model (1) on the behavior of the solu-
tions, we change the values of the coefficients considered in case (vi) to DU = DL = DIB =
DIV = DB = DV = DZ = 1× 10−5. We observe from Figure 7 that the effect of this change
appears at the initial times, while the final solutions are not affected. Thus, the diffusion
coefficients do not affect the robustness of the global stability of the solutions. Therefore,
the impact of these coefficients should be monitored at the beginning of coinfection as it
affects the distribution of particles in space.

Table 1. Parameters’ values of system (1).

Parameter Value Source

λ 4× 103 [44]
η1 Varied –
η2 Varied –
a 0.4 [24]
γ 0.5 [23]
µ1 100 [25]
µ2 700 [44]
ω Varied –
ε1 0.01 [44]
ε2 0.5 [25]
ε3 0.01 [44]
ε4 0.52 [27]
ε5 0.6 [16]
ε6 0.1 [44]
DU 0.1 Assumed
DL 0.1 Assumed
DIB 0.1 Assumed
DIV 0.1 Assumed
DB 0.2 Assumed
DV 0.2 Assumed
DZ 0.1 Assumed



Mathematics 2023, 11, 1715 16 of 25

(a) Uninfected EPCs (b) Latently Mtb-infected EPCs

(c) Productively Mtb-infected EPCs (d) SARS-CoV-2-infected EPCs

(e) Mtb particles (f) SARS-CoV-2 particles

(g) CTLs
Figure 1. The numerical results of system (1) for η1 = 2.5× 10−9, η2 = 1× 10−11, and ω = 8× 10−3.
The uninfected equilibrium E0 =

(
4× 105, 0, 0, 0, 0, 0, 0

)
is GS.
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(a) Uninfected EPCs (b) Latently Mtb-infected EPCs

(c) Productively Mtb-infected EPCs (d) SARS-CoV-2-infected EPCs

(e) Mtb particles (f) SARS-CoV-2 particles

(g) CTLs
Figure 2. The numerical results of system (1) for η1 = 2.5× 10−7, η2 = 1× 10−11, and ω = 8× 10−7.
The equilibrium E1 = (20,800, 9480, 7584, 0, 729,231, 0, 0) is GS.
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(a) Uninfected EPCs (b) Latently Mtb-infected EPCs

(c) Productively Mtb-infected EPCs (d) SARS-CoV-2-infected EPCs

(e) Mtb particles (f) SARS-CoV-2 particles

(g) CTLs
Figure 3. The numerical results of system (1) for η1 = 2.5× 10−9, η2 = 1× 10−9, and ω = 1× 10−8.
The equilibrium E2 =

(
8571.43, 0, 0, 391,429, 0, 4.56667× 108, 0

)
is GS.
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(a) Uninfected EPCs (b) Latently Mtb-infected EPCs

(c) Productively Mtb-infected EPCs (d) SARS-CoV-2-infected EPCs

(e) Mtb particles (f) SARS-CoV-2 particles

(g) CTLs
Figure 4. The numerical results of system (1) for η1 = 2.5× 10−7, η2 = 1× 10−11, and ω = 1× 10−4.
The equilibrium E3 = (117,514, 7062.15, 1000, 0, 96,153.8, 0, 4.64972) is GS.



Mathematics 2023, 11, 1715 20 of 25

(a) Uninfected EPCs (b) Latently Mtb-infected EPCs

(c) Productively Mtb-infected EPCs (d) SARS-CoV-2-infected EPCs

(e) Mtb particles (f) SARS-CoV-2 particles

(g) CTLs
Figure 5. The numerical results of system (1) for η1 = 2.5× 10−9, η2 = 1× 10−9, and ω = 1× 10−6.
The equilibrium E4 =

(
31,578.9, 0, 0, 1× 105, 0, 1.16667× 108, 0.0536842

)
is GS.
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(a) Uninfected EPCs (b) Latently Mtb-infected EPCs

(c) Productively Mtb-infected EPCs (d) SARS-CoV-2-infected EPCs

(e) Mtb particles (f) SARS-CoV-2 particles

(g) CTLs
Figure 6. The numerical results of system (1) for η1 = 2× 10−7, η2 = 1× 10−9, and ω = 2× 10−6.
The equilibrium E5 =

(
27,125.6, 5712.6, 4380.44, 45,619.6, 421,196, 5.322× 107, 0.043

)
is GS.
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(a) Uninfected EPCs (b) Latently Mtb-infected EPCs

(c) Productively Mtb-infected EPCs (d) SARS-CoV-2-infected EPCs

(e) Mtb particles (f) SARS-CoV-2 particles

(g) CTLs
Figure 7. The impact of changing the diffusion coefficients in case (vi) to 1 × 10−5. The initial
distributions of the solutions are affected, while the global stability is not affected.
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6. Conclusions and Future Works

