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Abstract: The efficiency of a graph embedding problem when simulating one interconnection net-
work in another interconnection network is characterized by the influential parameter of wirelength.
Obtaining the minimum wirelength in an embedding problem determines the quality of that em-
bedding. In this paper, we obtained the convex edge partition of 3-Ary n-Cubes and the minimized
wirelength of the embeddings of both 3-Ary n-Cubes and circulant networks.
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1. Introduction

In a multiprocessor computing system, the connection pattern is determined by the
interconnection network; thus, it is a crucial component in the performance of efficient
communication in a multiprocessor computing system. From a topological perspective,
these complexed interconnection networks can be modeled as simple graphs. As micropro-
cessor technology develops to the nanoscale, the implementation of 100 billion transistors
in a chip multi-processor (CMP) has become a reality. In the design of high-performance
CMPs, the efficiency of communication between cores is dependent on processor allocation,
data storage and communication between processors, which has also become a massive
concern [1] for a quality network. It has become popular to use network-on-chip (NoC)
technology to develop very large-scale integration (VLSI) systems in multi-processor chips,
because of its primary advantages, including low power utilization, high integration, low
cost and dense volume. Due to the area constraints on processors, the overall wirelength of
NoC has arisen as the most pressing issue concerning its effective communication; thus, the
topology structure must meet a few specific requirements. It is one of the most important
factors that must be considered for an NoC when determining the cost of the network
architectures [2,3].

Using architecture with a complex structure will worsen the issues of the connectivity
of processors and wiring costs. Thus, using a convenient network in parallel over the highly
connected network under certain circumstances will be made possible using the embedding
feature by scrutinising the NoC performance in the communication of chip multi-processors
and other VLSI systems. In the field of interconnection networks, the embedding problem
plays a significant role in the simulation of architectures and in using the modified parallel
algorithms of one network in another network [4]. Embeddings and their applications have
been extensively studied in many research works, some of which include the embedding
of cycles into hypercubes [5], complete trees into hypercubes [6], cycles and wheels into
trees [4], paths into star graphs [7], hypercubes into grids [8], and cycles into recursive
circulants [9], and the fault-tolerant Hamilton embedding of alternating group graphs [10],
meshes into crossed cubes [11] and meshes into twisted cubes [12].
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We have solved the problem of embedding a circulant network into a 3-Ary n-Cube
and vice versa by obtaining the minimum wirelength, and have proved that the 3-Ary
n-Cube can be embedded into a circulant network with dilation 1. In addition, we have
calculated the time complexity of embedding a circulant network into a 3-Ary n-Cube
and vice versa. Owing to their greater routing capabilities and fault tolerance, circulant
networks, which are generalizations of double-loop networks, have been used to design
computer and communication networks [13,14]. These networks have many interesting
topological properties suited to parallel computing, such as vertex transitivity, small di-
ameter, and regularity, and are applied in modeling quantum spin networks [15,16]. The
3-Ary n-Cube is a k-Ary n-Cube with k = 3. It was first employed in the construction
of multicomputers such as Ipsc/2 and Ipsc/860, after which it was used in J-Machine,
Cray T3D, and T3E [17]. In [18–21], various k-Ary n-Cube topological characteristics have
been discussed. Due to some advantageous topological properties of 3-Ary n-Cube that
are suitable for interconnection networks, such as regularity, symmetric nature, pancyclic-
ity, reduced communication lapsed time and ease of implementation [21–23], it has been
used as the most common interconnection network in multiprocessor computing systems.
Thus, it has been used in the design of parallel computers such as Cray XT5 and Blue
Gene/L supercomputers [24] and has also been used for constructing networks in the
CamCube [25] and NovaCube data centers [26]. 3-Ary n-Cubes have attracted a lot of
research attention [27–29]. Paths, cycles with faulty nodes and links have been embedded
as guest graphs in 3-Ary n-Cubes [30,31] and 3-Ary n-Cubes have been embedded as guest
graphs in paths, cycles and grids [32,33].

