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Abstract: In this paper, we establish a random epidemic model with double vaccination and spon-
taneous variation of the virus. Firstly, we prove the global existence and uniqueness of positive
solutions for a stochastic epidemic model. Secondly, we prove the threshold Rjj can be used to control
the stochastic dynamics of the model. If RS < 0, the disease will be extinct with probability 1; whereas
if R > 0, the disease can almost certainly continue to exist, and there is a unique stable distribution.
Finally, we give some numerical examples to verify our theoretical results. Most of the existing
studies prove the stochastic dynamics of the model by constructing Lyapunov functions. However,
the construction of a Lyapunov function of higher-order models is extremely complex, so this method
is not applicable to all models. In this paper, we use the definition method suitable for more models
to prove the stationary distribution. Most of the stochastic infectious disease models studied now are
second-order or third-order, and cannot accurately describe infectious diseases. In order to solve this
kind of problem, this paper adopts a higher price five-order model.

Keywords: epidemic model; vaccine inoculation; extinction; stationary distribution

MSC: 92-10; 92B05

1. Introduction

Infectious diseases have become the greatest enemy of human health. When an
infectious disease appears and prevails in an area, the primary task is to make every effort to
prevent the spread of the disease. Vaccination is one of the important preventive measures.
Through vaccination, smallpox was eliminated in the world at the end of the 1970s. This
is a great victory for human beings in the fight against infectious diseases, an important
milestone in the history of preventive medicine, and a great achievement of vaccination
for human beings. In mathematical epidemiology, the control and eradication of infectious
diseases are urgent problems, and have greatly attracted the interest of researchers in
many fields. Now scholars have proposed and extensively discussed various types of
optimizing models and their influencing factors, such as vaccination, time delay, impulse,
media reports, etc. [1-4]. However, as a disease progresses, a virus can mutate as it spreads,
allowing the disease to spiral out of control. Cai et al. analyzed the stability of the infectious
disease model of virus mutation of inoculation, but only considered the condition that the
inoculated individual was completely effective against the virus at a certain stage [5,6].
Baba and Bilgen et al. considered the problem of double-inoculation infectious diseases,
which had an adverse effect on the two viruses respectively, but did not consider the
conversion between patients infected with the two viruses [7,8]. Therefore, on the basis of
the research on the problem of virus mutated infectious disease, considering the situation of
two kinds of vaccination for susceptible people, a kind of virus mutated infectious disease
model with double vaccination was proposed.
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Taking into account the important role of vaccination in preventing the occurrence of
infectious diseases, we assume that the first type of vaccinated people are fully immune to
the premutation virus and partially resistant to the post mutation virus, whereas the second
are fully immune to the postmutation virus and partially resistant to the premutation
virus. In addition, the two types of the infected are infectious, and the disease is not fatal
before the virus mutation, whereas it is fatal after the virus mutation. Based on the above
assumptions, a model was established as follows:

S(t) = A= B1S(H) I (t) — B2S(t) la(t) — AS(t)

Vi(t) = @1S(t) — ki Lo (£) Vi () — aVi(t)

Vz(f) = @25(t) — kal1 (t) Va(t) —aVa(t) 1)
Li(t) = p1S(H) L (t) + ko Iy (1) Va(t) — ar L1 (F)

L(t) = BaS(H) I (t) + Ky L (H) Vi (t) + ey (t) — az Lo (t)

R(t) = y1 L (t) + 72L2(t) — aR(t),

where S(t), V1 (t), Va(t), 1 (t), (t), and R(t), respectively, represent the number at the time
t of the susceptible, those vaccinated to the first and to the second types of vaccines, the
infected before and after virus mutation, and the recovered. A is the input rate of the
population. B and B, are the infection coefficients, respectively, before and after virus
mutation. a is the natural mortality of the population. ¢1 and ¢, are the vaccination rates
of the first and the second vaccines. ki and k; are the infection rates of the infected with the
first type of people vaccinated after virus mutation, and the second before virus mutation,
respectively. 1 and 7y are the recovery rates of the infected, respectively, before and after
the virus mutation. ¢ is the ratio of the infected before the virus mutation to the infected
after virus mutation in number. J is the mortality rate of the infected after virus mutation.
In addition, A :=a+ @1 + @01 :=a+y1+gap:=a+ 7 +e

According to the biological significance of the model, it is assumed that all parameters
are positive, and the dynamic behavior of population R does not affect other populations.
Thus, the following model is considered:

S(t) = A = B1S() [ (t) — BaS(£) I2(t) — AS(t)

Vi(t) = 18(t) — ki la(t) Vi (t) — aVa(t)

Va(t) = @2S(t) — ko1 (£) Va(t) — aVa(t) ()
L(t) = B1S(H) [ (1) 4+ ko Iy (£) Vo (t) — ay I (t)

L(t) = B2S(t) La(t) + k1 Lo (t) Vi (t) + el (t) — aala(t).

Model (2) has a basic reproduction number Ry, where

A koA A koA
p1A el R_ﬁ27+1§01_

Ro = max{Ry,R2}, Ry =

A amA T A amp)
it also has a disease-free equilibrium
VA VAN VAN
0 _ A Q1A P2
Eo(So, VP, 4,0,0) = E(/\ i aA’O'O)'

Moreover, when R; > 0, model (2) has a boundary equilibrium point

A 1A P2 A =

E2(§//VI//‘7;/E/I;) = EZ( = s = = ’ =
,BZIQ—I—/\ (kllz—l—ll)(ﬁzlz-i-/\) a(ﬁzlz-i-/\)
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where the disease will disappear before the virus mutation, and after the virus mutation it
will spread; when I} and I > 0, both before and after the virus mutates, model (2) has an
endemic disease balance point E3(S*, V}*, V', I}, I3 ), where

o N
Bl + Bol; + A’
Vi = * (Pli\ * ’
(kI 4 a) (B} + B2I3 + A)
vy = P2

(koI +a)(B1l} + Bals +A)

On the other hand, environmental change has a key impact on the development of
epidemics [9]. For disease transmission, because of the unpredictability of human contact,
the growth and spread of epidemics are essentially random, so population numbers are
constantly disturbed [10,11]. Therefore, in epidemic dynamics, stochastic differential
equation (SDE) models may be a more appropriate approach to modeling epidemics in
many situations. Many real stochastic epidemic models can be derived based on their
deterministic formulas [9,12-23]. Assuming that the coefficients of model (2) are affected
by random noise that can be represented by Brownian motion, model (2) becomes:

) =(

) =(
t) = (928 — ko [1 Vo — aVi)dt + 03VodBs(t) ©)]
) =(

) =(

where 0;(i = 1,2,3,4,5) represents the intensities of the white noises, and B;(t)(i =
1,2,3,4,5) are mutually independent standard Brownian motions. However, the groups
S,Vi, Vo, I, and I, are usually subject to the same random factors such as temperature,
humidity, etc., in reality. As a result, it is more reasonable to assume that the five classes of
random perturbance noises are uncorrelated. If we set B;(t) = B(t)(i = 1,2,3,4,5), then
model (3) becomes:

) = (
) = (
) = (925 — ko [y Vo — aVh)dt + 03 VodB(t) @)
) = (
) = (

Let (Q), F,{Ft}i>0,P) be a complete probability space with the filtration {F;}i>o
satisfying the usual condition (i.e., { F; }+>0 is increasing and right continuous whereas F;
contains all P-null sets). Throughout this paper, a A b := min{a, b}, a V b := max{a, b} and
Rio = {(u,v,w,x,y) : u,v,w,x,y > 0} are denoted.

First, we prove the global existence and uniqueness of the positive solution of model (4).
Similar to a deterministic model, we introduce a threshold value R, able to be calculated
from the coefficients. We show that if Rj < 0, I(t),I(t) = I1(t) + I>(t) will be extinct
with probability 1, and S(t), V;(t), Va(t) will weakly converge to their unique invariant
probability measures uj, i3, p3, respectively. If Rj > 0, then coexistence occurs, and all
positive solutions of model (4) are converged to the unique variational probability measure
u* in the total variational norm.

Most of the existing studies use the method of constructing the Lyapunov function to
prove the existence of the stationary distribution of the solution of model (4). However,
this method is not applicable to all models. In this paper, the definition method applicable
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w = inf{te[0,n]:S() ¢ (&

to more models is used to prove the stationary distribution [24-27]. Moreover, most of the
stochastic infectious disease models studied now are second order or third order. Therefore,
in order to depict infectious diseases more accurately, we have established a fifth-order
model-a double inoculation and random infectious disease model of spontaneous virus
mutation, considering two kinds of vaccination for susceptible people on the basis of the
research on infectious diseases of virus mutation.

