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Abstract: Malaria is a serious illness caused by a parasite, called Plasmodium, transmitted to humans
through the bites of female Anopheles mosquitoes. The parasite infects and destroys the red blood
cells in the human body leading to symptoms, such as fever, headache, and flu-like illness. Awareness
campaigns that educate people about malaria prevention and control reduce transmission of the
disease. In this research, a mathematical model is proposed to study the impact of awareness-based
control measures on the transmission dynamics of malaria. Some basic properties of the proposed
model, such as non-negativity and boundedness of the solutions, the existence of the equilibrium
points, and their stability properties, have been studied using qualitative theory. Disease-free
equilibrium is globally asymptotic when the basic reproduction number,R0, is less than the number
of current cases. Finally, optimal control theory is applied to minimize the cost of disease control
and solve the optimal control problem by applying Pontryagin’s minimum principle. Numerical
simulations have been provided for the confirmation of the analytical results. Endemic equilibrium
exists forR0 > 1, and a forward transcritical bifurcation occurs atR0 = 1. The optimal profiles of the
treatment process, organizing awareness campaigns, and insecticide uses are obtained for the cost-
effectiveness of malaria management. This research concludes that awareness campaigns through
social media with an optimal control approach are best for cost-effective malaria management.

Keywords: mediacampaign; disease awareness; mathematical model; basic reproduction number;
global stability; optimal control

MSC: 49K15

1. Introduction

Malaria is a mosquito-borne human disease caused by a parasite. Among the five
parasite species, two species—P. falciparum and P. vivax—pose the greatest threat, and
P. falciparum is the deadliest for malaria infection, while P. vivax is the most dominant malaria
parasite in most countries outside sub-Saharan Africa. The World Health Organization
(WHO) in 2020 reported approximately 241 million malaria cases worldwide, whereas the
number of malaria deaths was estimated as 627,000 in 2020 [1,2]. In 2020, Africa was the
leading region, facing 95% of malaria cases with 96% of malaria deaths. Among the total
casualties, 80% were children under the age of 5 in that area [3]. Despite decades of global
eradication and control efforts, the disease is re-emerging in areas where control efforts
were once effective [4].

Media campaigns have been used to promote insecticide-treated net (ITN)/bed net
usage to inhibit the spread of malaria [5]. The efforts to relay ITN information to the public
have been instrumental in increasing the use of mosquito nets. Media campaigns use
multiple methods to reach the public [6]. The most meaningful result can be seen when a
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health worker or a volunteer provides news of successful antimalarial campaigns to the
people [7,8].

Mathematical modelling of the transmission dynamics of malaria offer a better idea of
the disease’s spread and impact. It helps prepare for the future and inform appropriate
policy making to control the disease [9–12]. In the past, several mathematical models of
the transmission dynamics of malaria following the simple S–I–R model were published.
Many researchers have modified these models by incorporating more ideas associated
with malaria dynamics and possible control of the disease [11,13–17]. However, these
studies did not reflect the impact of awareness movements on controlling malaria. Aware-
ness movements provide substantial tools for controlling the spread of malaria [18–20].
Misra et al. [21] proposed a mathematical model to measure the impact that awareness
social media campaigns have on vector-borne diseases, considering a constant disease
transmission rate. They divided the human population into three sub-populations, namely
susceptible, infected, and aware-people. In addition, a dispersed population M(t), rep-
resenting the number of media campaigns, was used to measure the importance of the
media campaigns.

However, these efforts have been unsuccessful in controlling the spread of malaria.
Therefore, more model-based research on malaria dynamics and studies on the influence of
awareness campaigns [13,22,23] are needed. In [23], the authors proposed a mathematical
model to reduce malaria by dividing the infected population into two sub-populations:
those unaware of their infection and those aware of their infection. The authors further
assumed that the growth rate of awareness programs was proportional to the total of
individuals who were unaware they were infected. Besides the effect of the awareness
campaign, the individuals who know they are infected avoid contact with mosquitoes. The
authors in [22] designed a mathematical model for reviewing the dynamics of malaria and
the influence awareness-based interventions have on controlling its spread. They supposed
that the rates of disease spread from vector to human and from human to vector were
declining functions of the ‘level of awareness’. Moreover, changes in malaria transmission
were implicated as a function of ‘level of awareness’. The control measures were supposed
to increase the ‘level of awareness’. In [13], the authors developed a mathematical model
by dividing the susceptible population into two sub-populations: aware and unaware
populations. They assumed a constant awareness rate and that a portion of the unaware
susceptible individuals would join the aware susceptible individuals. The authors also
considered pragmatic optimal control theory for vector control and cost of awareness.

In this article, we propose a deterministic mathematical model to study the dynamics
of malaria. The impact of interventions, such as mosquito nets, insecticides, etc., are ana-
lyzed using the proposed model. Awareness is considered as a model variable that varies
with time. The susceptible population is divided into aware and unaware classes. Aware in-
dividuals can become unaware, but the rate declines with the level of awareness. Moreover,
recovery depends on awareness-based treatments. Lastly, three time-dependent control
functions are included in the model for the cost of treatment, the cost of insecticides, and the
cost of an awareness campaign via social media to reduce the cost of malaria management.

The paper is organized as follows: In Section 2, a mathematical model for an aware-
ness campaign relating to malaria is defined. Some preliminary results, namely non-
negativity, boundedness of solutions, and the basic reproduction number, are provided in
Section 3. The stability analysis of equilibrium points is carried out using qualitative theory
in Section 4. Optimal control analysis is presented in Section 6. In Section 7, numerical
simulations confirm the analytical results. In Section 8, the present work is compared
with published articles, and the significance of the obtained results are discussed. Finally,
a conclusion in Section 9 finishes the paper.

2. Mathematical Model Derivation

In this section, the mathematical model is proposed for malaria transmission dynamics
using the following assumptions.
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The proposed model contains two populations, human and mosquito. An S–I–S type
mathematical model is used to capture malaria transmission dynamics in a human popu-
lation. As immunity to malaria is not fully attained and declines with time, without new
contacts, individuals may loss immunity and become susceptible again. For the mosquito
population, an S–I type model is considered, assuming that the infected mosquitoes do not
recover from the malaria parasites.

The human population is divided into three parts, susceptible unaware Hu, aware Ha,
and infected Hi, with a total population N, given by N = Hu + Ha + Hi. Similarly, the vector
population is split into susceptible Vs and infected Vi. For the mosquito population, all
newborns are supposed to be susceptible, and no infected individuals are assumed to
come from outside the community [22]. The ‘level of awareness’, M(t), is considered as a
separate population. Figure 1 shows the interactions between the model populations [22].

Let Πh be the constant growth of the human population, either by birth or immigration.
The whole human population experiences a natural mortality dh. Unaware people become
aware due to the awareness campaign through social media at a rate α. It is assumed that
being aware, people will take all necessary precautions, such as use mosquito nets and
spray insecticides, for personal defense from the disease. Thus, the infection rate decreases
with the increase in the level of awareness. Aware people may be unaware at a rate g, but
the rate decreases with the level of awareness M(t) [24]. The model captures this fact with
the term gHa

1+M .

Figure 1. Schematic diagram of the model (1): interactions between model populations are shown.

Let Πv be the constant growth rate of the susceptible mosquito population. The rate of
infections for susceptible humans is λi, i = 1, 2 and that of susceptible vectors is β.

In the modeling development, it is assumed that the media campaigns increase the
level of awareness regarding self-protection and the methods for reducing the mosquito
population [22]. Here, the level of awareness among people rises at a constant rate ω due
to the campaign through global sources, such as radio and TV. It also increases through
local campaigns and is proportional to the number of infected cases at a rate σ; it declines
at a rate θ due to fading of memory [25].
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Moreover, the constants r and δ, respectively, signify the recovery rate and disease-
induced death rate of the population. The recovery of infected humans relies on the
awareness campaign. For the mosquito population, µ denotes the natural death rate.

Knowing the disease and control measures through the awareness movements, people
will use insecticides to eliminate mosquitoes at a rate γ, modeled via the term γMVs and
γMVi, where γ is the maximum rate of insecticide usage.

With the above assumptions, the following mathematical model is derived:

dHu

dt
=Πh − αHu M− λ1HuVi

N
− dhHu +

gHa

1 + M
,

dHa

dt
= αHu M− dhHa + rHi M−

λ2HaVi
N

− gHa

1 + M
,

dHi
dt

=
λ1HuVi

N
+

λ2HaVi
N

− rHi M− (dh + δ)Hi, (1)

dVs

dt
=Πv −

βHiVs

N
− µVs − γVs M,

dVi
dt

=
βHiVs

N
− µVi − γVi M,

dM
dt

=ω + σHi − θM.

Subjected to the initial conditions

Hu(0) = Hu0 > 0, Ha(0) = Ha0 > 0, Hi(0) = Hi0 > 0, (2)

Vs(0) = Vs0 > 0, Vi(0) = Vi0 > 0, M(0) = M0 > 0.