In this paper, we have obtained the convex edge cuts of 3-Ary n-Cubes, embedded
circulant networks into 3-Ary n-Cubes and found the optimal wirelength of embedding
circulant networks into 3-Ary n-Cubes and vice versa. The following are the paper’s main
contributions:

(1) We have given the results and proven that the minimum wirelength of the circulant net-
work, G

(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
− 1}

)
into the 3-Ary n-Cube, Hn, and the 3-Ary n-Cube, Hn

into the circulant network, G
(
3n;±{1, 2, . . . , 3n−1}

)
are WL

(
G
(

3n;±
{

1, 2, . . . ,
⌊

3n

2

⌋
−

1
})

, Hn

)
= n3n

2

(
3n− 3n−1− 2

)
and WL

(
Hn, G

(
3n;±{1, 2, . . . , 3n−1}

)
= n3n, respec-

tively.
(2) We have proved that the dilation of an embedding h of 3-Ary n-Cube, Hn, into the

circulant network, G
(
3n;±{1, 2, . . . , 3n−1}

)
is 1.

(3) The time complexity of obtaining the minimum wirelength of the circulant network,
G
(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
− 1}

)
, into the 3-Ary n-Cube, Hn, and the 3-Ary n-Cube, Hn,

into the circulant network, G
(
3n;±{1, 2, . . . , 3n−1}

)
, is O(3n) and O(n3n), respec-

tively. The remaining part of the paper is structured as follows: Section 2 gives the
preliminary works and concepts needed for the results obtained in the paper, Section 3
gives an overview of the 3-Ary n-Cube network, Hn, Section 4 gives the minimum
wirelength of the circulant network, G

(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
− 1}

)
, into the 3-Ary n-

Cube, Hn, Section 5 gives the minimum wirelength of the 3-Ary n-Cube, Hn, into the
circulant network, G

(
3n;±{1, 2, . . . , 3n−1}

)
, Section 6 gives the time complexity of

the main results obtained and Section 7 gives the concluding remarks of the paper.

2. Fundamentals

In this section, the fundamental concepts and definitions required for the main results
of the paper are discussed.

Definition 1 ([34]). From a graph, the selection of a certain subset of vertices such that the
cardinality of edges in the subgraph having endpoints from the selected vertices is maximum among
all other subgraphs, inducing the same number of vertices, is called the optimal subgraph (or set).
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Definition 2 ([35]). For any r, s ∈ V(HV,E), then a subgraph HV,E of graph GV,E is the convex
of all shortest paths, and P(r, s) belongs to HV,E.

Definition 3 ([36]). Consider the finite and simple graphs GV,E and HV,E. Embedding the h of
GV,E into HV,E is defined as follows:

1. h is a 1-1 function from V(GV,E)→ V(HV,E);
2. Ph is a 1-1 function from E(GV,E) to {Ph(r, s) : Ph(r, s) is a path in HV,E connecting the

end vertices h(r) and h(s) for (r, s) ∈ E(GV,E)}.

Definition 4 ([36]). For every edge, er,s ∈ E(GV,E), the cardinality of edges in Ph(r, s) in HV,E
is called the dilation of er,s. The maximal dilation along all of the GV,E, edges is the embedding’s
h dilation. The dilation of GV,E into HV,E is represented as D(GV,E, HV,E), which is the lowest
dilation of the overall embedding.

Definition 5 ([36]). The cardinality of edges e = er,s of GV,E such that e belongs to the path
P(r, s) connecting vertices h(r) and h(s) in HV,E is denoted by ECh(e). ECh(GV,E, HV,E) =
max{ECh(e)|e ∈ E(HV,E)}. Then, EC(GV,E, HV,E) = min{ECh(GV,E, HV,E)|h is an embed-
ding from GV,E into HV,E}, which defines the least edge congestion of GV,E into HV,E.