The main structure of this paper is as follows: In Section 2 we prove the global existence
and uniqueness of the positive solution of model (4). In Sections 3 and 4, we are devoted to
the proof of extinction and coexistence, respectively. In Section 5, we provide an example to
support our findings. In Section 6, the main results are discussed and summarized briefly.

2. Existence and Uniqueness of the Global Solutions

Theorem 1. For any given value (S(0), V1(0), V2(0), 1(0), I(0)), there is a unique solution
(S(8), Vi(t), Va(t), L1 (t), In(t)) to model (4) on t > 0 and the solution will remain in R"j’r’o with
probability 1, i.e., (S(t), Vi(t), Va(t), I1(t), Io(t)) in Rif’for all t > 0 almost surely.

Proof of Theorem 1. Since the coefficients of model (4) satisfy local Lipschitz and linear
growth conditions, it can be seen from the existence and uniqueness theorem of solutions
of stochastic differential equations that for any (S(0), V1(0), V2(0), I, (0), L(0)) € R%°,
model (4) has a locally unique solution (S(t), Vi (t), Va(t), 1 (t), I(t)). To prove the global
nature of the solution, we only need to prove that 7, = +0co, where 7, is the explosion time.

Let kg > 0 be a sufficiently large positive number, so that for each t > 0, S(t), Vi (t),
Va(t), [1(t), I(t) fall in the interval [%,ko]. For each integer k > ko, define the stop time T,
as follows:

1

B, 0rly(8) £ (1K), orha(t) ¢ (1K)},

k), 0rVa(t) ¢ (& :

k), 01V (1) ¢ (% -

K’ K’
where inf@® = co. Obviously, when k — oo, T} increases monotonously.

Let Teo = limy_, ;o Tk, then To < Te. So we just have to prove 7o, = 0. Supposing that
Too # 00, then there are constants T > 0 and &1 € (0,1) such that P{7. < T} > ¢;. Further,

there is an integer k; < ko that makes
P{t < T} >e; forall k> k. (5)

Define C° function: V : Rio — Ry by V(N(t)) = N(t) — 1 — InN(t), where
N(t) := S(t) + Vi (t) + Va(t) + L;(t) + Ix(t). Obviously, function V(N(t)) is a non-negative
function. If (S(¢), Vi(t), Va(t), L1 (t), I(t)) € Ri’o, according to [t0’s formula, there is a posi-

1
tive number G := A +a+ 1, +72+5+§(012+022+a§+(r42+a52),sothat

1
dv = Lvdt+ (1 — N)(Uls + Vi +03Va + o4y + 051)dB(¢),

1 1
LV = (1— A =aN =715 — (12+6) 1] + W(afsz +03VE+03VE + 022 + 0213)

_ A 1L | (r2+90)h
= A —aN ')/111 (72+5)12 N—Fﬂ-i- N + N

1
+ W(afsz + 022V12 + (732V22 + O'ZI% + 052122)

1

gA+a+'n+72+5+§(012+022+0§+UZ+052)
=G,

1
dVv < Gdt+ (1 - N)((ﬁs + Vi + 03V + oyl + 051)dB(t).
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Integrate both sides of the above inequality from 0 to 7 A T at the same time, we get

Tk/\T Tk/\T Tk/\T 1
/ av < / Gdt + / (1= 3)(@15 + 02Vi + 03Va + oyl + 5 12 )dB(1),
0 0 0

moreover, then we take the expectation, and obtain
EV(N(tu AT)) < V(N(0)) + GE(5. AT) < V(N(0)) + GT. (6)

Set O = {7 < T} for k > ky and by (5), we have P(Q);) > ¢;. Noting that for every
w € O, there is S(1, w) or Vq (14, w) or Va(1y, w) or I1 (T, w) or (1, w), being equal to
either k or %, and hence

1

V((N(t,w)) > min{k — 1 — Ink, p

— 1+ Ink}.

It then follows from (6) that

V(N(0)) + GT > E[lq, (w)V(N(w))] > eymin{k —1 — lnk,% —1+Ink},

where 1q), is the indicator function of (). Letting k — oo, we obtain the following contradiction:
co > V(N(0)) + GT = oo.
So we must have T = o0 a.s. This completes the proof of Theorem 1. [

3. Extinction of Disease

For the infectious disease model, we always care about whether the disease will
disappear. In this section, we first define a threshold value Rjj, and the stochastic extinction
of the disease when R < 0 is then proved in the model (4).

To obtain further properties of the solution, we case on the boundary of the first
equation of model (4):

dS(t) = [A — AS(t)]dt + o1 S(t)dB(t) 7)

so we have,

1/t S0)-S(t) A o [t=
- atT=—""—""+—+ — .
t/o S(t)dr Tt | S@dB()

For the given initial value u, let S(t) be the solution to model (7). According to the
comparison theorem, Sy vw,xy < S(t) Vi > 0. By solving the Fokker-Planck equation, the
process S(t) has unique stationary distribution with density f; (x), and by the strong law
of large numbers, we have

t A

1 _ ©
lim 7 [ S(r)ar = /O Xfi (0)dx = 2. @®)

For other equations of model (4), we use the same method to obtain:
dVi(t) = [@1S(t) — aV1(t)]dt + oa V1 (t)dB(t),

we have

1
lim —
t—oo

t_ [eS) A
/0 V1(T)dT:/O xf3 (n)dx = 12, )

then similarly - B - B
dVy(t) = [@2S(t) — aV(t)]dt + o3V (t)dB(t),
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dinl(t) =

+eli(t) —azla(t)) —

< [(B1+ B2)S(t) +

[1

(

t

)

(B1

therefore A
lim — /V2 dT—/ xfg(x)dx:%, (10)

t—oo t

where f7 (x), f3 (x) have the same definition as above.
To proceed, we define the threshold as follows:

A koA kapo A
re = Bith)A  kgiA | kags

) Y ah e

where & = a1 A ap.

Theorem 2. If R} < 0, then for any initial value (S(0), V1(0), V2(0), I1(0), (0)) = (u,v,w, x,y)

€ Ri’o, limsup,_, M < R§ as., and the distribution of Su,v,w, x,y(t), Vlu,v,w,x,y<t>’

V2y 00y () converge weakly to the unique invariant probability measures u, p, p3 with the
densities f{, f5, f3, respectively.

Proof of Theorem 2. Considering a Lyapunov function I(t), defined by I(t) = I1(t) + Ly ().
Applying It0’s formula to I(t), we have

S(H)L(t) + koI () Va(t) — ar Iy (t) + B2S(t) I (t) + k1 I (t) Vi (1)

211(f)zzlzr(g5212(t)2]dt n 0411(1«‘)1?;)0512(15)(13(0
kZII(lt()t) Vz(t) + klll(Zt()t) i ( )+ I[l((t)) . ]dt + 0-411(0[?;)0'512(1-) dB(t)

< [(B1+ B2)S(t) + k V() + kaVa(t) + & — aldt + (03 4 05)dB(t),

where & = a1 A ap.
Then integral from 0 to ¢ at both ends of inequality

InI(t) — In1(0) < (/31+/32)/t (t )dT—i—kl/ Vi(t dT+k2/ Va(1)dt

(11)
4 (e—a)t+ (a4+05)/0 dB(7)
It finally follows from (11) by dividing ¢ on the both sides and let t — oo that,
(Bt B2)A | kigrA | kaga/r A
\ InI(t —a=R . 12
1rt1Lsotlptn() 3 Y + = +e—a 0 <0 (12)

Hence, I(t) converges almost surely to 0 at an exponential rate.
For any €1 > 0, it follows from (12) that there exists fp > 0 such that P(Q¢,) > 1 —¢;
where
Qe, = {Inl(t) < Rt} = {I(t) < &R0, vt > to}.

Case 1. Sy,uw,xy(t) converges weakly to the unique invariant probability measure yj with
the density f;".

We can choose that t( satisfying — R* exp{RO} < e1. Let S(t) be the solution of (7).

Supposing S(tg) = S(to), then we can obtain P{S,,,w,xy(t) < S(t)} = 1by the comparison
theorem. In view of the It6¢’s formula, for almost all @ € Q,, we have
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0 < InS(t) = InS() = A [ (=— — —_
N Ji S(t)  S(1)

t t % * *
< ﬁ/ I(T)d(t) < B [ efo¥dr = —Rﬁ(eRﬂtO — ety < gy,
to to

*

0

)dt + /tt(ﬁﬂl(r) + Bl (7))dT

where f = 1V Ba. As a result, for any ¢ > t; we have
P{|InS(t) —InS(t)| < &1} >1—¢1 < P{|InS(t) —InS(t)| > &1} < e1. (13)

Now let us make an equivalent statement, that is, the distribution of InS(t) is weakly
convergent to v{ is equivalent to the distribution of S(t) is weakly convergent to y;. By
the Portmanteau theorem, it is sufficient to prove that for any g(-) : R — R satisfying
18(x) —g(y)| < |x —yland |g(x)| <1Vx,y € R, we have

e

Eg(InSusmxy(t) = 8 i= [ gowi(dx) = [ glinx)pi (dx).