3. Basic Properties of the Model

In this section, the basic properties of system (1), such as non-negativity and bounded-
ness of solutions, are discussed. In addition, the basic reproduction number is determined
for analysing the dynamics of system (1).

3.1. Non-Negativity and Boundedness of the Solutions

The Hu, Ha, Hi, Vs, Vi, M for the effect of awareness on the transmission dynamics of
malaria will be analyzed in a biologically and mathematically viable region as follows.
This region should be feasible for habitation by both the human and mosquito populations.
Hereafter, the following proposition is established.

Proposition 1. All solutions of system (1) with initial conditions in (2) are positive for all t > 0.

Proof. Let

T1 = sup{t > 0 : Hu(t) > 0, Ha(t) > 0, Hi(t) > 0, Vs(t) > 0, Vi(t) > 0, M(t) > 0}.

Since Hu(0) > 0, Ha(0) > 0, Hi(0) > 0, Vs(0) > 0, Vi(0) > 0, and M(0) > 0, then
T1 > 0. If T1 < ∞, then Hu, Ha, Hi, Vs, Vi, M are all equal to zero at T1.

It follows from the first equation of system (1) that

dHu

dt
= Πh − αHu M− λ1HuVi

N
− dh Hu +

gHa

1 + M
.

That is,
dHu

dt
+

(
dh + αM +

λ1 Vi
N

)
Hu = Πh +

gHa

1 + M
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Thus,

d
dt

{
Hu(t) exp

[∫ t

0

(
dh + αM(ξ) +

λ1Vi(ξ)

N(ξ)

)
dξ

]}
=

(
Πh +

gHa

1 + M

)
exp

[∫ t

0

(
dh + αM(ξ) +

λ1Vi(ξ)

N(ξ)

)
dξ

]
.

Hence,

Hu(T1) exp
[∫ t

0

(
dh + αM(ξ) +

λ1Vi(ξ)

N(ξ)

)
dξ

]
− Hu(0)

=
∫ T1

0

{(
Πh +

gHa

1 + M

)
exp

[∫ t

0

(
dh + αM(ξ) +

λ1Vi(ξ)

N(ξ)

)
dξ

]}
dv

So that,

Hu(T1) = Hu(0) exp
[∫ t

0

(
dh + αM(ξ) +

λ1Vi(ξ)

N(ξ)

)
dξ

]
+ exp

[∫ t

0

(
dh + αM(ξ) +

λ1Vi(ξ)

N(ξ)

)
dξ

]
×
∫ T1

0

{(
Πh +

gHa

1 + M

)
exp

[∫ t

0

(
dh + αM(ξ) +

λ1Vi(ξ)

N(ξ)

)
dξ

]}
dv > 0

From the second equation of system (1), we can write

dHa

dt
= αHu M− dh Ha + rHi M−

λ2HaVi
N

− gHa

1 + M

That is
dHa

dt
+

(
dh +

λ2 Vi
N

+
g

1 + M

)
Ha = αHu M + rHi M

Thus,
d
dt

{
Ha(t) exp

[∫ t

0

(
dh +

λ2 Vi(ξ)

N(ξ)
+

g
1 + M(ξ)

)
dξ

]}
= (αHu M + rHi M) exp

[∫ t

0

(
dh +

λ2 Vi(ξ)

N(ξ)
+

g
1 + M(ξ)

)
dξ

]
Hence,

Ha(T1) exp
[∫ t

0

(
dh +

λ2 Vi(ξ)

N(ξ)
+

g
1 + M(ξ)

)
dξ

]
− Ha(0)

=
∫ T1

0
(αHu M + rHi M) exp

[∫ t

0

(
dh +

λ2 Vi(ξ)

N(ξ)
+

g
1 + M(ξ)

)
dξ

]
dv

So that

Ha(T1) = Ha(0) exp
[∫ t

0

(
dh +

λ2 Vi(ξ)

N(ξ)
+

g
1 + M(ξ)

)
dξ

]
+ exp

[∫ t

0

(
dh +

λ2 Vi(ξ)

N(ξ)
+

g
1 + M(ξ)

)
dξ

]
×
∫ T1

0
(αHu M + rHi M) exp

[∫ t

0

(
dh +

λ2 Vi(ξ)

N(ξ)
+

g
1 + M(ξ)

)
dξ

]
dv > 0

Following the same procedure, it can be shown that Hi > 0, Vi > 0, and M > 0 for all
t > 0.



Mathematics 2023, 11, 1687 6 of 25

Proposition 2. Every solution of system (1) is uniformly bounded in the region

Ω =
{
(Hu, Ha, Hi, Vs, Vi, M) ∈ R6

+ : (3)

0 ≤ Hu + Ha + Hi ≤
Πh
dh

, 0 ≤ Vs + Vi ≤
Πv

µ
, 0 ≤ M ≤ ωµ + σΠv

µθ

}
,

Proof. At any time t, N(t) = Hu(t) + Ha(t) + Hi(t). Then, the derivative of N(t) with
respect to time t, along the solution of system (1) is determined as

dN
dt

= Πh−αHu M− λ1HuVi
N

− dhHu +
gHa

1 + M
+ αHu M− dh Ha + rHi M−

λ2HaVi
N

− gHa

1 + M
+

λ1HuVi
N

+
λ2HaVi

N
− rHi M− (dh + δ)Hi

= Πh−dhHu − dhHa − (dh + δ)Hi

= Πh−dh(Hu + Ha + Hi)− δ Hi

= Πh−dhN − δHi ≤ Πh − dhN

Then, from the above, we have

dN
dt

≤ Πh − dhN ⇒ dN
dt

+ dhN ≤ Πh

⇒ N(t) ≤ Πh
dh

(
1− e−dht

)
+ N(0)e−dht.

So that
lim sup

t→+∞
N(t) ≤ Πh

dh
.

That means
0 ≤ Hu + Ha + Hi ≤

Πh
dh

. (4)

Similarly, for any time t, if we let Nv(t) = Vs(t) + Vi(t), then the derivative of Nv with
respect to t along the solution of system (1) is obtained as

dNv

dt
= Πv−

βHiVs

N
− µ Vs

− γVs M +
βHiVs

N
− µVi − γVi M

= Πv−µVs − µVi − γ(Vs + Vi)M

= Πv−µ(Vs + Vi)− γ(Vs + Vi)M

= Πv−µNv − γNv M ≤ Πv − µNv

Thus, the above calculation gives

dNv

dt
≤ Πv − µNv,

⇒ dNv

dt
+ µNv ≤ Πv,

⇒ Nv(t) ≤
Πv

µ

(
1− e−µt)+ Nv(0)e−µt.

So that
lim sup

t→+∞
Nv(t) ≤

Πv

µ



Mathematics 2023, 11, 1687 7 of 25

Thus, we finally have

0 ≤ Vs + Vi ≤
Πv

µ
. (5)

Finally, from the last equation of system (1), one can obtain

dM
dt

= ω + σVi − θ M

⇒ dM
dt

+ θM ≤ ω + σ Vi

⇒ dM
dt

+ θM ≤ ω + σ

(
Πh
µ

)
⇒ dM

dt
+ θM ≤ ωµ + σΠv

µ

On solving this linear differential inequality, we obtain

M(t) ≤ ωµ + σΠv

µθ

(
1− e−θt

)
+ M0e−θt

So that
lim sup

t→+∞
M(t) ≤ ωµ + σΠv

µθ

Hence,

0 ≤ M(t) ≤ ωµ + σΠv

µθ
(6)

From (4)–(6), we can conclude that the set Ω is positively invariant. Therefore, it is
adequate to contemplate the dynamics of system (1) in Ω. In this region, the model is
biologically and mathematically well-posed. Moreover, each solution of the model (1) with
initial condition (2) that starts in Ω remains in Ω for all t > 0.

3.2. The Basic Reproduction Number

The basic reproduction number, generally denoted by R0, is often considered as the
threshold quantity that determines the dynamic behavior of the model [26].

The method as used by Heffernan et al. in [27] has been followed for determining the
basic reproduction numberR0.

Here, the next generation matrix is denoted by G. It comprises two matrices, namely
F and V, where

F =

(
0 λ1k1+λ2k2

k3 N0
βΠvθ

(rω+µθ)N0
0

)
, V =

( rω
θ + dh + σ 0

0 µ + rω
θ

)

The reproduction number is obtained as R0 = ρ(FV−1). Here, ρ is the dominant
eigenvalue of the matrix G = FV−1.

Hence,

R0 =
βθ3(λ1k1 + λ2k2)Πv

(µθ − rω)(rω + µθ)(rω + θdh + σθ)k3N2
0

, (7)

where, k1 = θ Πh(gθ + ω dh + θ dh), k2 = Πhα ω (θ + ω), k3 = dh
(
α ω2 + θ (α + dh)ω + (g

+ dh)θ
2), N0 = H0

u + H0
i .