Definition 6 ([8]). WLh(GV,E, HV,E) = ∑(r,s)∈E(GV,E)
dHV,E(h(u), h(v)) = ∑e∈E(HV,E)

EC(e)
is the wirelength of an embedding h of GV,E into HV,E. dHV,E(h(r).h(s))—length of the path,
Ph(r, s), in HV,E. ECh(e)—congestion in an edge e in HV,E. Then, the minimum wirelength of
GV,E into HV,E is WL(GV,E, HV,E) = min{WLh(GV,E, HV,E), and h is an embedding from
GV,E to HV,E}.

Remark 1. EC(R) = ∑e∈R EC(e), R is a collection of edges in HV,E.

Lemma 1 ([8]). Let GV,E and HV,E be any graph and h be an embedding of GV,E into HV,E. Let
R be an edgecut of HV,E such that the graph remains in two components, H1

V,E and H2
V,E, after

removing the edges of R, and let G1
V,E = h−1(H1

V,E) and G2
V,E = h−1(H2

V,E). Furthermore, R
meets the following requirements.

1. ∀ e = e(r,s) ∈ Gi
V,E, i = 1, 2,Ph(h(u), h(v)) has no edges in R.

2. ∀ e = e(r,s) in G with r ∈ G1
V,E and s ∈ G2

V,E, Ph(h(r), h(s)) has exactly one edge in R.
3. G1

V,E and G2
V,E are optimal subgraphs.

Then,

EC(R) = ∑
r∈V(G1

V,E)

degGV,E(r)− 2|E(G1
V,E)| = ∑

r∈V(G2
V,E)

degGV,E(r)− 2|E(G2
V,E)|

and ECh(R) is the minimum.

Corollary 1. If GV,E is a regular graph such that edges induced by V(G1
V,E) are an optimal set

satisfying the Lemma 1, then edges induced by V(G2
V,E) are also an optimal set.

Lemma 2 (s-Partition Lemma [37]). Let h : GV,E → HV,E be an embedding function. Let
[sE(HV,E)] represent a subset of edges of HV,E, where each e = er,s in HV,E is repeated exactly
s times. Assuming that each Rj is an edge cut of HV,E that satisfies the Congestion Lemma, let
R1, R2, . . . , Rl be a partition of [sE(HV,E)]. Then,

WLh(GV,E, HV,E) =
1
s

l

∑
j=1

EC(Rj).
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Definition 7 ([35]). The circulant network G(n;±J), J ⊆ {1, 2, . . . , i}, 1 ≤ i ≤ b n
2 c, with

undirected edges, is defined as a graph with a vertex set, V = {0, 1, . . . , n − 1} such that two
vertices l and k have an edge if E = {(l, k) : |k− l| ≡ j(mod n), j ∈ J}.

Lemma 3 ([38]). A collection of m successive vertices from the G(n;±1), 1 ≤ m ≤ n, induces an
optimal subgraph of G(n;±J), where J = {1, 2, . . . , i}, 1 ≤ i < b n

2 c, n ≥ 3.

Theorem 1 ([38]). The cardinality of edges induced in an optimal subgraph on m vertices of
G(n;±J), J = {1, 2, . . . , i}, 1 ≤ i < b n

2 c, 1 ≤ m ≤ n, n ≥ 3 is provided by

ξ =


m(m− 1)/2; m ≤ i + 1
ki− i(i + 1)/2; i + 1 < m ≤ n− i
1
2{(n−m)2 + (4i + 1)k− (2j + 1)n}; n− i < k ≤ n.

Definition 8 ([39]). In a set with integer entries of n-tuples, the lexicographic order is defined as
(u1, . . . , un) > (v1, . . . , vn) if ∃ an integer i, 1 ≤ i ≤ n, 3 uj = vj for ui > vi and 1 ≤ j < i.

Theorem 2 ([40]). If the lexicographic ordering vertices of the cartesian product G× G are opti-
mum, then any n ≥ 3 is optimal for Gn.

Corollary 2. The lexicographic ordering is the optimal ordering for obtaining the maximum
subgraph in Hn, n ≥ 2.