Because the diffusion of model (4) is non-degenerate, the distribution of S converges weakly
to uj ast — co. Therefore

tlLr?O Eg(InS(t)) =4, (14)
such that
[Eg1(InS(t)) — 81| = |[Eg(InS(t)) — Eg1(InS(t)) + Eg1(InS(t)) — 34
< E|InS(t) — InS(t)| + E|g1(InS(t)) — &4
< {|InS(t) — InS(t)| < e1}P{|InS(t) — InS(t)| < &1} (15)

b {[InS(t) — nS ()| > e} P{|InS(t) — nS(£)| > &1}
< e1P{|InS(t) — InS(t)| < e1} + 2e1 P{|InS(t) — InS(t)| > e1}.

Applying (13) and (14) to (15), we can obtain

limsup |Eg(InS(t)) — g;| < 3e;.

t—o0

Case 2. Viy,4,xy(t) converges weakly to the unique invariant probability measure y3 with
the density f,.

Similar to Case 1, we can choose t satisfying — %exp{Ra} < g1. Then, we can get

- t5(1)  s(r) t f
th—th:/f - dk/I d<k/[d
nVy(t) — InVi(t) ¢1.t0(V1(T) Vl(r)) T+ 1't0 2(T)dTt <k ; (T)d(7)
ot
< kl/ eRoTdr = —k—l*(eRStO —eRoty < gy,
to RO

As a result, for any ¢t > to we have
P{nVi(t) —InVi(t)| <e1} >1—e1 & P{|{InVi(t) —InVi(t)]| > &1} < &1, (16)

then we have

[e)

E(InViu o0y () = By = /R g(x)v (dx) = /0 (Inx) 3 (dx).

Thus
lim Eg(InV1,(t)) =3y, (17)

t—o0
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such that

|[Eg1(InS(t)) — 31| = |Eg(InS(t)) — Eg1(InS(t)) + Eg1(InS(t)) — 3|

< e1P{|InS(t) — InS(t)| < &1} + 2e1 P{|InS(t) — InS(t)| > e1}. (18

Applying (16) and (17) to (18), we can obtain

limsup |Eg(InV1yp,0,x,y(t)) — 5| < 3e1.

t—o0

Case 3. Vay0,u,x,y(t) converges weakly to the unique invariant probability measure y3 with
the density f5.

The proof method is the same as above. Since ¢; is taken arbitrarily, we obtain the
desired conclusion. The proof is completed. [

4. Stationary Distribution

Now we focus on the case R; > 0. Let P(f, (u,v,w,x,y),-) be the transition proba-
bility of (Su,v,w,xy(t), Viu,0w,5y(t)s Vauowxy () uowxy (t), Lupwxy(t))- Because the dif-
fusion of model (4) is degenerate, i.e., B1(t) = By(t) = Bs(t) = B4(t) = Bs(t) = B(t),
we have to change the model to Stratonovich’s form in order to obtain properties of
P(t, (u,v,w,x,y),-),

dS(1) = (A —c1S(t) — BiS(HE (1) — BaS(1) (1) dt + oy S(E) o dB(1)
dVi(t) = (—c2aVa(t) + ¢1S(t) — k1 () Vi (t))dt + o2 Vi (t) o dB(t)
dVa(t) = (—c3Va(t) + @25(t) — koI () Va(t) )dt + o3 Va(t) 0 dB(t)
dl(t) = (—cali(t) + p1S(8) 1 (t) + ko I (1) Va(t) )dt + oa L1 () 0 dB(t)
dl(t) = (—cs5h(t) + B2S(H) I (t) + k1 L (t) Vi (F) + e[y (¢) )dt + 051 (t) o dB(t),
where 2 2 2 2 2
1 :A+71;c2 :a+?2;c3 :a+?3;c4:oc1+74;c5 :uc2+75.
Let
A —cqu — Brux — Bouy ou
—cv + @ru — kqoy YY)
A(u,v,w,x,y) = —Cc3w + @au — kpwx ,B=|ozw |,
—CyX + Prux + kowx o4
—csy + Bouy + kivy + ex o5y

to proceed, we first recall the notion of Lie bracket. If X (a1, ap,- -+ ,a,) = (X1, X2, -+ -, Xn) "
and Y(ay,az,- -+ ,an) = (Y1,Ya,---,Y,) " are two vector fields on R” then the Lie bracket
[X, Y]is a vector field given by

1 aY; 0X;
[X,Y]l-(al,a2,~ .. ,ﬂn) = Z(Xj—l(al,aZ,~ .. ,Lln) -Y, L

axi ]’aixi(allHZIH' /a}’l))/

j=1
wherei =1,2,--- ,n.

Using L(u,v,w,x,y) to represent the Lie algebra generated by A(u,v,w,x,y),
B(u,v,w,x,y) and Ly(u,v,w,x,y) the ideal in L£(u, v, w,x,y) generated by B. We have
the following theorem.

Theorem 3. The ideal Lo(u,v,w,x,y) in L(u,v,w,x,y) generated by B(u, v, w, x,y) satisfies
dimLoy(u,v,w,x,y) = 5 at every (u,v,w,x,y) € RY°. In other words, the set of vectors
B,[A,B],[B,[A, B]],[B,[B,[A,B], - spans R® at every (u,v,w,x,y) € Ri’o. As a result, the
transition probability P(t, (u,v,w, x,y), ) has smooth density p(t,u,v,w, x,y,u’,v',w', X', y").
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Proof of Theorem 3. By direct calculation,

o1 A + oyBrux + o5Bouy

—01¢1u + o211 + o5k VY
C=[AB]= — 01U + 031U + 0ykowy ,

—0y Brux — o3koywx
—01 Bouy — ookivy — o4ex + O5exX

—02A + 02Bux + o2Bauy

— (01 — 02)?p1u + o2k vy
D=[BC]|= — (01 — 03)2@au + oFkowx ,

2 2
—oyBrux — ozkowx ,

—0'12,321/1]/ — U%klvy — (04 — 05)"ex

e1n fi1

€21 fo1
E:[C,D]Z €31 ,F:[D,E]: f31 P

€41 fu

es1 fs1

where elements in matrices E and F are shown in Appendix A.
Consequently,
det(B,C,D,E,F) # 0,

which means that B; [A, B]; [B, C|; [C, D]; D, E] are linearly independent. As a result, B; [A, B];
[B,CJ; [C, D); [D, E] span R>for all (u,v,w, x,y) € Rio. Theorem 3 is proved. [

In view of the Hormander Theorem, the transition probability function P (¢, ug, vg, wp,
X0, Yo, ) has a density k(t,u, v, w, x,y, ug, vo, wo, X0, Yo) and k € CS((O,oo),Ri'O,RiO,RiO,
Rio, ]Rio). Now we check the kernel k is positive. A fixed point (ug, v, wo, X0, Yo) € Rio
and a function ¢, considering the following model of integral equations:

ot
ug(t) =ug + /O [1pug + f1(ug, vg, Wy, Xp, Yp)ldT
t
vp(t) = o +/O [o29vp + f2 (g, 0p, W, X, yg)]dT
t
wy (t) = wo +/0 oagwy + f3(ug, 09, wp, X9, yp))dT (19)

t
xp(t) = x0 + /O [oapxg + fa(ug, vp, We, Xp, Yo)|dT

t
y¢(t) =10 +/0 [(75([)_1/4; +f5(u¢, Vg, We, X4>,]/¢)]d"[,

where
fi=A—ciu— Brux — Bouy;  fo = —crv+ ru — kqoy;
fa = —csw + @ou — kywx; fa = —cax + Brux + kywx;
f5 = —csy + Bauy + kyoy + ex.

Let Dyg,v,wo,x0,y0:¢ D€ the Frechét derivative of the function k. If for some ¢ the deriva-
tive Diuy,00,wo,x0,0;¢ has rank 5, then k(T, u, v, w, x, y, ug, vo, wo, X0, yo) > 0 for u = uy(T),
v = vy(T), w = wy(T), x = x4(T), and y = y4(T). The derivative Dy v),wy,xoy0;¢ Can be
found by means of the perturbation method for ODEs.

Namely, let

T(t) = f'(ugp(t), v4(t), wp(t), x4(t), yp(t)),
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where f is the Jacobian of f = [f1, f2, f3, f1, f5] | and let Q(t,ty), for T >t >ty > 0,bea
matrix function such that

Q(to,to) = L; w =T(+)Q(t, to),

and

v = [01,02,03,04,05] ",

then Dy vy,wo,x0,y0:07 = foT Q(T,s)g(s)h(s)ds.