4. Existence of Equilibrium Points

The model system (1) has two equilibrium points, namely the disease-free equilibrium,
(DFE), E0 and the endemic equilibrium point (EEP), E∗.
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4.1. The Disease-Free Equilibrium (DFE)

The system (1) has a disease-free equilibrium E0 = (H0
u, H0

a , 0, V0
s , 0, M0), where

H0
u =

θ Πh(gθ + ω dh + θ dh)

dh(α ω2 + θ (α + dh)ω + (g + dh)θ2)
,

H0
a =

Πhα ω (θ + ω)

dh(α ω2 + θ (α + dh)ω + (g + dh)θ2)
,

V0
s =

Πvθ

γ ω + µ θ
,

M0 =
ω

θ
.

4.2. The Endemic Equilibrium Point (EEP)

The endemic equilibrium point of the malaria model (1) is represented as E1 =
(H∗u , H∗a , H∗i , V∗s , V∗i , M∗), where

H∗i =
θM∗ −ω

σ

V∗i =
ΠvβH∗i

(mu + γM∗)2N∗ + βH∗i )µ + γM∗
,

H∗a =
(1 + M∗){−d2N∗ω− αM∗N∗(dhω−Πhσ) + M∗N∗(d2

hθ + αdh M∗θ)}
dhσ
[
dhN∗ + gN∗ + M∗N∗(α + dh + αM∗) + λ1V∗i (1 + M∗)

]
+

(1 + M∗)(−dhλ1ωV∗i + λ1ΠhσV∗i + dhλ1M∗θV∗i )
dhσ
[
dhN∗ + gN∗ + M∗N∗(α + dh + αM∗) + λ1V∗i (1 + M∗)

] ,

H∗u =
(Πh(1 + M∗) + gH∗a )N∗

(1 + M∗){(αM∗ + dh)N∗ + λ1V∗i }
,

V∗s =
ΠvN∗

(mu + γM∗)N∗ + β ∗ H∗i

where N∗ = Πh−δH∗i
dh

, and M∗ is the positive root of

φ(M) = Vi(λ1Hu + λ2Ha)− Hi(rM + d + δ) = 0. (8)

Remark 1. Here, we derive that H∗i , H∗u , H∗a , V∗i , V∗s in terms of M∗ and M∗ can be determined
numerically using (8). Detailed numerical calculations show that EEP exists whenR0 > 1, that is
when DFE is unstable (Figure 2).

Version March 30, 2023 submitted to Journal Not Specified 16 of 26

1 2 3 4 5 6
R0

0

5000

10000

15000
(a)

1 2 3 4 5 6

R0

0

2

4

6
×10

4 (b)

Hi

Vi

Figure 2. Forward transcritical bifurcation: equilibrium values of infected human and infective
vectors are plotted with respect to the basic reproduction number R0. The parameter β is varied and
rest of the parameters’ values are taken from Table 1.

0 200 400 600

 Time (day)

0

1

2

H
u
  

×10
4 (a)

0 200 400 600

  Time (day)

0

1

2

H
a
  

×10
4 (b)

0 200 400 600

  Time (day)

0

1

2

H
i
  

×10
4 (c)

0 200 400 600

  Time (day)

0

5

10

V
s
  

×10
4 (d)

0 200 400 600

  Time (day)

0

2

4

6

V
i
  

×10
4 (e)

0 200 400 600

  Time (day)

0

5

10

M  

(f)

σ=0, ω=0

σ=0.01, ω=0.03

Figure 3. Numerical solution of the system (1) with and without the impact of awareness.

Figure 2. Cont.



Mathematics 2023, 11, 1687 9 of 25

Version March 30, 2023 submitted to Journal Not Specified 16 of 26

1 2 3 4 5 6
R0

0

5000

10000

15000
(a)

1 2 3 4 5 6

R0

0

2

4

6
×10

4 (b)

Hi

Vi

Figure 2. Forward transcritical bifurcation: equilibrium values of infected human and infective
vectors are plotted with respect to the basic reproduction number R0. The parameter β is varied and
rest of the parameters’ values are taken from Table 1.

0 200 400 600

 Time (day)

0

1

2

H
u
  

×10
4 (a)

0 200 400 600

  Time (day)

0

1

2

H
a
  

×10
4 (b)

0 200 400 600

  Time (day)

0

1

2

H
i
  

×10
4 (c)

0 200 400 600

  Time (day)

0

5

10

V
s
  

×10
4 (d)

0 200 400 600

  Time (day)

0

2

4

6

V
i
  

×10
4 (e)

0 200 400 600

  Time (day)

0

5

10

M  

(f)

σ=0, ω=0

σ=0.01, ω=0.03

Figure 3. Numerical solution of the system (1) with and without the impact of awareness.

Figure 2. Forward transcritical bifurcation: equilibrium values of (a) infected human and (b) infective
vectors are plotted with respect to the basic reproduction numberR0. The parameter β is varied, and
the rest of the parameters’ values are taken from Table 1.

Table 1. Biological meanings of variables, parameters used in the model (1), and values of the
parameters used for numerical simulations [22,28].

Variables/ Descriptions ValuesParameters

Hu(t) Number of unaware humans at time t —
Ha(t) Number of aware humans at time t —
Hi(t) Number of infected humans at time t —
Vs(t) Number of susceptible mosquitoes at time t —
Vi(t) Number of infective mosquitoes at time t —
M(t) Level of awareness due to media campaign at time t —

λ1 Disease transmission from 0.02
infected mosquitoes to unaware humans

α Rate of awareness by media campaign 0.001
λ2 Disease transmission from 0.002

infected mosquitoes to aware humans
β Infection rate of vector 0.25

infected humans to susceptible mosquitoes
Πh Recruitment rate of susceptible humans 400
Πv Recruitment rate of susceptible mosquitoes 10,000
µ Natural death rate of mosquitoes 0.12
r Recovery rate of infected humans due to medication 0.001

dh Natural death rate of humans 0.002
δ Disease-induced death rate for human population 0.01
γ Efficacy of insecticide 0.003
θ Fading of memory 0.01

5. Jacobian Matrix and Stability Analysis of Equilibrium Points

The Jacobian matrix at any steady point E(Hu, Ha, Hi, Vs, Vi, M) is given by

JM(E) = [Jij]6×6, (9)

where the elements of the matrix JM are given below:

J11 = −αM− λ1Vi
N

+
λ1Vi Hu

N2 − dh, J12 =
λ1Vi Hu

N2 +
g

1 + M
,

J13 =
λ1Vi Hu

N2 , J14 = 0, J15 =
λ1Hu

N2 , J16 =
−gHa

(1 + M)2 ,
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J21 = αM, J22 = −dh −
λ2Vi

N
+

λ2Vi Ha

N2 − g
(1 + M)

, J23 = rM +
λ2Vi Ha

N2 , J24 = 0,

J25 =
λ2Ha

N
, J26 = rHi + αHu +

gHa

(1 + M)2 ,

J31 =
λ1Vi

N
− λ1Vi Hu

N2 , J32 =
λ2Vi

N
− λ2Vi Ha

N2 , J33 = −(d + δ)− rM, J34 = 0,

J35 =
λ1Hu + λ2Ha

N
, J36 = −rHi,

J41 =
βHiVs

N2 , J42 =
βHiVs

N2 , J43 =
βHiVs

N2 − βVs

N
, J44 = − βHi

N
− µ− γM,

J45 = 0, J46 = −γVs,

J51 = − βHiVs

N2 , J52 = − βHiVs

N2 , J53 = − βHiVs

N2 +
βVs

N
, J54 =

βHi
N

,

J55 = −µ− γM, J56 = −γVi,

J61 = 0, J62 = 0, J63 = σ, J64 = 0, J65 = 0, J66 = −θ.

5.1. Local Stability Analysis of Disease-Free Equilibrium (DFE)

The following theorem analyses the local stability of DFE.

Theorem 1. The DFE of the model Equation (1), given by E0, is locally asymptotically stable (LAS)
if R0 < 1 and unstable if R0 > 1.

Proof. Using (9), we calculate the Jacobian matrix JM(E0) at the disease-free equilibrium
point E0 as,



− α ω
θ − dh − θ g

α ω+θ 0 0 λ1k1
k3 N0

α k1
k3 N0

+
θ2gk2

k3(α ω+θ)2

− α2ω
θ −dh − θ g

α ω+θ − rα ω
θ 0 λ2k2

k3 N0
− α k1

k3 N0
− θ2gk2

k3(α ω+θ)2

0 0 − rα ω
θ − δ− dh 0 − λ1k1

k3 N0
− λ2k2

k3 N0
0

0 0 β Πvθ
(γ ω+µ θ)N0

−µ− γ α ω
θ 0 γ β Πvθ

(γ ω+µ θ)N0

0 0 − β Πvθ
(γ ω+µ θ)N0

0 −µ− γ α ω
θ 0

0 0 0 0 −σ −θ


.