Definition 9 ([27]). 3-Ary n-Cube, Hn (n ≥ 1), is a graph on 3n vertices, in which each of the
vertices of the form r = (rn−1, rn−2, . . . , r0), such that 0 ≤ rl ≤ 2 for 0 ≤ l ≤ n− 1. Two vertices
r = (rn−1, rn−2, . . . , r0) and s = (sn−1, sn−2, . . . , s0) are adjacent if ∃ m, 0 ≤ m ≤ n− 1, 3
rm = sm ± 1 (mod 3) and rm = sm, for every l ∈ {0, 1, . . . , m− 1, m + 1, . . . , n− 1}.

Lemma 4 ([41]). If G is a 3-Ary n-Cube, Hn, n ≥ 2; then, IG(m) = (m1 + 0)3m1 + (m2 +
1)3m2 + (m3 + 2)3m3 + . . . + (mr + (r− 1))3mr , mi = 0, 1, 2, . . . , n, 1 ≤ i ≤ r; where IG(m) is
the maximum cardinality of edges induced for m vertices, where m = 3m1 + 3m2 + 3m3 + . . . + 3mr

and m1 ≥ m2 ≥ m3 ≥ . . . ≥ mr.

3. Structure of Hn, n ≥ 1

This section gives an overview on the recursive structure of 3-Ary n-Cube, Hn, and
explains the role of the convex edge partition in obtaining a convex subgraph when an
edge partition is given. The recursive structure of 3-Ary n-Cube, Hn, is as follows:

(i) H1 is a three-cycle, and H2 is a 3× 3-torus. We view this as three copies of H1 placed
one below the other with horizontal binding edges and vertical binding edges, as
shown in Figure 1. H3 comprises three copies of H2 placed linearly with corresponding
horizontal and vertical binding edges, as shown in Figure 1.

(ii) Hn, n ≥ 4 has a structure described as follows:

(a) When n is even, Hn comprises three copies of Hn−1 placed linearly.
(b) When n is odd, Hn comprises three copies of Hn−1 placed one below the other.
(c) All the horizontal and vertical binding edges are defined recursively as in (i).
(d) When n is odd, even if all three copies of Hn−1 are placed linearly, the graph

obtained is isomorphic to that generated as in (b).

(iii) The vertex set of Hn can be partitioned into 3n−2 sets of vertices, each inducing a
subgraph isomorphic to H2.

(iv) Hn comprises 3k copies of Hn−k subgraphs recursively, where 1 ≤ k ≤ n− 1 .
(v) There are three copies of Hn−1: Hn−1,0, Hn−1,1 and Hn−1,2. There are three set of

binding edges (Hn−1,0, Hn−1,1) joining the corresponding vertices from Hn−1,0 to
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Hn−1,1, (Hn−1,0, Hn−1,2) joining the corresponding vertices from Hn−1,0 to Hn−1,2 and
(Hn−1,1, Hn−1,2) joining the corresponding vertices from Hn−1,1 to Hn−1,2.

Figure 1. Structure of H1, H2 and H3.

Notation:

(i) (Hh
n−i,j, Hh

n−i,(j+1)mod 3) denote the edges connecting Hn−i,j and Hn−i,(j+1)mod 3 copies
in Hn lying one below the other.

(ii) (Hh
n−i,j, Hh

n−i,(j+2)mod 3) denote the edges connecting Hn−i,j and Hn−i,(j+2)mod 3 copies
in Hn lying one below the other.

(iii) (Hv
n−k,l , Hv

n−k,(l+1)mod 3) denote the edges connecting Hn−i,j and Hn−i,(j+1)mod 3 copies
in Hn lying linearlly.

(iv) (Hv
n−k,l , Hv

n−k,(l+2)mod 3) denote the edges connecting Hn−i,j and Hn−i,(j+2)mod 3 copies
in Hn lying linearlly.