Theorem 4. For any (ug,vg, wo, Xo,Yo) € Rio and (u,v,w,x,y) € Ri’o, there exists T > 0
such that k(T,u,v,w, x,y, uo, vo, Wo, X0, Yo) > 0.

Proof of Theorem 4. First, we check that the rank of Dy v;wg,xoy0:¢ 18 5- Let g1 € (0, T)
and h(t) = 1i7_¢, 1), t € (0, T). Since

lr‘*(tr)(s —T)*+o((s—T)%),

Q(T,s) = I+ T(T)(s — T) + 5T(T)(s ~ TP+ gT(T)(s ~ T + 5

6

we obtain

1 1 1 1
Dy 00,00, x00:1 = €1V — Es§r(:r)v + 653{1"2(T)v - ﬂs%F?’(T)v + ms?F‘L(T)V +o(g3).

Directly calculated

01411 + 04414 + 05015
01421 + 02422 + 05425
01031 + 03433 + 04434
01a41 + 03043 + 04044
01451 + 02852 + 04454 + 05055

01€11 + 02€12 + 03€13 + 04C14 + 05C15
01C21 + 02622 + 03C23 + 04C24 + 0525
01C31 + 02€32 + 03€33 + 04C34 + 05C35
01C41 + 09C40 + 03043 + 04Ca4 + 05C45

;T2(T)v

;THT)v =

01b11 + 02b12 + 03b13 + 04b14 + 05b15
01by1 + 02b2p + 04byy + 05b25
= 01b31 + 03433 + 04b34 + 05b35 ;
01bg1 + 03bg3 + 04byy + 05bys
01bs1 + 02bsy + 03bs3 + 04bsy + 05bs5

o1d11 + 02d1p + 03d13 + 04d14 + 05d15
01do1 + 02d2p + 03d23 + 04dog + 05625
01d31 + 02d3p + 03d33 + 04d3s + 05d35 |,
01d41 + 02dyp + 03d43 + 04dyq + 05dy5

01C51 + 02052 + 0353 + 04C54 + 05055 01ds1 + 02dsy + 03ds3 + Oudss + 05ds5

where elements in matrices I'(T), T?(T),T3(T), and I'*(T) are shown in Appendix B.
Therefore, it follows that v, T(T)v,T?(T)v,T3(T)v,T#(T)v are linearly independent

and the derivative Dy vy wp,xoy0;9 has rank 5.

Putting
1o o 0. 1oy
r = 772/1/2 = 77317/3 = 774/7’4 = 775/
01 (%1 (%1 %1

and
Ty = ul} ()05 (1), Ty = uF(D)wp (1), Tp = ulF ()xp(1), T = 4l (DY (1),

we have an equivalent model of model (19)

tig(t) = o1p()ug(t) + 81 (uy(t), T (1), Wy (£), Xg(£), ()

g (t) = 82(ug (), 0p(t), Wy (£), Xy (£), ¥ (1))

Wy(t) = 83(ug(t), Tp(t), Wy (1), Xg (1), 7 (1)) (20)
Xp(£) = ga(ug(£),0g (1), Wp(t), Tp(t), 7, (1))

Yo (t) = 85(ugp (), 0p(t), Wy (1), Xp(t), ¥ (1))
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where
)=A—cu— ﬁﬁulfr3 — ,Bzyulfm;

) =u o[ (cir1 + c)u"t + Arqut 1 4 (P1u2r1+15_1
— Pinxut T — (Bory + ke )yt T

83(1,9,W0,%,7) = u" W[~ (c1ry + c3)u + Aru" 7! + g T
_ ﬁzrztuZ_r‘l — (ﬁer + kz)yurz—rﬂ;

) = u X[—c1 4+ Arsus Tt — cqu”® + Bru3t — iy
— Barsyu" T 4 kywu3 "2

%

=
RS

Sl
g
=l
<

85(11,0,W,%,y) = u” Y[~ (c1ry + cs5)u' + Argu" ! 4 Bou"t T — Boy
+ kyou™T" — (Byry — eu™)xu"4 3.

For any ug, u1, 0o, Wo, X0, Yy, V1, W1,%1,Y; > 0 and suppose that uyp < u; and let
p1 = sup{|g1l, 821,183, 184l, 185 = uo < u <y, [0 —7o| < &1, [W—Wo| < &1, [x —Xo| <
e [Y = Yol <e1 )

We choose ¢(t) = pp with (%) +1)e1 > uq — up. It is easy to check that with this
control, thereis 0 < T < &1/p1 such that

ug (T, uo, Do, Wo, Xo, Yo) = 1, 194 (T, uo, Do, Wo, Xo,Y) — To| < €1,
[wy (T, uo, Do, Wo, X0, ) — Wol < €1, |X¢p(T, 1o, o, Wo, X0, Y) — Xo| < €1,
|y¢(T7 MO/EO/EO/YO/yo) *y0| < €.

If up > uq,we can construct ¢(t) similarly.

By choosing ug to be sufficiently large, for any 7y <7 <91, wy < w < wp, %) < ¥ <
X1,Yy <y <V, thereis a p3 > 0 such that g1, $2, 83,84, ¢5 > p3. This property, combined
with (20), implies the existence of a feedback control ¢ and T > 0 satisfying that for any
0 <t < Twehave

0 (T, uo, Do, Wo, X0, Yy) =01, We(T, 1o, Vo, Wo, Xo,Y,) = W1,
y(])(T/ uO/E(]/wO/YO/yO) - Elr y(P(T/ 1/10150/@0/?0,?0) - ylr
ﬁl;l)(t/ uO/ﬁoleIYOryo) = Ugp.

This completes the proof. [

We construct a function V : ]Rio — [1, 00) satisfying that

EV(Su,v,w,x,y (t* )/ Vlu,v,w,x,y(t* )1 V2u,v,w,x,y(t*)/ Ilu,v,w,x,y (t* )/ Ilu,v,w,x,y (t* ))
<V(u,v,w,x,y)—x1V"(u,0,w,x,y) + K21{(u,v,w,x,y)e[<}

for some petite set K and some v € (0,1),x1,x2 > 0,t* > 1. If there exists a measure
with ¢(R3°) > 0 and the probability distribution v(-) is concentrated on N so that for any
(u,v,w,x,y) €K,Q€ B(Ri’o)

K(u,v,w,x,y,Q) := i P(nt*,u,v,w,x,y,Q)v(n) > ¥(Q),

n=1

then set K is called to be petite with respect to the Markov chain Sy o,uw,x,y (£*), Viu,0,w,x,y (),
Vauow,y () I,y () uowxy (F),n € N. We must also prove that Markov chain
Su,v,w,x,y (t* )/ Vlu,v,w,x,y(t* )/ VZu,v,w,x,y (t*)/ Ilu,v,w,x,y(t*)/ Ilu,v,w,x,y(t*)/ n € Nis irreducible
and aperiodic. The definitions and properties of irreducible sets, aperiodic sets, and small
sets refer to [28] or [29]. The estimation of convergence rate is divided into the following
theorems and propositions.
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Theorem 5. Let U(u,v,w,x,y) = (u+0v+w+x+y)' "7 +u~ 2 .There exists positive con-
stants My, M» such that

Myt _
eMIE(S, Vi, Vo, I, I) < U(u,0,w,x,) + W'
1

Proof of Theorem 5. Considering the Lyapunov function U(u,v,w,x,y) = (4 +v+w +

* E
x+y)"*7 +u” 2. By directly calculating the differential operator LU (1, v, w, x, y) related
to model (4), we obtain

LU=1+p)u+v+w+x+y)! [A—a(u+v+w+x+y) — 71X — (72 +06)y]
* p* * *
_7u*7’1(/\—‘31ux—[32uy—)\u)—|—7p (1;_;7 )

2
(24 p* P
770(8?7)012”—2

= 2A(1+p)uto+w+x+y)’ —(A+p)uto+wtx+y?P 1
[(a— %0’12)1/!2 +(a— %022)02 +(a— %Ué)wz +(a+m — %aﬁ)xz
P

2

+ (2a+ 71 —proog)ux+ (2a+y2 + 6 — pror05)uy + (2a — p*or03)vw

+ (2a+ 91 — propou)vx + (2a + y2 + 8 — p*oa05)vy + (20 + 11 — pFo308) WX
P
- —

=

(u+v+w+x+y)P

(o1u + 020 + o3w + o4x + o5y)% +

(21)

+ (a4 72 +6— Z02)y? + (2a — p*oy0m)uv + (2a — p*oi03)uw

*

+ (20 + 72+ 6 — prozos)wy + (2a + 1+ 12 + 6 — pTogos)xy| — %A“_

« P
* o * (24 * _'_(72 _r
x+%52u Zy—i-%[%—i-a%—(m—i-(pz]u 2.