The characteristic equation of J(E0) in x is

F(x) = (x + µ +
γαω

θ
)(x + θ)(x2 + l1x + l2)(x2 + m1x + m2) = 0, (10)

The coefficients of (10) are given below:

l1 = − J̄11 − J̄22, l2 = − J̄12 J̄21 + J̄11 J̄22,

and
m1 = − J̄33 − J̄44, m2 = − J̄35 J̄43 + J̄33 J̄45,
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where,

J̄11 = −α ω

θ
− dh, J̄12 = − θ g

α ω + θ
, J̄14 =

λ1k1

k3N0
,

J̄21 =
α2ω

θ
, J̄22 = −dh −

θ g
α ω + θ

, J̄23 = − rα ω

θ
, J̄24 =

λ2k2

k3N0
,

J̄33 = −( rω

θ
+ δ + dh), J̄35 =

λ1k1

k3N0
+

λ2k2

k3N0
,

J̄43 =
βΠvθ

(γω + µθ)N0
, J̄45 = −

(
µ +

γ α ω

θ

)
.

Two eigenvalues, −(µ + γαω
θ ) and −θ, are negative. Since l1, l2, and m1 are positive,

according to Routh–Hurwitz criteria, the rest of the eigenvalues are negative only if m2 > 0,
that is if − J̄35 J̄43 + J̄33 J̄45 > 0⇒ J̄33 J̄45 > J̄35 J̄43.

This implies βθ3(λ1k1 + λ2k2)Πv < (µθ − rω)(rω + µθ)(rω + θdh + σθ)k3N2
0 .

This givesR0 < 1.
Therefore, the disease-free equilibrium of the malaria model (1) is locally asymptoti-

cally stable whenR0 < 1.

Remark 2. From an epidemological point of view, malaria can be eliminated from the community
when R0 < 1. If R0 < 1, then on average an infected individual produces less than one new infected
individual over its infectious period, and the infection dies out. However, if R0 > 1, then each
infected individual produces on average more than one infection, and the disease persists and invades
the population. We verified the results for our systems using numerical simulations (see Figure 2).

5.2. Global Stability of DFE

This subsection investigates the global asymptotic stability of the disease-free equilib-
rium (DFE) following the method proposed in [29].

The system (1) can be rewritten as{
dX
dt = F(X, Z),
dZ
dt = G(X, Z), G(X, 0) = 0,

(11)

where X = (Hu, Ha) is the uninfected, and Z = (Hi, Vs, Vi) is the infected population. In
addition, E0 = (X0, 0) denotes the DFE of system (11). If the DFE satisfies the following
two conditions,

(i) For dX
dt = F(X, 0) X0, is globally asymptotically stable,

(ii) dZ
dt = DZG(X, 0)Z− Ĝ(X, Z), Ĝ(X, Z) ≥ 0,

then E0 is globally asymptotically stable [29].
Using the above result, we derive the following theorem for system (1).

Theorem 2. For R0 < 1, the DFE E0 = (X0, 0) of system (1) is globally asymptotically stable if:
(a) the conditions (i) and (ii) are satisfied, and (b) R0 < 1.

Proof. We introduce two new variables X = (Hu, Ha) and Z = (Hi, Vs, Vi) to divide the
system into two subsystems. From Equation (1), we have two vector-valued functions,
G(X, Z) and F(X, Z), given by

F(X, Z) =

(
Πh − αHu M− λ1 HuVi

N − dh Hu +
gHa

1+M
αHu M− dh Ha + rHi M− λ2 HaVi

N − gHa
1+M

)
,
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and

G(X, Z) =


λ1 HuVi

N + λ2 HaVi
N − rHi M− (dh + δ)Hi

Πv − βHiVs
N − µVs − γVs M

βHiVs
N − µVi − γVi M

.

The reduced system corresponding to condition (i) is obtained as

dHu

dt
= Πh − dh Hu + gHa, (12)

dHa

dt
= −(dh + g)Ha.

We note that this asymptomatic dynamic is independent of the initial conditions in
Ω; therefore, the convergence of the solutions of the reduced system (12) is global in Ω.
We compute

G(X, Z) = DZG(X0, 0)Z− Ĝ(X, Z)

and show that Ĝ(X, Z) ≥ 0 : Now,

DZG(X0, 0) = A =

 −rM− dh − δ 0 λ1 Hu+λ2 Ha
N

0 − βHi
N − µ− rM 0

0 βHi
N −µ− γM



=

 −rM− dh − δ 0 λ1 Hu+λ2 Ha
N

0 −µ− rM 0
0 0 −µ− γM

.

Thus, we obtain

Ĝ(X, Z) =


(

λ1 Hu+λ2 Ha
N

)
Vi + rM

Πv +
(

µ− βHi
N

)
Vs

0

.

Here, µ ≥ βHi
N . Thus, Ĝ(X, Z) ≥ 0 for all (X, Z) ∈ Ω. In addition, since all off-diagonal

elements of the matrix A are non-negative, A is an M-matrix. Therefore, this proves that
the DFE is globally asymptotically stable (GAS).

5.3. Local Stability of EEP

Using the Jacobian matrix JM in (9), a characteristic equation in ξ can be obtained from
the following relation,

ψ(ξ) = |JM − ξ I| = 0, (13)

where I is a 6× 6 identity matrix.
The characteristic equation at E∗ is derived from (13) as,

ξ6 + A1ξ5 + A2ξ4 + A3ξ3 + A4ξ2 + A5ξ + A6 = 0 (14)

The coefficients of (14) are given in Appendix A.
According to Routh–Hurwitz conditions, the characteristic Equation (14) has roots

with negative real parts if the following conditions are satisfied:
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i. A1 > 0,

ii. A1 A2 − A3 > 0,

iii. A3(A1 A2 − A3)− A1(A1 A4 − A5) > 0,

iv. A4

[
A3(A1 A2 − A3)− A1(A1 A4 − A5)

]
(15)

−A5

[
A2(A1 A2 − A3)− (A1 A4 − A5)

]
> 0,

v. A6

[
A1 A2 A3 A4 A5 − A2

3 A4 A5 − A2
1 A2

4 A5 − A1 A2
2 A2

5

+A2 A3 A2
5 + 2A1 A4 A2

5 − A3
5 − A1 A2 A2

3 A6 + A3
3 A6

+A2
1 A3 A4 A6 + 2A2

1 A2 A5 A6 − 3A1 A3 A5 A6 − A3
1 A2

6

]
> 0.

6. The Optimal Control Problem

In this section, the system (1) is reformulated by incorporating three time dependent
control functions, C1(t), C2(t) and C3(t). The first control function C1(t) is taken for con-
trolling the cost of treatment, the second control C2(t) for controlling the cost of insecticides,
and the third control C3(t) is for control of the cost of arranging awareness campaigns.

The system (1) is reformulated incorporating the control parameters Ci, i = 1, 2, 3
as follows, 

dHu

dt
=Πh − αHu M− λ1HuVi

N
− dhHu +

gHa

1 + M
,

dHa

dt
=αHu M− dhHa + C1rHi M−

λ2HaVi
N

− gHa

1 + M
,

dHi
dt

=
λ1HuVi

N
− (dh + δ)Hi − C1rHi M +

λ2HaVi
N

,

dVs

dt
=Πv −

βHiVs

N
− µVs − C2γVs M,

dVi
dt

=
βHiVs

N
− µVi − C2γVi M,

dM
dt

=C3ω + σHi − θM.

(16)

with the initial conditions

Hu(0) = Hu0, Ha(0) = Ha0, Hi(0) = Hi0, Vs(0) = Vs0, Vi(0) = Vi0, and M(0) = M0 (17)

The objective function for the minimization problem is proposed as

J(C1, C2, C3) =
∫ t f

t0

[A1C1(t)2 + A2C2(t)2 + A3C3(t)2 + P1Hi(t)− P2Ha(t)2]dt,

where the quantities A1, A2, and A3 are positive constants representing the weight constants
on the benefit of the cost, whereas the quantities P1 and P2 are the penalty multipliers.
In the optimal control problem, we assume that the value t f is fixed.

For the optimal control problem, we have assumed a quadratic objective functional
because the cost takes a nonlinear form, and it also prevents the bang-bang or singular
optimal control cases [30].

The intention here is to find the optimal profiles of the control functions C1(t), C2(t),
and C3(t), denoted, respectively, as Ci

∗(t), i = 1, 2, 3 so that J(C1, C2, C3) is minimum.
That means

J(C∗1 , C∗2 , C∗3 ) = min(J(C1, C2, C3) : (C1, C2, C3) ∈ U ), (18)
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subject to the state system (16), where

U = {(C1, C2, C3) : Ci(t) is Lebesgue measurable and 0 ≤ Ci(t) ≤ 1, i = 1, 2, 3, } (19)

is an admissible control set.