Convex edge partition of Hn:
In each Hn, there are three copies of Hn−1 joined recursively by horizontal and ver-

tical binding edges, as shown in Figure 1. The edge set of Hn is partitioned in the sense
it must disconnect the graph into two convex subgraphs of Hn. For n ≥ 2, the hori-
zontal edge cuts are defined as Sj

i → {(Hh
n−i,j, Hh

n−i,(j+1)mod 3), (Hh
n−i,j, Hh

n−i,(j+2)mod 3)},
where 1 ≤ i ≤ b n

2 c and 0 ≤ j ≤ 2. The vertical edge cuts are defined as Tl
k →

{(Hv
n−k,l , Hv

n−k,(l+1)mod 3), (Hv
n−k,l , Hv

n−k,(l+2)mod 3)}, where 1 ≤ k ≤ d n
2 e and 0 ≤ l ≤ 2.

By removing the horizontal and vertical binding edges of Hn−1 in Hn recursively, the net-
work Hn can be disconnected into components, since these edges are the binding edges of
Hn−1 in Hn. One component of each of the 3n edge cuts is isomorphic to Hn−1, whereas
Hn−1 is the previous dimension of Hn and also the subgraph of Hn. Thus, every shortest
path between any two points remains in it, and so it is a convex subgraph. Since Hn is a
2n-regular graph, if there exist two components such that one component of it is a convex
subgraph, then the other component is also a convex subgraph. Thus, the edge cuts Sj

i and
Tl

k of Hn are convex edge cuts.

4. Wirelength of Embedding Circulant Network into 3-Ary n-Cube

This section comprises the results on the minimum wirelength for embedding the
circulant network, G

(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
− 1}

)
, into the 3-Ary n-Cube, Hn.

Lemma 5. The edge cuts Sj
i = {(Hh

n−i,j, Hh
n−i,(j+1)mod 3), (Hh

n−i,j, Hh
n−i,(j+2)mod 3)} for 1 ≤ i ≤

b n
2 c and 0 ≤ j ≤ 2 induce an optimal subgraph in G

(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
− 1}

)
.

Proof. Label the vertices of G
(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
− 1}

)
in clockwise direction as

0, 1, 2 . . . , 3n − 1 and Hn, considering lexicographic ordering. Let the edges of Hn be
partitioned by the edge cuts Sj

i , for 1 ≤ i ≤ b n
2 c, 0 ≤ j ≤ 2. See Figure 2. Each edge cut

Sj
i disjoins Hn into two components such that one of its components is a copy of Hn−1
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and the number of edges induced by each edge cut Sj
i of r vertices in the inverse image is

r(r− 1)/2 by Theorem 1, which induces an optimal subgraph in G
(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
−

1}
)
. Thus, the edge cuts Sj

i for 1 ≤ i ≤ b n
2 c, 0 ≤ j ≤ 2 induce an optimal subgraph in

G
(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
− 1}

)
.

Figure 2. Embedding G(9;±{1, 2, 3}) into H2.

Lemma 6. The edge cuts Tl
k = {(Hv

n−k,l , Hv
n−k,(l+1)mod 3), (Hv

n−k,l , Hv
n−k,(l+2)mod 3)}, for 1 ≤

k ≤ d n
2 e and 0 ≤ l ≤ 2 induce an optimal subgraph in G

(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
− 1}

)
.

Proof. The vertices of G
(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
− 1}

)
are labeled in clockwise direction as

0, 1, 2 . . . , 3n − 1 and Hn, considering lexicographic ordering. Let the edges of Hn be
partitioned by the edge cuts Tl

k, for 1 ≤ k ≤ d n
2 e, 0 ≤ l ≤ 2. See Figure 2. Each edge cut

Tl
k disjoins Hn into two components such that one of its components is a copy of Hn−1

and the number of edges induced by each edge cut Tl
k of r vertices in the inverse image is

r(r− 1)/2 by Theorem 1, which induces an optimal subgraph in G
(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
−

1}
)
. Thus, the edge cuts Tl

k, for 1 ≤ k ≤ d n
2 e, 0 ≤ l ≤ 2 induce an optimal subgraph in

G
(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
− 1}

)
.