There is an emerging evidence that the COVID-19 patients who have Mtb are more
likely to develop acute disease and die [2,3,8]. Therefore, understanding Mtb/SARS-CoV-2
coinfection is critical to treat this group of patients. Here, we introduced a reaction–diffusion
within-host Mtb/SARS-CoV-2 model. It counts the connections between uninfected EPCs, la-
tently Mtb-infected EPCs, productively Mtb-infected EPCs, SARS-CoV-2-infected EPCs, Mtb
particles, SARS-CoV-2 virions, and CTLs. It owns six equilibrium points as the following:

(i) The uninfected equilibrium E0 constantly exists. It is GS if R0B ≤ 1 and R0V ≤ 1.
This equilibrium imitates the status of a healthy individual with negative SARS-CoV-2
and Mtb tests.

(ii) The Mtb immune-free equilibrium E1 is marked ifR0B > 1, while it is GS if
R0V
R0B

≤ 1

and R1B ≤ 1. The patient here suffers from Mtb monoinfection, where the CTL
immunity has not yet been activated.

(iii) The COVID-19 immune-free equilibrium E2 occurs whenR0V > 1. It is GS if
R0B
R0V

≤ 1

andR1V ≤ 1. Here, the patient has SARS-CoV-2 monoinfection with inefficient CTLs.
(iv) The Mtb equilibrium with immunity E3 exists if R1B > 1, while it is GS if

λωη2µ2ε4

ε2ε5[ωε1ε4 + η1µ1ε2ε6]
+ 1 ≤ ε3

ε2
+R1B. In this condition, the CTL immunity is

stimulated to eliminate Mtb infection.
(v) The COVID-19 equilibrium with immunity E4 exists if R1V > 1, and it is GS if

λωη1µ1ε2ε5

ε3ε4[ωε1ε5 + η2µ2ε6]
+ 1 ≤ ε2

ε3
+R1V . This simulates the case of an individual with

COVID-19 infection and active CTL immunity.
(vi) The Mtb/SARS-CoV-2 coinfection equilibrium E5 exists and it is GS if

ωλη2µ2ε4

ε2ε5[ωε1ε4 + η1µ1ε2ε6]
+ 1 >

ε3

ε2
+ R1B,

ωλη1µ1ε2ε5

ε3ε4[ωε1ε5 + η2µ2ε6]
+ 1 >

ε2

ε3
+ R1V ,

R0V
R0B

> 1, ε2 > ε3, and σ > 1. Here, the patient with a single infection becomes

infected with both SARS-CoV-2 and Mtb.

We found that the numerical computations are quite congruous with the theoretical
contributions. The equilibrium points reflect three states: the healthy state, the monoin-
fection state, and the coinfection state. The threshold parameters defined in Proposition 1
determine the locomotion between these states. Thus, the values of parameters in model (1)
should be selected with caution. In addition, the global stability of the solutions of model (1)
is robust against the values of the diffusion coefficients. However, the initial distributions
of particles are affected by the selection of these values. Thus, it should be monitored as it
may affect the initial status of the coinfected patients. In fact, Mtb/SARS-CoV-2 coinfection
is a disease that needs to be further investigated and requires more awareness in high-TB
burden regions such as India, Indonesia, and China [2]. Understanding the dynamics
of coinfection will help develop new treatments, find better ways to treat coinfected pa-
tients, or recommend preventive measures for coinfected patients. The main limitation
of this work is that we did not acquire real data to estimate the values of parameters
in system (1). We gathered the values from SARS-CoV-2 monoinfection models or Mtb
monoinfection models. Furthermore, we proved the boundedness only for the case when
DU = DL = DIB = DIV = DZ. In addition, we assumed that CTLs kill infected cells at the
same rate constant. Therefore, this work could be polished by (i) utilizing real data to obtain
an estimation of the values of parameters in system (1) when the data on coinfection become
available, (ii) proving the boundedness for different diffusion coefficients, (iii) analyzing
the model with different killing rates of CTLs, (iv) counting the time delays inherent in the
latent stage or other responses, (v) adding the role of antibodies in eliminating SARS-CoV-2
or Mtb particles, (vi) using fractional derivatives to study model (1) [45,46], (vii) performing
a sensitivity analysis for the threshold parameters to identify the most sensitive parameters
in the model [47], (viii) considering mutations that can generate more aggressive variants of
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SARS-CoV-2 and their effect on coinfection dynamics [48], and (ix) developing a multiscale
model to connect within-host dynamics with between-hosts dynamics and gain a better
comprehension of the coinfection mechanism.
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