1
*

* p*
+ %51M_7

By Young’s inequality, we have

4+3p* , A

IN
w
N
<
o

r*

2y< P .

S I e Tt /
* 4+3p 4+ 3p*
N A L

y

(22)

NS
IA

6 -
113" Ty

=

Choose a number M; satisfying

R APt TR AT SRR A P AR
0 < M; < min{a o1, a 05,0 03,8+ 71 0y,a+72+9 05 }.
2 2 2 2 2
From (21) and (22),we obtain
My = sup {LU(u,v,w,x,y)+ MU(uovw,xy)} < o.

1,0,w,x,y R

As a result,
LU(u+v+w+x+y) <My —MU@u~+v+w+x+y). (23)



Mathematics 2023, 11, 1712

13 of 29

For n € N, define the stopping time 7, = inf{t > 0: U(S,V;, Vo, I;,Ir) > n}, then
It0's formula and (23) yield that

E(eMUENMU(S(8 A1), Vi(t A1), Va(t Aipu), T(EA 1), Ta (8 A i)
AT
S u(u/ U/ wl x/ ]/) + E / eMlt[LU(S/ Vl/ VZ/ Il/ IZ) + M] U(S, Vl/ VZ/ Il/ Iz)}dt
0

M, (eMl(tm;n) —1)
M )

< U(u,v,w,x,y)+

By letting n — oo, we obtain from Fatou’s lemma that

E(eMl(tM"))U(S(t A1), Vi(E A1), Vo (A1), Ti(EA 1), I (E A o))
Mz(eMlt — 1)

< e A
< U(u,v,w,x,y)+ M,

The Theorem 5 is proved. O

Theorem 6. Foranyt > 1and A € F we have

E[ln(1)]*14 < ([Iny)* + c3t* + 2cst[Iny]_)P(A),

E[ln(1)]*14 < ([Inx]* + 3> + 2cqt[Inx] )P(A);

where [Inx]— =0V (—Inx).

Proof of Theorem 6. We have

t 2
“Inly(t) = —Inl; (0) — /0 (B1S + kaVa)dt + (ay + %)t — 04B(t)
0.2
< —Inx + (aq + 74)1% = —Inx + cat,

0'2 (7'2
where ¢4 = a1 + 3¢5 = a + 5, thus

[InL(t)] < [Inx] + cyt.

This implies that
(Inl(£)*14 < ([Inx]* + c3t* + 2c4t([Inx] )14,

taking expectation both sides and using the estimate above, we obtain
E[lnl;(1)]*1a < ([Inx]* + c3t* + 2cqt[Inx]_)P(A).
Similarly, we have

E[lnL(t)*14 < ([Iny)* + 22 + 2cst{lny] )P(A),

2
where c5 = ay + 075 The Theorem 6 is proved. [
Choose €1 € (0,1) satisfying

ARyt
3
AR3t
3

4Rt
30 (1—¢1)+4+2c5 < —Rp,

Rj 4R%t Rj
0 0" (1 —¢q) +4cser < —70.

(1 - 81) +2c4 < —RS,‘ —
(24)

X 3

(1 —¢1) +4cge1 < —
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Choose H so large that
(B1 +k2)H —2¢4 > 2+ Rg; (B2 +k1)H —2c5 > 2+ Ry,
(,31 +ko)H — 2¢4 €1 (ﬁ2+k1)H—2C5
- < = - a7
exp e R 2 1< 5

R5[(B1 +k2)H—C4}}<%1; exp{—

Ry[(B2 +k1)H — cs5] 8
407 402

exp{—

Theorem 7. For €1 and H chosen as above, there is M € (0,1) and T* > 1 such that

2Rt
P{Inx + —— 3 <InL(t) <O0;
*

2Rt
P{Iny + =2

< anz(f) <0,
forallu,v,w € [0,H];x,y € (0, M);t € [T*,2T*]} > 1 —¢;.

Proof of Theorem 7. Let S, (t), V1, (t), Vo, (t) be the solution with initial value u, v, w to

dS(t) = [A — (B30 + A) ~]dt +015dB(t);
dVi(t) = [@15 — (Babo + a)Vi]dt + 0, V1dB(t); (26)
dVa(t) = (925 — (Bs63 + a) Vi]dt + 03 VodB(t).
Calculated,
P{lim / Su(t)dr = 55 H\} = 1;Vu € [0,00);
P1A 4. )
Pilim ¢ / V(AT = o s va)) — BV € 10 );
P2A
P{li / % — LYw € [0, 00).
tim gy Ve (O = e (e 1)~ V0 € )

In view of the strong law of large numbers for martingales, P{lim;_,« @ = 0} = 1. Hence,
there exists T* > 1, such that

R*

P{UlBt(t) > -2t > T') 21—%1,-

IP{LBt(t) > f&;wz T*} >1*§ (27)
R*
t 3

and -

0> T > - G

P /SO _ﬁ391+A g tzThz1-3

; A R}

IP’—/V dt L 0 vi>T ) >1- 2, 28
I e o VN B A e EA
1/t 4)2[\ RS €1

P{= | Vao(r)dT > VE>T Y >1- 9,

{t/o (0T 2 e (Bt 1) 126 bz1-3

where = 1 A Ba. By the uniqueness of solutions to (26), we obtain

]P){SO(t) < gu(t)}Vt > 0} =1,Yu >0;
P{V1o(t) < Vi,(t);Vt >0} = 1;Vo > 0;

<V
P{Vao(t) < Var(t);Vt >0} = 1;Vw > 0.
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Similar to (8)—(10), it can be shown that there exists M € (0,0),0 = max{6, 6,63},
P{Cu,v,w,x,y S ZT*} S %/vx/y S M/ ul U/w € [O/ H}/ (29)

where &y o,w,xy = inf{t >0: 1,1 > 0}.
Observe also that _
]P){S > Su(t)}Vt > gu,v,w,x,y} =1

P{Vl > Vlv(t)}Vt > gu,v,w,x,y} =1 (30)
P{VZ > VZw(t)}Vt = Cu,v,w,x,y} =1,

which we have from the comparison theorem. From (27)—-(30) we can be show that with
probability greater than 1 — €1, for all t € [T*,2T*],

t t
In@ > Inly(t) = Inx + B4 / S(T)dt +ky / Vo(T)dT — eyt + 04 B(t)
0 0

BiAt  Rjt o\ Rt Rjt
> a0 (1 — 0t —
SN A 12 Bl ANt ra) 12 M T 12

2R}t
> Inx + ,
3
! : ()
In@ > Inly(t) = Iny + ﬁz/ S(T)dT+k1/ Vi(t)dt +¢ dt — cst + o5B(t)
0 0 0 I(T)

BoAt  Rjt P1AL Rt Rjt
> Iny + P20 T0C B L
S B A 12 Bl ANt ra) 12 T 12

2R}t
> Iny + 3

The proof is completed. [

Proposition 1. Assuming R > 0. Let M € (0,1), H so large and T* > 1. There exists
M3, My > 0 independent of T*, such that

< [Inx]® — R§t{Inx]_+ Mst?,
< [Iny]? = Rot{lny]_+ Mat?,

forany x,y € (0,00),0 < u,v,w < H,t € [T*,2T*].
Proof of Proposition 1. First, considering x,y € (0, M],0 < u,v,w < H, we have
P(Ql) 2 1-— 81,P<Qz> 2 1 — &1,

where -y
30 <Inl(t) < 0;Vt € [T*,2T*]},

O = {lnx+

2R:t
Qp = {Iny + 30 < Inly(t) < 0;Vt € [T*,2T*]}.

In O, )y we have

2R*t 2R*t
0" > —InL(t) > 0; —Iny — 0

—Inx — > —Ink(t) >0,

thus for any t € [T*,2T%],

0 < [Inky(1)]_ < [Inx] — leot 20 < [Inh(t)] < [Iny] — Zléot,
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as a result,

4Rt 4R*%42
[lnll(t)]z < [lnx]%— 0 [Inx] + g ;
4AR*t 4R*?f2
Inba (O] < [lny)? = {iny)_+ —3—,
which imply that
AR*t 4R*?42
E[lg, [In[(1)]?] < P(y)[Inx]* — —2-P(Q)[Inx]_+ g P(Qy);
31
) , 4R}t 5212 1)
E[lq,[Ink()]7] < P(Oy)[Iny]~ — P(Mp)[Iny]_+ P(().
In O = QO —0y; Q5 = Q — (), we have from Theorem 6 that
Ellqe[Inky (1)]7] < P(Of)[Inx]? — 2¢4tP(QS) [Inx]_+ ct*P(QS);
- - 32
Ellog[inb()2] < P(OS)[Iny]? — 2e5tP(OF) ny]. + 2RP(0S), 2

adding (31) and (32) side by side, we obtain

E[lnLy(t)]* < [Inx]* + (—41;3 (1 —e1) 4 2cq)t[Inx] + (4 0O+ ct%

4Ry?