6.1. Existence of the Optimal Control Triple

Theorem 3. Given the objective functional

J(C1, C2, C3) =
∫ t f

t0

[
A1C1

2 + A2 C2
2 + A3C3

2 + P1 Hi − P2Ha
2
]

dt

subject to system (16) with their initial conditions. Then, there exists an optimal control triple
(C1
∗, C∗2 , C∗3 ) and corresponding state solution Hu

∗, Ha
∗, Hi

∗, Vs
∗, Vi

∗, M∗ such that J(C∗1 , C∗2 , C∗3 ) =
min
U

J(C1, C2, C3) if the following five conditions are satisfied,

(i) The solution set of system (16), with the control functions in (19), is non-empty;
(ii) The control set U is convex and closed;
(iii) Each right-hand side of the state system (16) is: (a) continuous, (b) bounded above by a sum of

the bounded control and the state variables, and (c) can be written as a linear function of u
with time and the state-dependent coefficients;

(iv) The integrand function of the objective functional is convex on U ;
(v) There exist positive numbers `1, `2, `3, `4 and a constant ` > 1 such that

A1C1
2 + A2 C2

2 + A3C3
2 + P1 Hi − P2Ha

2 ≥ −`1 + `2|C1|` + `3|C2|` + `4|C3|`.

Proof. A detailed proof of this theorem can be obtained from [31,32] or [30].

6.2. Characterization of the Optimal Control

The objective function J(C1, C2, C3) denotes the total cost. It is achieved as a result of
the application of control measures and the burden of the disease. The following theorem
characterizes the optimal control.

Theorem 4. Given the optimal controls (C1(t)
∗, C2(t)

∗, C3(t)
∗) and the solutions Hu

∗, Ha
∗, Hi

∗,
Vs
∗, Vi

∗, M∗ of the corresponding state system (16), then there exist adjoint variables ξ1, ξ2, ξ3, ξ4, ξ5,
ξ6 satisfying the following system of equations



dξ1

dt
=

(
αM +

λ1Vi
N

+ dh

)
ξ1 − αMξ2 −

λ1Vi
N

ξ3,

dξ2

dt
= −2 P2 Ha −

g
1 + M

ξ1 +

(
dh +

λ2Vi
N

+
g

1 + M

)
ξ2 −

λ2Vi
N

ξ3,

dξ3

dt
= −P1 − C1rMξ2 + (C1rM + dh + δ)ξ3 +

βVs

N
ξ4 −

βVs

N
ξ5 − σξ6,

dξ4

dt
=

(
βHi
N

+ µ + C2γM
)

ξ4 −
βHi
N

ξ5,

dξ5

dt
=

λ1

N
Huξ1 +

λ2

N
Haξ2 −

λ1Hu + λ2Ha

N
ξ3 + (µ + C2γM)ξ5,

dξ6

dt
=

(
αHu +

gHa

(1 + M)2

)
ξ1 −

(
αHu + C1rHi +

gHa

(1 + M)2

)
ξ2 + C1rHiξ3 + C2γVsξ4 + C2γViξ5 + θξ6,

(20)

with transversality conditions

ξ1(t f ) =ξ2(t f ) = ξ3(t f ) = ξ4(t f ) = ξ5(t f ) = ξ6(t f ) = 0 (21)
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Moreover, the optimal controls, C∗1 , C∗2 , and C∗3 , for t ∈ [t0, t f ] are given by

C1
∗ = max

{
0, min

{
1,

(ξ2 − ξ3)rHi M
2A1

}}
,

C2
∗ = max

{
0, min

{
1,

(Vsξ4 −Viξ5)γM
2A2

}}
,

C3
∗ = max

{
0, min

{
1,−ωξ6

2A3

}}
.

(22)

Proof. Let (C∗1 , C∗2 , C∗3 ) be optimal controls whose existence is assured by Theorem 3.
The Pontryagin minimum principle (PMP) [33] provides necessary optimality conditions
that (C∗1 , C∗2 , C∗3 ) must satisfy. For the optimal control problem, we take the Hamiltonian as

H = A1C1
2 + A2 C2

2 + A3C3
2 + P1 Hi − P2Ha

2

+ ξ1

(
Πh − αHu M− λ1HuVi

N
− dh Hu +

gHa

1 + M

)
+ ξ2

(
αHu M− dh Ha + C1rHi M−

λ2HaVi
N

− gHa

1 + M

)
+ ξ3

(
λ1HuVi

N
− (dh + δ)Hi − C1rHi M +

λ2HaVi
N

)
+ ξ4

(
Πv −

βHiVs

N
− µVs − C2γVs M

)
+ ξ5

(
βHiVs

N
− µVi − C2γVi M

)
+ ξ6(C3ω + σHi − θM)

where ξ1, ξ2, ξ3, ξ4, ξ5, ξ6 are the adjoint variables or co-state variables.
The PMP converts the optimal control problem to a static optimization problem that is

a problem of minimizing the HamiltonianH in the control space.
The adjoint system can be obtained taking the derivative of the Hamiltonian with

respect to state variables, Hu, Ha, Hi, Vs, Vi. and M, as follows

dξ1

dt
= − ∂H

∂Hu
=

(
αM +

λ1Vi
N

+ dh

)
ξ1 − αMξ2 −

λ1Vi
N

ξ3,

dξ2

dt
= − ∂H

∂Ha
= −2 P2 Ha −

g
1 + M

ξ1 +

(
dh +

λ2Vi
N

+
g

1 + M

)
ξ2 −

λ2Vi
N

ξ3,

dξ3

dt
= − ∂H

∂Hi
= −P1 − C1rMξ2 + (C1rM + dh + δ)ξ3 +

βVs

N
ξ4 −

βVs

N
ξ5 − σξ6,

dξ4

dt
= − ∂H

∂Vs
=

(
βHi
N

+ µ + C2γM
)

ξ4 −
βHi
N

ξ5,

dξ5

dt
= − ∂H

∂Vi
=

λ1

N
Huξ1 +

λ2

N
Haξ2 −

λ1Hu + λ2Ha

N
ξ3 + (µ + C2γM)ξ5,

dξ6

dt
= − ∂H

∂M
=

(
αHu +

gHa

(1 + M)2

)
ξ1 −

(
αHu + C1rHi +

gHa

(1 + M)2

)
ξ2

+ C1rHiξ3 + C2γVsξ4 + C2γViξ5 + θξ6,

of PMP give us (20), while the transversality conditions ξi(t f ) = 0, i = 1, 2, ..., 6 of PMP
give (21). Moreover, according to PMP asserts, the optimal controls C∗i , i = 1, 2, 3 must
satisfy the following relation,

∂H
∂Ci

= 0, i = 1, 2, 3. (23)
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Using (23) and the boundedness of optimal controls, we obtain the compact form of
the optimal control as given in (22).

From the above analytical analysis, we obtain the optimality system which consists
of the state system (16) with the initial conditions (17), the adjoint system (20) with the
boundary conditions (21), and the optimal controls (10) as follows:

dHu

dt
=Πh − αHu M− λ1HuVi

N
− dh Hu +

gHa

1 + M
,

dHa

dt
= αHu M− dh Ha + C1rHi M−

λ2HaVi
N

− gHa

1 + M
,

dHi
dt

=
λ1HuVi

N
− (dh + δ)Hi − C1rHi M +

λ2HaVi
N

,

dVs

dt
=Πv −

βHiVs

N
− µVs − C2γVs M,

dVi
dt

=
βHiVs

N
− µVi − C2γVi M,

dM
dt

=C3ω + σHi − θM.

Hu(0) ≥ 0, Ha(0) ≥ 0, Hi(0) ≥ 0, Vs(0) ≥ 0, Vi(0) ≥ 0 and M(0) ≥ 0
dξ1

dt
=

(
αM +

λ1Vi
N

+ dh

)
ξ1 − αMξ2 −

λ1Vi
N

ξ3,

dξ2

dt
= −2 P2 Ha −

g
1 + M

ξ1 +

(
dh +

λ2Vi
N

+
g

1 + M

)
ξ2 −

λ2Vi
N

ξ3,

dξ3

dt
= −P1 − C1rMξ2 + (C1rM + dh + δ)ξ3 +

βVs

N
ξ4 −

βVs

N
ξ5 − σξ6,

dξ4

dt
=

(
βHi
N

+ µ + C2γM
)

ξ4 −
βHi
N

ξ5,

dξ5

dt
=

λ1

N
Huξ1 +

λ2

N
Haξ2 −

λ1Hu + λ2Ha

N
ξ3 + (µ + C2γM)ξ5,

dξ6

dt
=

(
αHu +

gHa

(1 + M)2

)
ξ1 −

(
αHu + C1rHi +

gHa

(1 + M)2

)
ξ2

+ C1rHiξ3 + C2γVsξ4 + C2γViξ5 + θξ6,

C1
∗ = max

{
0, min

{
1,

(ξ2 − ξ3)rHi M
2A1

}}
,

C2
∗ = max

{
0, min

{
1,

(Vsξ4 −Viξ5)γM
2A2

}}
,

C3
∗ = max

{
0, min

{
1,−ωξ6

2A3

}}
ξ1(t f ) =ξ2(t f ) = ξ3(t f ) = ξ4(t f ) = ξ5(t f ) = ξ6(t f ) = 0

(24)

Remark 3. The optimality system is a two-point boundary value problem. The state system (16)
is an initial value problem with initial condition (17), and the adjoint system (20) is a boundary
value problem with boundary condition ξi(t f ) = 0. The optimality system has a unique solution for
some small time t f in light of the fact that the solutions of the state and adjoint system are bounded
and satisfy Lipschitz conditions. Thus, a restriction on the length of the time interval [0, t f ] in the
control problem ensures the uniqueness of the optimality system.