Theorem 3. The wirelength of an embedding h of G
(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
− 1}

)
into Hn is the

minimum.

Proof. Consider Sj
i , 1 ≤ i ≤ b n

2 c, 0 ≤ j ≤ 2 be the horizontal edge cut of Hn and Tl
k,

1 ≤ k ≤ d n
2 e, 0 ≤ l ≤ 2 be the vertical edge cut of Hn. By Lemmas 5 and 6, each edge

cut Sj
i and Tl

k induces the maximum subgraph in G
(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
− 1}

)
, respec-

tively. For convenience, let G
(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
− 1}

)
and Hn be denoted as G and H,

respectively. The removal of Sj
i leads the graph Hn into disconnected components Hij

and Hij′ such that the inverse images in G
(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
− 1}

)
are Gij = h−1(Hij)

and Gij′ = h−1(Hij′ ), which are optimal sets in G
(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
− 1}

)
. Thus, the

edge cuts Sj
i satisfy the congestion lemma. Therefore, EC(Sj

i) is the minimum. Simi-
larly, the edge cut Tl

k leads the graph Hn into disconnected components Hkl and Hkl′

such that the inverse images in G
(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
− 1}

)
are Gkl = h−1(Hkl) and

Gkl′ = h−1(Hkl′ ), which are optimal sets in G
(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
− 1}

)
. Therefore EC(Tl

k)
is the minimum. See Figure 2. Consequently, the Partition Lemma indicates that wirelength,

WL
(

G
(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
− 1}

)
, Hn

)
, is the minimum, which is optimal.
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Remark 2. E[Yb
a ]—Edges induced by vertices in the components of the set partitioned by the edge

cut Yb
a .

Algorithm 1 Embedding of the circulant network G
(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
− 1}

)
into the

3-Ary n-Cube, Hn.

1. Let h : Hn ← G
(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
− 1}

)
;

2. h(v0) = v0, ∀ v0 ∈ V(G
(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
− 1}

)
);

3. Label the vertices of G
(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
− 1}

)
in clockwise order;

4. Label the vertices of Hn in lexicographic ordering;
5. Let Sj

i ⊂ V(Hn) and Tl
k ⊂ V(Hn) with maximum E[Sj

i ] and E[Tl
k] in

E(G
(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
− 1}

)
;

6. for 1 ≤ i ≤ b n
2 c, 1 ≤ k ≤ d n

2 e, 0 ≤ j, l ≤ 2 do

7. for all (v0, x) ∈ E(Hn) with x ∈ Sj
i , Tl

k, where Sj
i and Tl

k are edge cuts;

8. if Sj
i and Tl

k are convex sets in Hn and every E[Sj
i ] and E[Tl

k] are maximum in
G
(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
− 1}

)
then;

9. h is an optimal embedding;
10. else
11. h is not an optimal embedding;
12. end if
13. end for
14. h : Hn ← G

(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
− 1}

)
induces minimum wirelength;

15. end for
16. return h

Theorem 4. The minimum wirelength of G
(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
− 1}

)
in Hn is given by

WL
(

G
(

3n;±
{

1, 2, . . . ,
⌊3n

2

⌋
− 1
})

, Hn

)
=

n3n

2

(
3n − 3n−1 − 2

)
.