4R
Ellnky(0)) < [Iny]? + (=32 (1 — &1) + 2cs)t{Iny]_+ (= + 3)E,
in view of (24) we deduce
2 2 * 4R82 212
EllnL (1)])* < [Inx]* — Rgt[Inx]_+ ( 5t )t
2 2 * 4R82 2\ 12
ElInLy(1)])* < [Iny])® — R§t{Iny]_+ ( o T 5t

Now, for x,y € ([M, ) and 0 < u,v,w < H, we have form Theorem 6 that

m
—
=
~
Jhary
—~
~
~—

[Inx)* — R§t[Inx]_+ Mst%;
[Iny)* — Rit{Iny]_ + Mat?.

IN N

2
2

*2 *2
Letting M3, My sufficiently large, such that M3 > @ + ¢, My > @ + ¢, then the proof
is completed. O

Proposition 2. Assuming Ry > 0. There exist M7, Mg > 0 such that

RAT™
E(In[ 2T*))? < [Inx]? — 02 [Inx] + M;T*?,
*\12 2 RBT* %2
Ellnb(2T")]7 < [Iny]” — —5—[Iny]_+ MsT"",

forx,y € (0,00);u,v,w > H.

RSZT* }. Defined the stopping time

Proof of Proposition 2. First, considering x,y < exp{—

(’;’u,v,w,x,y - T* AN li’lf{t > 0 : S, Vl, V2 S H}.
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Let

Q4 = {osB(t)

R*
Q5 = {04B(t) — [(B1 + ko) H — cy]t < go;w € [0,2T%]},
R*
Q¢ = {o5B(t) — [(B2 + k1)H — c5]t < ?O;Vf € [0,2T*]}.
By the exponential martingale inequality,

P(Q3) > 1—exp{— (B1+ka)H —2¢4

>1_2
2072 f=1-%
(,BZ +k1)H—2€5 €1
P(Qy) >1-— — >1—-—=
()2 1 —expt= B30y 5,
RG[(B1 +k2)H — c4] €1
P(Qs) > 1 —exp{——2 F>1-—=,
402 2
RY ki)H —
P(Qg) >1—exp{— 0[(’82—2 é) CS]} 21—%1
75

Let
Q; =MOzN {gu,v,w,x,y = T*};Q8 =N {gu,v,w,x,y = T*}/

R*
Qg = {*lnll(t) < —Inx+ ?O} N {gu,v,w,x,y < T*};

R*
Q10 = {*lnIZ(t) < *l”y+ ?0} N {':u,v,w,x,y < T*}/
011 =Q—(Q7UQ9);Qpp = O — (Qg U Q).
If x1 € Oy,y1 € Og, we have

2T*
“Inh(2T*) = —Inx — / (B1S + kaVa — ca)dt + 04B(2T*)
0

T*
< —Inx — / ([318 +kpVp — C4)dt - / cydt + 0'4B(2T*)
0 0

< —Inx — T*[(B1 + k2)H — 2c4) + 04B(2T*)
T*[(B1 + k2)H — 2¢4]

< —Inx — > +1
R{T*
< —Inx— -2,
< —Inx 5
similarly,
R§T*
—InL(2T*) < —Iny — 02 .

If x < exp{— RSZT* Ly <exp{— RSZT* }, therefore

* Tk

[Inl;(2T*)] < —ROZT + [Inx]

* Tk

(InL(2T*)] < —ROZ + [Iny]_.
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Squaring and then multiplying by 1n,, 1o, and then taking expectation both sides, we
yield

$2x2
E[Ink (2T*)*1q, < [Inx]* P(Qy) — R [Inx]_P(Qy) + 0 4T ,

R*ZT*Z (33)
E[lnk(2T%) 210, < [Iny]2P(Q7) — RGT*[Iny] P(Qs) + =4 —.

If x; € Qg, then

f:u,v/w,x,y
—In1(Gupwxy) = —Inx — /0 (B1S + ko Vo — cy)dt + 04 B(Gu0,w,x,y)

—Inx — [(ﬁl + kZ)H - C4]§u,v,w,x,y + U4B(€u,v,zu,x,y)

*

IN

< ] -0
< —inx+ 3

similarly, y; € ()19, we have

_lnz(guvwxy) _Zny §O/

as a result,
QN {Cuowxy < T} C Q9 Q6 N {Guowxy < T} C o,

hence,
(Qll) P(Qll N {guvwx,y < T*}) =+ P(Qll N {gu,v,w,x,y = T*})
< P(O5) +P(QF) <ey,
(012) = P(Qu N {guvwxy < T*}) + P(le N {éu,v,w,x,y = T*})
< P(Q) +P(Q) <e.

Lett < T*;u/,v',w’ > 0and —Inx’ < —Inx + % <0;—Iny' —Iny + % < 0. In view
of Proposition and the strong Markov property, we can estimate the conditional expectation

E[InI;(2T") ]z‘guvwxy =thL = x/,S({,‘) =, Vi(¢) = v, Va(g) = wl|
< [Inx'* = R{(2T* — t)[Inx']_ + M3 (2T* — t)?
< [Inx')? — RGT*[Inx']_+ 4M3T*?

*

R
< (—Inx + §0)2 — RET* (—Inx) + 4M3T*?

R* R*Z
< (<Inx)? = (RGT" — ) (~Inx) + AMT*? + 631
3R*T* *2
< 2 *2
< [Inx]* . ——[Inx]_+4M3T 64
E[1”12(2T*)],‘§u,v,w,x,y =th= y’,S(C) =u' ,V1(8) =7, Va(8) = v
* Tk *2
< [Iny]* - [Iny]_+4M, T + =
As a result,
3RyT* Rj?

E[lnk (2T*)1q, < [Inx]*P(Qg) — [Inx] P(Q) + 4M3T** +

(34)

* Tk %2

[Iny]_P(Qu0) +4MT*? +

E[lnL(2T*)*1q,, < [Iny]*P(Q10) —
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in view of Theorem 6,

E[lnly 2T*)*1q,, < [Inx]>P(Q11) + 4c T [Inx]_P(Qqy) + 4cy T2, (35)
E[lnk(2T*)*1q,, < [Iny]*P(Q12) + 4csT*[Iny]_P(Q1a) + 4csT*2,

adding side by side (33)—(35), for some Ms, Mg > 0, we have

3R}
E[inL (2T*)]* < [Inx]* — T*( 40 (1—e1) +4cger) + M5T*
* Tk

R
< [Inx]* - 02 + MsT*;

*

3R
E[lnL(2T*))* < [Iny)* - T* (To(l —£1) + 4cseq) + MgT*

* Tk

RT
< [Iny]* - 02 + MT™.

We note that, if x,y > exp{— ROZT }, then

—Inx <
therefore, it follows from Theorem 6 that
R*
Ellnl; (2T*)]* < (ZO + 4Ry + 43T

R*
E[Inl(2T*)]* < (TO + csRy + 4c2)T*2.

* *

Let My =M Ry R +4c2); Mg = M, Ry R +4c2, f > H;
et My = 5\/(I+C4 0 +4cp); Mg = 6\/I+C5 o +4cg, forany u,v,w > H;
x,y € (0,00), we have

* ik

R:T
E[ln[(2T*))? < [Inx]* — 02 [Inx] + M;T*?,

* ik

R:T
E[InLy(2T*))? < [Iny)* — 02 [Iny]_+ MgT*>.

The proof is completed. [
Theorem 8. Let Ry > 0, there exists an invariant probability measure 7t such that
(a) tlirn t7||P(t, (u,0,w0,%,y),) — ()| = 0;¥(u,0,w,x,y) € R,
—r 00
1oy
(b) tlggo n fo h(S, Vi, Vo, Iy, I)ds = fRio h(u,v,w,x,y)* (du,dv, dw,dx,dy) =1,

where || - || is the total variation norm, q* is any positive number and P(t,u,v,w, x,y, -) is the
transition probability of (S(t), V1 (t), Va(t), [1(t), L(t)).