7. Numerical Simulations

In this section, numerical results are achieved on the basis of analytical calculations.
The values of the parameters used in numerical simulations are listed in Table 1.

In Figure 2, the forward bifurcation of R0 is sketched. For R0 < 1, the disease-free
equilibrium E0 is stable and unstable otherwise. Consequently, transcritical bifurcation has
occurred atR0 = 1. This shows the existence of a unique endemic equilibrium E∗.
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In Figure 3a–f, the numerical solution of the proposed model system is plotted with two
different values of awareness rates. This figure confirms that the influence of consciousness
over media has an important role in monitoring malaria transmission. The endemic equilib-
rium point is obtained as (1.35× 104, 1.25× 104, 8.25× 103, 4.75× 104, 2.25× 104, 7.25), and
it is asymptotically stable. Figure 4 shows that the endemic equilibrium point E∗, when
it exists, is nonlinearly stable, i.e., all the phase portraits converge to the same endemic
equilibrium for different initial values.
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Figure 3. Numerical solution of system (1) with and without the impact of awareness.
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Figure 4. Phase portrait is plotted in Hu − Ha − Hi phase space. Parameter values are the same as in
Figure 3.

In Figure 5a–f, the equilibrium values of the infected human population are plotted
concerning local awareness rate σ. The infection rate decreased significantly due to the effect
of the local awareness campaign. So, local health centers should organize consciousness
movements about the disease. We also plotted the steady state values of the infected human
population with respect to global awareness ω. A rapid decrease in the infected population
is observed in Figure 6a–f. Hence, through global media (radio, TV, etc.), awareness about
the disease is raised.
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Figure 5. Effect of local awareness is shown varying the parameter σ.
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Figure 6. Effect of global awareness is shown varying the parameter ω. Other parameters values are
as shown in Figure 3.

Figure 7 shows the instantaneous effect of the local and global responsiveness move-
ment on the infected human population in ω− σ− H∗I space. Infections decreased due to
the impact of both consciousness movements.
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Figure 7. Combined effects of local and global awareness on infected population.

7.1. Numerical Solution of the Optimal Control Problem

Here, results from the numerical simulations of the optimality system (24) are pre-
sented with the help of MATLAB.

The optimal control problem deals with the control’s effect on the development of
malaria and also entails the cost sustained in their implementation. The optimal solution
is obtained by solving the optimality system numerically which contains six ordinary
differential equations (ODEs) for both the state and adjoint equations.

The state system is an initial value problem, whereas the adjoint system is a boundary
value problem. We used an iterative scheme (using the fourth-order Runge–Kutta scheme)
for solving the state system with an initial guess for the control functions over the desired
time. In addition, the adjoint equations are solved backward in time using the current
iteration of the state equations. In the iterative scheme, the values of the control functions
are updated by using a convex combination of the preceding control functions and the
values from the characterization. This process is continued until the difference between the
values of the unknowns in the earlier iteration and in the current iteration is negligible [34].

Numerical simulations of the optimal control problem are plotted in Figures 8 and 9.
Figure 8a–d compares the system with and without optimal control. It is found that optimal
control has a substantial advantage in monitoring the system. The corresponding optimal
profiles of the control variables are plotted in Figure 9a–c. The optimal profiles of the
controlling agents indicate that more insecticide spraying is essential.
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Figure 8. Comparison between the system with and without optimal control.
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Figure 9. The profiles of optimal controls are plotted as a function of time.

8. Discussion

This article uses a mathematical model to analyze media campaigns’ influence on
malaria dynamics. To our knowledge, few articles are available on this topic. Before dis-
cussing the main results, a comparison between the proposed model and the existing
mathematical models is made.

Al Basir et al., 2020 [22] proposed a mathematical model (using delay differential
equations) using human (susceptible and infected) and mosquito populations (susceptible
and infected). They assumed the ‘level of awareness’ as a separate population for the impact
of social media campaigns. Rather than applying optimal control theory, they focused on
the effect of delay in organizing the campaign. In contrast, in our research, media awareness
is assumed as a separate model population that changes with time. In addition, susceptible
humans are divided into aware and unaware human classes. Moreover, optimal control
theory was applied to maximize the awareness level and cost-effectiveness.

In [23], the authors divided infected humans into aware and unaware infected human
populations. In addition, the study assumed media as separate model variables whose
growth is assumed proportional to the unaware infected human population. They did
not divide the susceptible humans into aware and unaware classifications. In contrast,
our research divides susceptible humans into aware and unaware classes, which is more
realistic [21]. Moreover, the infected humans recover through awareness-induced treatment,
and after recovery, they join the aware human population. This hypothesis is more realistic.

In [13], the authors formulated a mathematical model using human (susceptible,
infected, recovered) and mosquito (susceptible and infected) populations. The susceptible
population was divided into aware and unaware susceptible humans. Finally, they applied
optimal control for cost minimization and optimal control of the disease. They did not
assume that recovered people again become susceptible and aware of the disease. In
addition, the effect of awareness was modeled using constant terms.

In our research, it is additionally assumed that infected humans recovered with
awareness-induced treatment, and after recovery, they join the aware human population,
which is more realistic than other models. In the proposed model, ‘level of awareness’
is taken as a model variable, increasing due to awareness campaigns (as adopted by Al
Basir et al. [22]). The local awareness (due to the information from local people and relatives)
and global awareness (due to radio and TV campaigns) are also included in the model. We
further assumed that the aware people become unaware but those numbers decrease with
the level of awareness, M(t). Aware people may become infected at a much lower rate
than unaware humans. Optimal control theory was applied to maximize awareness and
minimize the disease control cost.

Thus, the awareness-based model proposed here is more functional and can capture
the dynamics of malaria with awareness-based interventions. In addition, the control-
induced model can minimize the cost of malaria management.

The dynamics of malaria propagation were studied using the proposed mathematical
models analytically and numerically. Using the next-generation matrix, the basic repro-
duction number R0 was derived. Equilibria assessment showed two equilibria of the
proposed model: the disease-free and endemic. The disease-free equilibrium is stable



Mathematics 2023, 11, 1687 21 of 25

for R0 < 1 and the endemic equilibrium exists for R0 > 1, that is, when the disease-
free equilibrium becomes unstable. The endemic equilibrium, when it exists, is globally
asymptotically stable.

Optimal control theory was applied to awareness-induced interventions for the cost-
effective treatment of malaria. The proposed optimal system was analytically solved using
the Pontryagin minimum principle (Section 6) and numerically solved (using the scheme
stated in Section 7.1). The optimal profiles of the control variables (Figure 9) were plotted.
It was established that the optimally controlled system is essential and effective in malaria
control (Figure 8).

9. Conclusions

Malaria, one of the world’s most significant diseases, is a mosquito-borne human
disease caused by a parasite transmitted by the female Anopheles mosquito. Mathematical
modeling and control theory help in predicting the dynamics of the disease and are also
helpful for practical policy making. Awareness campaigns about the disease are also equally
important in controlling the disease.

In this article, a mathematical model was proposed for a malaria dynamic, considering
the impact of awareness-based control approaches. The dynamics of the system were
analyzed using qualitative stability theory. The optimal control concept was applied for
cost minimization in disease control. Pontryagin’s minimum principle was implemented
for the optimization of the system.