Proof. By Lemmas 1 and 2,

WL
(

G
(

3n;±
{

1, 2, . . . ,
⌊3n

2

⌋
− 1
})

, Hn

)
=

1
2

( b n
2 c

∑
i=1

2

∑
j=1

EC(Sj
i) +

d n
2 e

∑
k=1

2

∑
l=1

EC(Tl
k)
)

=
1
2

( b n
2 c

∑
i=1

2

∑
j=1

(
r|V(Gij)| − 2|E(Gij

)
|+
d n

2 e

∑
k=1

2

∑
l=1

(
r|V(Gkl)| − 2|E(Gkl

))
=

1
2

(
3
(
(3n − 3)(3n−1)− 3n−1(3n−1 − 1)

)(⌊n
2

⌋
+
⌈n

2

⌉))
=

1
2

(
3n
(

3n − 3n−1 − 2
)(⌊n

2

⌋
+
⌈n

2

⌉))
=

n3n

2

(
3n − 3n−1 − 2

)

5. Wirelength of Embedding 3-Ary n-Cube into Circulant Network

In this section, we obtain the dilation of embedding the 3-Ary n-Cube, Hn, into the
circulant network, G

(
3n;±{1, 2, . . . , 3n−1}

)
, as 1. Furthermore, we give the minimum

wirelength of it.
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Remark 3. Let the adjacent vertices u and v of Hn be represented by the labels r and s, respectively,
where r > s. For every edge (u, v) in Hn, r− s ∈ {1, 2, 3k−1, 2(3k−1)}, 2 ≤ k ≤ n and n ≥ 2.

Dilation Algorithm:
Input: 3-Ary n-Cube, Hn, and the circulant network G

(
3n;±{1, 2, . . . , 3n−1}

)
, n ≥ 2.

Algorithm: Consider the vertices of Hn and G
(
3n;±{1, 2, . . . , 3n−1}

)
with regard to

Lexicographic ordering and 0, 1, 2 . . . , 3n − 1 in the clockwise direction, respectively. Let
h be an embedding of Hn into G

(
3n;±{1, 2, . . . , 3n−1}

)
defined by h(u) = u, and assume

Ph(u, v) as the shortest route between h(u) and h(v) in G
(
3n;±{1, 2, . . . , 3n−1}

)
, for each

vertex u ∈ V(Hn) and for every edge (u, v) ∈ E(Hn). See Figure 3.
Output: An embedding h of Hn into G

(
3n;±{1, 2, . . . , 3n−1}

)
with dilation 1.

Proof of Correctness. Let 3-Ary n-Cube, Hn, and the circulant network
G
(
3n;±{1, 2, . . . , 3n−1}

)
be G and H, respectively. For every edge e = (u, v) in G, r− s ∈

{1, 2, 3k−1, 2(3k−1)}, 2 ≤ k ≤ n and n ≥ 2, we have the following cases:

r− s =


1 ; ( f (r), f (s)) ∈ E(G(3n;±{1}))
2 ; ( f (r), f (s)) ∈ E(G(3n;±{2}))
3k−1, 2(3k−1) ; ( f (r), f (s)) ∈ E(G(3n;±{3k−1})), 2 ≤ k < n, n > 2
3n−1, 2(3n−1) ; ( f (r), f (s)) ∈ E(G(3n;±{3n−1})).

Thus, for every edge (u, v) in Hn, there exists a Ph(u, v) = 1 in G
(
3n;±{1, 2, . . . , 3n−1}

)
.

Hence, the dilation of embedding h of Hn into G
(
3n;±{1, 2, . . . , 3n−1}

)
is 1. The result of

the dilation algorithm, which yields the minimum wirelength, is the following theorem:

Algorithm 2 Embedding of 3-Ary n-Cube, Hn, into the circulant network,
G
(
3n;±{1, 2, . . . , 3n−1}

)
.

1. Let h : G
(
3n;±{1, 2, . . . , 3n−1}

)
← Hn;

2. h(v0) = v0, ∀ v0 ∈ V(Hn);
3. Label the vertices of Hn in lexicographic ordering;
4. G

(
3n;±{1, 2, . . . , 3n−1}

)
should be labelled in clockwise direction;

5. For (a, b) ∈ E(Hn), dil(a, b) = |Ph(h(a), h(b))|, where Ph(h(a), h(b)) is a shortest path
between h(a) and h(b) in G

(
3n;±{1, 2, . . . , 3n−1}

)
then;