Proof of Theorem 8. By virtue of Theorem 7, there are h1, H; > 0 satisfying
EU(S(2T*), V1 (2T"), Va(2T"), L (2T"), L(2T*)) < (1 —hy)U(u,v,w,x,y) + H;.  (36)

Let
V = U(u,0,w,x,y) + [Inx]? + [Iny]?,

in view of Proposition 1, Proposition 2, and (26), there is a compact set K C Ri’o, hy,Hp >0
satisfying
EV <V —hoVV + Hol{ (000 ek); V(1,0,0,%,y) € RYC. (37)
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Applying (37) and Theorem 3.6 in [30], we obtain that
n||P(2nT*, (u,v,w,x,y) — 7°)|| = 0;n — oo, (38)

for some invariant probability measure 77* the Markov chain (S(2nT*), V;(2nT*), Vo(2nT*),
L(2nT*), L, (2nT*)). Let x = inf{n € N : (S(2nT*),V1(2nT*),Vo(2nT*), [1(2nT"),
L (2nT*)) € K}. Itis shown in the proof of Theorem 3.6 in [30] that (37) implies E;,. < oo.
In view of [31], the Markov process (Su,v,wxy(t), Viuowxy(t), Vauowry(t), Tuowxy(t),
Ly0w,x,y(t)) has an invariant probability measure ¢.. As a result, ¢. is also an invariant
probability measure of the Markov chain (S(2nT*), V1 (2nT*), Vo (2nT*), I; (2nT*), ,(2nT*)).
In light of (38), we must have ¢, = ¢*, then, ¢* is an invariant measure of the Markov process
(S(t), Va(t), Va(t), Li(t), L(t)).

In the proofs, we use the function [Iny]? for the sake of simplicity. In fact, we can
treat [Iny]' ™ for any small g € (0,1) in the same manner. For more details, we can refer
to[24] or [25]. I

5. Numerical Examples

By using the Milstein method mentioned in Higham [32], model (4) can be rewritten
as the following discretization equations:

2
0
Sk41 = Sk + (A — B1Sihik — B2Sklox — ASk) At + 1S/ Atk + jlsk(ﬁf@% — At)
)
(o4
Vikrr = Vik + (@15, — ki I Vil — aVig) At + 02 Vig/ Atk + %Vlk(ﬁtfﬁ — At)
)
(o
Vars1 = Vo + (925k — koI Voy — aViyye) At + 03Vop/ Atk + %VZk(At‘;‘% — At)

2
(%
Ligy1 = L+ (B1iSkhik + kol Vak — a1 Ing ) At + o4y / Atk + %hk(ﬁf@% — At)

)
0;
i1 = by + (BaSklox + k1 Ik Vig + el — aq L) At + 05 L/ Atk + flzk(ﬂf‘ﬁ — At)

where ¢y, k =1,2,--- ,n are Gaussian random variables. The following figures are drawn
using MATLAB based on some numerical examples.

Example 1. Consider (4) with parameters A = 15; a = 0.2; B = 0.15; B, = 0.15; v = 0.5;
Y2 =015 ¢1 =04, ¢ =04,e=080=00Lkl1 =07 k2=05A=a+¢1 +¢p2=1,
01 =a+y1+e=15a=a+v7+J5=0.36,00 =0.5,00 =1,03 = 0.8, 04 = 0.5, 05 = 0.5.
Directing calculations show that Ry = 40.94 > 0 which satisfy the conditions in Theorem 8, then the
disease is almost surely persistent (see Figures 1-5). Furthermore,the histograms of the probability
density function of S(t),V1(t),Va(t),I1(t),I2(t), for model (4) are shown in Figures 6—10, where
Figure 11 represents the phase diagram of (V1 (t), I (t)), respectively.

Example 2. Let parameters A = 1; a = 0.5; B1 = 0.15; B, = 0.22; 91 = 0.35; 7 = 0.25;
1 = 05 ¢ =04, e =054, 0 =03, k1 =02, k2 =015 A=a+¢1+¢2 =14
v =a+y1+e=13% a, =a+y+6 = 1.05 04 = 0.8, 0o = 0.6, 03 = 0.6, 04 = 0.5;
05 = 0.5. Directing calculations show that Rj = —0.03 < 0, which satisfy the conditions in
Theorem 2, then the disease is almost certainly extinct (see Figures 12 and 13). In addition, S(t),
Vi(t), Vao(t) are weakly convergent to the unique invariant probability measure 7, uy, u (see
Figures 14-16).
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Figure 1. Sample path of S(t).
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Figure 2. Sample path of V1(t).
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Figure 3. Sample path of V2(t).
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Figure 4. Sample path of I1(t).




Mathematics 2023, 11, 1712

22 of 29

Simulator 12(t)
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Figure 5. Sample path of I2(t).
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Figure 6. Histogram of the probability density function of S(t).
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Figure 7. Histogram of the probability density function of V1(t).
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Figure 8. Histogram of the probability density function of V2(t).
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Figure 9. Histogram of the probability density function of I1(t).
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Figure 10. Histogram of the probability density function of 12(t).
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Figure 11. Phase portrait of model (4).
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Figure 12. Sample path of I1(t).
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Figure 13. Sample path of I2(t).
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6 Simulator S(t)
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Figure 14. Sample path of S(t).
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Figure 15. Sample path of V1(t).

Simulator V2(t)

V2(t)

0 50 100 150

Figure 16. Sample path of V2(t).

6. Conclusions and Discussion

The main purpose of this paper is to study the global existence and uniqueness
of the solution of model (4) and the extinction and stationary distribution of the dis-
ease by introducing a threshold Rj. If Ry < 0, the number of infected individuals
I(t)(I(t) = L1(t) + I(t)) tends to zero at an exponential rate, whereas the distribution
of susceptible population S(t), vaccinated of the first type V; (¢) and vaccinated of the sec-
ond type V, (1) converge weakly to the boundary distribution. On the other hand, if RS >0,
the existence and uniqueness of the invariant probability measure and the convergence of
the total variation norm of the transition probability to the invariant measure are obtained.
In addition, the support of the invariant probability measure is described. Then, we obtain
that the disease can almost certainly continue to exist, and there is an independent stable
distribution. Finally, numerical simulation is carried out to verify our theoretical results.
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In addition, most of the existing literature uses the method of constructing a Lyapunov
function to prove the existence of stationary distribution of the solution of the random
model (4). However, this approach does not work for all models. In this paper, the
stationary distribution is proved using a definition that applies to more models. Most
of the stochastic epidemic models studied so far are second-order or third-order models.
However, as the disease progresses, the virus can mutate as it spreads, allowing the disease
to spiral out of control. Therefore, in order to describe the infectious disease more accurately,
considering the situation of two kinds of vaccinations for susceptible people, a fifth-order
model was established—-a class of virus mutation infectious disease model with double
vaccinations. I sincerely hope that in the future we can build more complete models of
infectious diseases to make greater progress.
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Appendix A

el = 0104ﬁ1 (0’4/\3( + 0'11\3(' — 0'4,311/12X + 0'1‘311/123() + 0'10'5‘32(0'5Ay + 0'1Ay — ﬁzuzy) — 0'20'5](1‘321/[?)]/

— 0304k B1 (04 — 03)uwx — (0y — Ué)ﬁzeux;

ex1 = —o1(0q — 0'2)2g01/\ + Umfﬁl(plux + Ulagﬁz(pluy - alagklfpluy - alagﬁzkluvy + 0'120'2(p1/\

+ 0205 ok uvy — G 1A — 0202 BL1Ux — 0202 Popruy + 0202k  pruy — 0202k30%y + 02 0skiv?y
— 04(01 — 02)2Brgrux — 0402k eux — o5(0q — 02)*Bopruy + o5(01 — 02)%k1 @ruy

+ 05 (04 — 05)*kq€0x + agklevx;

e31 = —0o1 (0 — Ug)zgozA + cmrfﬁl Paux — 01042k2(p2ux - Ulafﬁlkzuwx + (71(752/32g02uy + UlzaggozA

+ 02y Brkouwx — a3 pa A — 0302 B1@aux + 030 ko aux — 0302k3wx — 0302 Bapouy + o304k5w x

— o401 — 03)?Brgaux + 04 (01 — 03)*ka@aux — 05(01 — 03)2Bapauty;

— g2 2022 2 2 g2 2 2 3
eq1 = 0103k @oux + 0104 Brux” + 0105 B1 fouxy — o7 oufrux” — 010581 Bouxy — 207 f1Ax

2, ..2 3

+ o3(0q — 0'3)2k2g02ux - 0'30'421(%@03(?2 — 03204k2wx — o3kopoux;

es1 = 01022k1 pruy + Ulafﬁlﬁzuxy + alagﬁ%uyz +o1(og — 05)2[31£ux —oq(og — 05)2ﬁ28ux

— 01204/31/32uxy — 01204/31£ux + 01204/32£ux — 01205ﬁ%uy2 + 01205[31£ux — 01205/32£ux — 2(713,8sz