The control-induced model helps optimal disease control with minimum advertising,
insecticide, and treatment costs using the minimum principle. The obtained results are
helpful for policy makers in proposing suitable control strategies against malaria. In a
nutshell, the awareness movement is vital for controlling malaria, and applying optimal
control theory along with media consciousness is required.
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Appendix A

The coefficients of the characteristic Equation (14) are given below:
A6 = (J16 J25 J32 − J15 J26 J32 − J16 J22 J35 + J12 J26 J35 + J15 J22 J36 − J12 J25 J36)J44 J51 J63

+(−J16 J25 J31 + J15 J26 J31 + J16 J21 J35 − J11 J26 J35 − J15 J21 J36 + J11 J25 J36)J44 J52 J63

+(−J16 J25 J32 + J15 J26 J32 + J16 J22 J35 − J12 J26 J35 − J15 J22 J36 + J12 J25 J36)J41 J54 J63

+(J16 J25 J31 − J15 J26 J31 − J16 J21 J35 + J11 J26 J35 + J15 J21 J36 − J11 J25 J36)J42 J54 J63 +

J31 J46 J54 J63(J15 J22 − J12 J25)− J32 J46 J54 J63(J15 J21 − J11 J25) +

J35 J46 J54 J63(J12 J21 − J11 J22) + J31 J44 J55 J63(J16 J22 − J12 J26)

−J44 J55 J63(J16 J21 J32 − J11 J26 J32 − J12 J21 J36 + J11 J22 J36)

−J44 J56 J63(J15 J22 J31 − J12 J25 J31 − J15 J21 J32 − J11 J25 J32 + J12 J21 J35 + J11 J22 J35)

−J44 J51 J66(J15 J23 J32 + J13 J25 J32 − J15 J22 J33 − J12 J25 J33 − J13 J22 J35 − J12 J23 J35)

−J15 J23 J31 J44 J52 J66 + J13 J25 J31 J44 J52 J66 + J15 J21 J33 J44 J52 J66 − J11 J25 J33 J44 J52 J66

−J44 J52 J66(J13 J21 J35 − J11 J23 J35 − J15 J22 J31 − J12 J25 J31 − J15 J21 J32 + J11 J25 J32

+J12 J21 J35 − J11 J22 J35) + J41 J54 J66(J13 J25 J32 − J15 J23 J32 + J15 J22 J33 − J12 J25 J33 −
J13 J22 J35 + J12 J23 J35) + J42 J54 J66(J15 J23 J31 − J13 J25 J31 −
J15 J21 J33 + J11 J25 J33 + J13 J21 J35 − J11 J23 J35)

+J43 J54 J66(−J15 J22 J31 + J12 J25 J31 + J15 J21 J32 − J11 J25 J32 J12 J21 J35 + J11 J22 J35)−
+J44 J55 J66(−J13 J22 J31 + J12 J23 J31 + J13 J21 J32 − J11 J23 J32 − J12 J21 J33 + J11 J22 J33),
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A5 = (J15 J23 + J13 J25)J32 J44 J51 + J33 J44 J51(J15 J22 − J12 J25)

+J35 J44 J51(−J13 J22 + J12 J23) + J31 J44 J52(J15 J23 − J13 J25)− J15 J21 J33 J44 J52 + J11 J25 J33 J44 J52 +

J13 J21 J35 J44 J52 − J11 J23 J35 J44 J52 − J15 J22 J31 J44 J53 + J12 J25 J31 J44 J53 + J15 J21 J32 J44 J53

−J11 J25 J32 J44 J53 − J12 J21 J35 J44 J53 + J11 J22 J35 J44 J53 + J15 J23 J32 J41 J54 − J13 J25 J32 J41 J54

−J15 J22 J33 J41 J54 + J12 J25 J33 J41 J54 + J13 J22 J35 J41 J54 − J12 J23 J35 J41 J54 − J15 J23 J31 J42 J54

+J13 J25 J31 J42 J54 + J15 J21 J33 J42 J54 − J11 J25 J33 J42 J54 − J13 J21 J35 J42 J54 + J11 J23 J35 J42 J54

+J15 J22 J31 J43 J54 − J12 J25 J31 J43 J54 − J15 J21 J32 J43 J54 + J11 J25 J32 J43 J54 +

J12 J21 J35 J43 J54 − J11 J22 J35 J43 J54 + J13 J22 J31 J44 J55 − J12 J23 J31 J44 J55

−J13 J21 J32 J44 J55 + J11 J23 J32 J44 J55 + J12 J21 J33 J44 J55 − J11 J22 J33 J44 J55 − J16 J22 J31 J44 J63

+J12 J26 J31 J44 J63 + J16 J21 J32 J44 J63 − J11 J26 J32 J44 J63 − J12 J21 J36 J44 J63 + J11 J22 J36 J44 J63

+J51 J63(−J16 J25 J32 + J15 J26 J32 + J16 J22 J35 − J12 J26 J35)

−J15 J22 J36 J51 J63 + J12 J25 J36 J51 J63 +

J16 J35 J44 J51 J63 − J15 J36 J44 J51 J63 + J16 J25 J31 J52 J63 − J15 J26 J31 J52 J63 −
J16 J21 J35 J52 J63 + J11 J26 J35 J52 J63 + J15 J21 J36 J52 J63 − J11 J25 J36 J52 J63 +

J26 J35 J44 J52 J63 − J25 J36 J44 J52 J63 − J16 J35 J41 J54 J63 + J15 J36 J41 J54 J63 −
J26 J35 J42 J54 J63 + J25 J36 J42 J54 J63 −
J15 J31 J46 J54 J63 − J25 J32 J46 J54 J63 + J11 J35 J46 J54 J63 + J22 J35 J46 J54 J63 −
J16 J22 J31 J55 J63 + J12 J26 J31 J55 J63 + J16 J21 J32 J55 J63 − J11 J26 J32 J55 J63 −
J12 J21 J36 J55 J63 + J11 J22 J36 J55 J63 − J16 J31 J44 J55 J63 − J26 J32 J44 J55 J63 +

J11 J36 J44 J55 J63 + J22 J36 J44 J55 J63 + J15 J22 J31 J56 J63 − J12 J25 J31 J56 J63 −
J15 J21 J32 J56 J63 + J11 J25 J32 J56 J63 + J12 J21 J35 J56 J63 − J11 J22 J35 J56 J63 +

J15 J31 J44 J56 J63 + J25 J32 J44 J56 J63 − J11 J35 J44 J56 J63 − J22 J35 J44 J56 J63 +

J13 J22 J31 J44 J66 − J12 J23 J31 J44 J66 − J13 J21 J32 J44 J66 + J11 J23 J32 J44 J66 +

J12 J21 J33 J44 J66 − J11 J22 J33 J44 J66 − J15 J23 J32 J51 J66 + J13 J25 J32 J51 J66 +

J15 J22 J33 J51 J66 − J12 J25 J33 J51 J66 −
J13 J22 J35 J51 J66 + J12 J23 J35 J51 J66 + J15 J22 J44 J51 J66 − J12 J25 J44 J51 J66 +

J15 J33 J44 J51 J66 − J13 J35 J44 J51 J66 + J15 J23 J31 J52 J66 − J13 J25 J31 J52 J66 −
J15 J21 J33 J52 J66 + J11 J25 J33 J52 J66 + J13 J21 J35 J52 J66 − J11 J23 J35 J52 J66 −
J15 J21 J44 J52 J66 + J11 J25 J44 J52 J66 + J25 J33 J44 J52 J66 − J23 J35 J44 J52 J66 −
J15 J22 J31 J53 J66 + J12 J25 J31 J53 J66 + J15 J21 J32 J53 J66 − J11 J25 J32 J53 J66 −
J12 J21 J35 J53 J66 + J11 J22 J35 J53 J66 − J15 J31 J44 J53 J66 − J25 J32 J44 J53 J66 +

J11 J35 J44 J53 J66 + J22 J35 J44 J53 J66 − J15 J22 J41 J54 J66 + J12 J25 J41 J54 J66 −
J15 J33 J41 J54 J66 + J13 J35 J41 J54 J66 + J15 J21 J42 J54 J66 − J11 J25 J42 J54 J66 −
J25 J33 J42 J54 J66 + J23 J35 J42 J54 J66 + J15 J31 J43 J54 J66 + J25 J32 J43 J54 J66 −
J11 J35 J43 J54 J66 − J22 J35 J43 J54 J66 + J13 J22 J31 J55 J66 − J12 J23 J31 J55 J66 −
J13 J21 J32 J55 J66 + J11 J23 J32 J55 J66 +

J12 J21 J33 J55 J66 − J11 J22 J33 J55 J66 + J12 J21 J44 J55 J66 − J11 J22 J44 J55 J66 +

J13 J31 J44 J55 J66 + J23 J32 J44 J55 J66 − J11 J33 J44 J55 J66 − J22 J33 J44 J55 J66,



Mathematics 2023, 11, 1687 23 of 25

A4 = J31 J44(−J13 J22 + J12 J23) + J31 J44(J13 J21 J31 J44 − J11 J23)− J12 J21 J33 J44

J13 J25 J32 J51 − J15 J22 J33 J51 + J12 J25 J33 J51 + J13 J22 J35 J51 − J12 J23 J35 J51 − J15 J22 J44 J51 +

J12 J25 J44 J51 − J15 J33 J44 J51 + J13 J35 J44 J51 − J15 J23 J31 J52 + J13 J25 J31 J52 + J15 J21 J33 J52 −
J11 J25 J33 J52 − J13 J21 J35 J52 + J11 J23 J35 J52 + J15 J21 J44 J52 − J11 J25 J44 J52 − J25 J33 J44 J52 +