6. h induces minimum dilation;
7. else
8. h does not induces minimum dilation;
9. for e = 1 to n3n do
10. dil(a, b) for all (a, b) ∈ E(Hn) ;
11. end for
12. WL(Hn, G

(
3n;±{1, 2, . . . , 3n−1}

)
) = ∑(a,b)∈E(Hn) dil(a, b);

13. h : G
(
3n;±{1, 2, . . . , 3n−1}

)
← Hn induces minimum wirelength;

14. return h

Theorem 5. The minimum wirelength of Hn in G
(
3n;±{1, 2, . . . , 3n−1}

)
is given by

WL
(

Hn, G
(
3n;±{1, 2, . . . , 3n−1}

)
= n3n.
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Figure 3. Embedding H2 into G(9;±{1, 2, 3}).

6. Asymptotic Notation of Optimal wirelength

The total amount of time an algorithm needs to run from start to finish is its runtime
complexity. A function of the instance attributes is how many steps an algorithm requires to
complete a particular task. An algorithm’s precise step count can be extremely challenging
to determine [42]. However, by following the edge isopermetric problem and convex
edge partition techniques, and the congestion and partition lemmas, the number of steps
involved in the wirelength algorithm is computed directly, which reduces the difficulty in
calculating the time complexity of the embedding algorithm. The time required to attain
the ideal wirelength of the circulant network in the 3-Ary n-Cube and vice versa using
embedding algorithms A and B, respectively, is described in this section.

Time complexity Algorithm 1: Input: G
(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
− 1}

)
—circulant net-

work and Hn-3-Ary n-Cube.
Algorithm: Embedding Algorithm 1.
Output: The time taken to run Embedding Algorithm 1.
Method of Proof: Let the number of vertices be x = 3n. We spend x time units for

assigning the labels of x = 3n vertices. By Algorithm 1, we have 3n edge cuts. Thus, we
need 3n units of time for obtaining the edge cuts and a further 3n units of time are needed
to calculate the edge congestion on each edge cut. Finally, we need one unit of time for
calculating wirelength. Thus, the total time taken is

= x + 3n + 3n + 1

= x + 6n + 1

≤ x + x + x

≤ 3x

As a result, it takes O(x) time to obtain the optimal wirelength for embedding h of
G
(
3n;±{1, 2, . . . ,

⌊ 3n

2
⌋
− 1}

)
into Hn.

Time complexity Algorithm 2:
Input: Hn—3-Ary n-Cube and G

(
3n;±{1, 2, . . . , 3n−1}

)
—circulant network.

Algorithm: Embedding Algorithm 2.
Output: Embedding Algorithm 2 run time.
Method of Proof: Let the number of vertices be x = 3n. We spend x time units for

assigning the labels of x = 3n vertices. By Algorithm 2, we have n3n edges. Thus, we need
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n3n units of time for obtaining the dilation of each edge. Finally, we need one unit of time
for calculating wirelength. Thus, the total time taken is

= x + n3n + 1

= x + nx + 1

≤ nx + nx + nx

≤ 3nx

Consequently, it takes O(nx) time of embedding h to obtain the optimum wirelength
of Hn in G

(
3n;±{1, 2, . . . , 3n−1}

)
.

7. Conclusions

This paper deals with the results regarding the minimum wirelength of embedding
and time complexity for inputting the same circulant network into the 3-Ary n-Cube and
vice versa. Furthermore, we have given the results of the dilation of an embedding h of Hn
into G

(
3n;±{1, 2, . . . , 3n−1}

)
, found to be 1, and 3-Ary n-Cube network’s convex edge

partition. It is interesting to note that 3-Ary n-Cube satisfies both the convex edge partition
and edge isoperimetric problem, which are the necessary conditions for the network to
play the role of both host and guest network in embedding problems. From the literature, it
can be seen that few networks have been explored to date for use in embedding problems
as both host and guest networks using convex edge partition and the edge isoperimetric
problem, respectively. Finding such networks will be a good research focus in the future.
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