— o301 — )%ky p1uy — 02 (0g — 05)%ke0x + azagk%vyz + 2ok evx — 02205k%vy2

— 020ski€vx — ag’kl pouy + 03(04 — 05)%koewx — 03204k2£wx + 03205k2£wx;
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fi1 = (=02 A + 02 Brux + 02 Bouy) 20104 frux(oy — 04) — 20005B5uy — 0205k B0y
— 0304kp Brwx (04 — 03) — 0405 BoExX + 052[328x] — 005k Bouy[— (01 — 02)?pru + nglvy]
— 0304ky Brux(oy — 03)[— (01 — 02)2g02u + Uszwx] — (Ufﬁlux + agkzwx) [o104B1(A(0y + 04)
+ Bru (o — 04)) — o304kaPruw(oy — 03) + 05 Poeu(os — 04)] — [0 Bruy + o2k vy + (04 — 05)%ex]
[0105B2(A (01 + 05) — Bau®) — 0205k Bouv] — e11 (05 Brx + 08 Boy) — ea103 P11t — e5103 Po;
fo1=[—(oq — az)z(plu + nglvy] [Ulafﬁl P1X + 0105 B2k vy (0 — 05) — azafﬁﬁ P1X
— o401 — 02)*Brg1x — 0408 kyex + (ky — B2) (02 1y(0205 — 0105 + (01 — 02)?))]
+[—(oq — Uz)z(plu + nglvy} (105 B2k uy (07 — 05) + 20105k%vy(02 —035) + U5k1£x((72 — 20405
+202)] — (02B1ux + ozkywx) (o4 (01 — 02) Brp1u(oy — 01 + 0n) — 0402k eu
+ o5k1€0(0F — 20405 + 202) — (02 Bouy + o2kivy + (04 — 05)2ex)][o105 B2k uv (07 — 05)
+ 0205K30% (02 — 05) + @ru(ky — B2) (—0108 + 0203 + 05(01 — 02)?)] + e11 (01 — 02)* 1
— o3k1y(ex + es1);
fa1 = (—0121\ + 0}%‘31149( + Ug/ﬂzuy) [Ulafklsx + U'Zkz(pzx((T:; —01) + poBrkowx (o — 0y)
+ 05Bagay (0105 — 0305 — (01 — 03)*) — 0uP192x (0304 + (01 — 03)%) + 04(01 — 03) ko @]
+ [~ (01 — 03)2 ot + TZkpwx] (o104 B1koux (oq — 03) + 20304k3wx (03 — 04))]
— (02Brux + o3kowx) [o4pau(ky — 1) (—0104 + 0304 + (01 — 03)?) + o10uBrkouw(oq — 04)
+ 0304k3w* (03 — 04)] — [0 Bouy + o3k vy + (04 — 05)%ex][05B292u (0105 — 0305 — (07 — 03)?)]
+e11(01 — 03)2 92 — 03k (31X + e w);
fu1 = (=02 A+ 02Brux + 02 Bauy) [o3ko ax (07 — 0103) + o103 fix% (04 — o) + 01051 Baxy (05 — 07)]
+ [~ (01 — 03)2 ot + 0Zkywi] [~ 0304k3x% (05 + 04)] — (07 B1ux + o5kywx) [o3ky o1t (07 — 0103)
+ 20104 B3 ux (04 — o) + 010581 Bty (05 — 07) — 304k3wx (03 + o) — 203 B1 A
— [0%Bauy + o3kyvy + (04 — 05)%ex][o10581 Boux (05 — 01)] + €117 B1x + e3105kpx

+ ey (Ulzﬁlu + 0'32k2w),'

fs1 = (—02 A + 02 Brux + o2uy)[o105k1 1y + 01041 Baux(0y — 01) + 20105 B5uy (05 — 01) — 207 B A
— ook 1u(0? — 2010%) + 20905k30y (05 — 02)] + [~ (01 — 09)? @11 + 02kyvy] ook ex(— (g — 05)?
+ 0205 — 0905) + 0205k y% (05 — 02)] + [ (01 — 03)? @out + o2kowx][o3koex (04 — 05)?
— 0304 + 0305)] — (alzﬁlux + U%kzwx) (104 B1B21y (04 — 07) + oq€u((og — 05)% — 0104 + 0105)
+ ookrev(— (04 — 05)% 4 0204 — 0205) + 3koew((04005)% — 0304 + 0305)]
— [alzﬁzuy + Uzzklvy + (04 — 05)%ex] [o2k1 p11(30707 — 012 — 022) + 01041 Boux(og — 07)
+ 20105/3%uy(05 —0)+ 20205k%vy(05 —0) — ngl Qou] + 621022k1y + e41 (04 — 05)?

+ (0F Baut + 03k10) (e11 + €51).
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Appendix B

a1 =

ais

azs =

az3
a4
a43

as1

as4 =

b1

biz =
bis =
by =
bys =

b33

bys =

by =

bys

bsy =

bsy =

C11

€13 =

€15
€22
€24
€31
€33
€35
C42

—c1 — P1x — fay + 1¢;
—Boy;

—k1v;

—C3 — kzx;

= B1x;

kzx,‘
B1y;

&

2 )
= a1 + a14441 + a15451;

114043,

a11a15 + a154ss;
2 .

Ay + axs5asy;

a15ap1 + a5ass;

2 .
= a33 + A34043;

415431,

33043 + 143044;

a15441;

A22052 + A52455;

14451 + 444054 + A54055;

a11b11 + az1bi2 + az1biz + ag1 by + asibys;
a33biz + ag3biy;

a15b11 + axsbio + assbys;

= aspbys;

a14b21 + agabog + asabys;

= ay1bz1 + a31b33 + ag bzg + asibss;

a33b33 + as3bzy;
a15b31 + assbss;

= asybys;

a1 =
= —c — k1y + o ¢;

a1
asy
as4
a43
a44
as2
ass

b1»

b1y =

by

byy =

b3

by =

bs

by =
bs; =

bs3

bss =

C12

Cl4 =
= a11by1 + axnby + ay by + asibys;

€21
€23
€25
€32

C34 =
C41 =

C43

—Bu;

@2;

*kzw;

B1x;

Bru + kow;

kvy;

—c5 + Bau + k1o,

15452,

a11a14 + A14044 + A15054;

ay1ap1 + az14z2 + As5as1;

a14a21 + A25454;

a11a31 + 431433 + A34441;

a14a31 + 33434 + A34044;

a11a41 + 31043 + A41044;

014041 + A34043 + A3y

a11as1 + 421452 + 41454 + A51455;
a43054;

a15as1 + 5052 + 01%5,

aspbis;

a14b11 + azab1z + aggbrg + asybis;

ag3byy;

= ay5by1 + axsboy + assbys;

asybss;
a14b31 + azab3z + asabzy + asabss;
a11bg1 + az1byz + agbag + as1bss;

3343 + a43b44;
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44 = A14b41 + a34b43 + a44bay + as4bys; ¢45 = a15b41 + as5b45;

51 = a11bs1 + ax1bsy + az1bsz + ag1bse + as1bss; 52 = asybss;

¢53 = a33b53 + ag3bsy; C54 = a14b51 + a34bsz + a44bss + a54bss;
¢s5 = a15b51 + asbsy + assbss;

d11 = b}y + biaboy + bisbsr + biabay + bisbsy; d1p = bi1bio + b1oboy + bisbsy;

d1z = b11b13 + bizbsz + b1abas + bisbss; d1g = b11b1a + biobog + b13bag + b14bag + bysbsy;
d15 = b11b15 + biabas + b13bas + b1abas + bisbss;  day = bi1bar + barbao + baabay + basbsy;

do = bioboy + b3, + basbsy; dz = b13ba1 + bpabyz + bosbss;

dog = b1abay + baobog + bogbay + bosbsy; dps = bysba1 + baobos + bagbas + basbss;

d31 = b11b31 + b31b33 + b3abyy + bssbsy; dsp = b1obs1 + basbsy;

ds3 = bizbs1 + b33 + baabas + basbss; d3y = b14b31 + bazbsg + b3abyy + basbsy;

dss = b15b31 + bazbss + b3abys + basbss; dy1 = b11ba1 + b31bs3 + by1bag + bysbsy;

dgp = b12by1 + basbsy; dyz = b13ba1 + bazbaz + bazbas + basbss;

das = b1abay + basbas + b3y + busbsy; dys = bi1sbgr + basbys + bagbys + bysbay;

ds1 = b11bs1 + b1bsy + b31bss + barbsy + bsibss;  dsp = biobsy + baobsy + bspbss;

ds3 = b31bs1 + bagbss + bazbsy + bszbss; dsg = biabs1 + bagbsy + b3gbsg + bagbsy + bsabss;

dss = b1sbs1 + bosbsy + basbss + basbsa + bs.
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