J23 J35 J44 J52 + J15 J22 J31 J53 − J12 J25 J31 J53 − J15 J21 J32 J53 + J11 J25 J32 J53 + J12 J21 J35 J53 −
J11 J22 J35 J53 + J15 J31 J44 J53 + J25 J32 J44 J53 − J11 J35 J44 J53 − J22 J35 J44 J53 + J15 J22 J41 J54 −
J12 J25 J41 J54 + J15 J33 J41 J54 − J13 J35 J41 J54 − J15 J21 J42 J54 + J11 J25 J42 J54 + J25 J33 J42 J54 −
J23 J35 J42 J54 − J15 J31 J43 J54 − J25 J32 J43 J54 + J11 J35 J43 J54 + J22 J35 J43 J54 − J13 J22 J31 J55 +

J12 J23 J31 J55 + J13 J21 J32 J55 − J11 J23 J32 J55 − J12 J21 J33 J55 + J11 J22 J33 J55 − J12 J21 J44 J55 +

J11 J22 J44 J55 − J13 J31 J44 J55 − J23 J32 J44 J55 + J11 J33 J44 J55 + J22 J33 J44 J55 + J16 J22 J31 J63 −
J12 J26 J31 J63 − J16 J21 J32 J63 + J11 J26 J32 J63 + J12 J21 J36 J63 − J11 J22 J36 J63 + J16 J31 J44 J63 +

J26 J32 J44 J63 − J11 J36 J44 J63 − J22 J36 J44 J63 − J16 J35 J51 J63 + J15 J36 J51 J63 − J26 J35 J52 J63 +

J25 J36 J52 J63 − J35 J46 J54 J63 + J16 J31 J55 J63 + J26 J32 J55 J63 − J11 J36 J55 J63 − J22 J36 J55 J63 −
J36 J44 J55 J63 − J15 J31 J56 J63 − J25 J32 J56 J63 + J11 J35 J56 J63 + J22 J35 J56 J63 + J35 J44 J56 J63 −
J13 J22 J31 J66 + J12 J23 J31 J66 + J13 J21 J32 J66 − J11 J23 J32 J66 − J12 J21 J33 J66 + J11 J22 J33 J66 −
J12 J21 J44 J66 + J11 J22 J44 J66 − J13 J31 J44 J66 − J23 J32 J44 J66 + J11 J33 J44 J66 + J22 J33 J44 J66 −
J15 J22 J51 J66 + J12 J25 J51 J66 − J15 J33 J51 J66 + J13 J35 J51 J66 − J15 J44 J51 J66 + J15 J21 J52 J66 −
J11 J25 J52 J66 − J25 J33 J52 J66 + J23 J35 J52 J66 − J25 J44 J52 J66 + J15 J31 J53 J66 + J25 J32 J53 J66 −
J11 J35 J53 J66 − J22 J35 J53 J66 − J35 J44 J53 J66 + J54 J66(J15 J41 + J25 J42 + J35 J43)

−J55 J66(J12 J21 + J11 J22 − J13 J31)−
J23 J32 J55 J66 + J33 J55 J66(J11 + J22 + J44 J55 J66(J11 + J22 + J33),

A3 = J31(J13 J22 − J12 J23)− J32(J13 J21 − J11 J23) + J33(J12 J21 − J11 J22) +

J44(J12 J21 − J11 J22 + J13 J31) + J23 J32)− J33 J44(J11 + J22) +

J51(J15 J22 − J12 J25 + J15 J33 − J13 J35 + J15 J44) + J52(−J15 J21 +

J11 J25 + J25 J33 − J23 J35 + J25 J44) + J53(−J15 J31 − J25 J32 +

J11 J35 + J22 J35 + J35 J44) + J54(−J15 J41 − J25 J42 − J35 J43) +

J55(J12 J21 − J11 J22 + J13 J31) + J23 J32 J55 − J33 J55(J11 + J22)

−J44 J55(−J11 + J22 − J33) + J63(−J16 J31 − J26 J32 + J11 J36 +

J22 J36 + J36 J44 + J36 J55 − J35 J56) + J66(J12 J21 − J11 J22 +

J13 J31 + J23 J32 − J11 J33 − J22 J33 − J11 J44 − J22 J44 −
J33 J44 + J15 J51 + J25 J52 + J35 J53)− J55 J66(J11 + J22 + J33 + J44),

A2 = −J12 J21 + J11 J22 − J13 J31 − J23 J32 + J33(J11 + J22) + J44(J11 + J22 + J33)− J15 J51 − J25 J52

−J35 J53 + J55(J11 + J22 + J33 + J44)− J36 J63 + J66(J11 + J22 + J33 + J44 + J55),

A1 = −(J11 + J22 + J33 + J44 + J55 + J66).

References
1. World Health Organisation. Malaria. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/malaria

(accessed on 28 April 2021).
2. Dyer, O. African Malaria Deaths Set to Dwarf COVID-19 Fatalities as Pandemic Hits Control Efforts, WHO Warns; WHO: Geneva,

Switzerland, 2020.
3. World Health Organization. The Potential Impact of Health Service Disruptions on the Burden of Malaria: A Modelling Analysis for

Countries in Sub-Saharan Africa; WHO: Geneva, Switzerland, 2020.
4. Bakare, E.A.; Nwozo, C.R. Mathematical analysis of the dynamics of malaria disease transmission model. Int. J. Pure Appl. Math.

2015, 99, 411–437. [CrossRef]

https://www.who.int/news-room/fact-sheets/detail/malaria
http://doi.org/10.12732/ijpam.v99i4.3


Mathematics 2023, 11, 1687 24 of 25

5. Adongo, P.B.; Kirkwood, B.; Kendall, C. How local community knowledge about malaria affects insecticide-treated net use in
northern Ghana. Trop. Med. Int. Health 2005, 10, 366–378. [CrossRef]

6. Briscoe, C.; Aboud, F. Behaviour change communication targeting four health behaviours in developing countries: A review of
change techniques. Soc. Sci. Med. 2012, 75, 612–621. [CrossRef] [PubMed]

7. Ankomah, A.; Adebayo, S.B.; Arogundade, E.D.; Anyanti, J.; Nwokolo, E.; Inyang, U.; Ipadeola, O.B.; Meremiku, M. The Effect of
Mass Media Campaign on the Use of Insecticide-Treated Bed Nets among Pregnant Women in Nigeria. Malar. Res. Treat. 2014,
2014, 694863. [CrossRef] [PubMed]

8. Dhawan, G.; Joseph, N.; Pekow, P.S.; Rogers, C.A.; Poudel, K.C.; Bulzacchelli, M.T. Malaria-related knowledge and prevention
practices in four neighbourhoods in and around Mumbai, India: A cross-sectional study. Malar. J. 2014, 13, 303. [CrossRef]

9. Okosun, K.O.; Rachid, O.; Marcus, N. Optimal control strategies and cost-effectiveness analysis of a malaria model. BioSystems
2013, 111, 83–101. [CrossRef]

10. Abioye, A.I.; Ibrahim, M.O.; Peter, O.J.; Ogunseye, H.A. Optimal control on a mathematical model of malaria. Sci. Bull. Ser. A
Appl. Math Phys. 2020, 82, 178–190.

11. Romero-Leiton, J.P.; Ibargüen-Mondragón, E. Stability analysis and optimal control intervention strategies of a malaria mathemat-
ical model. Appl. Sci. 2019, 21, 184–218.

12. Misra, A.K.; Pal, S.; Gupta, R.K. Modeling the Effect of TV and Social Media Advertisements on the Dynamics of Vector-Borne
Disease Malaria. Int. J. Bifurc. Chaos 2023, 33, 2350033. [CrossRef]

13. Ndii, M.Z.; Adi, Y.A. Understanding the effects of individual awareness and vector controls on malaria transmission dynamics
using multiple optimal control. Chaos Solitons Fractals 2021, 153, 111476. [CrossRef]

14. Nwankwo, A.; Okuonghae, D. A mathematical model for the population dynamics of malaria with a temperature dependent
control. Differ. Equ. Dyn. Syst. 2022, 30, 719–748. [CrossRef]

15. Noeiaghdam, S.; Micula, S. Dynamical Strategy to Control the Accuracy of the Nonlinear Bio-mathematical Model of Malaria
Infection. Mathematics 2021, 9, 1031. [CrossRef]

16. Kobe, F.T. Mathematical Model of Controlling the Spread of Malaria Disease Using Intervention Strategies. Pure Appl. Math. J.
2020, 9, 101. [CrossRef]

17. Handari, B.D.; Vitra, F.; Ahya, R.; Nadya S.T.; Aldila, D. Optimal control in a malaria model: Intervention of fumigation and bed
nets. Adv. Differ. Equ. 2019, 2019, 497. [CrossRef]

18. Nájera, J.A.; González-Silva, M.; Alonso, P.L. Some lessons for the future from the Global Malaria Eradication Programme
(1955–1969). PLoS Med. 2011, 8, e1000412. [CrossRef]

19. Karunamoorthi, K. Vector control: A cornerstone in the malaria elimination campAign. Clin. Microbiol. Infect. 2011, 17, 1608–1616.
[CrossRef]

20. Mazigo, H.D.; Obasy, E.; Mauka, W.; Manyiri, P.; Zinga, M.; Kweka, E.J.; Heukelbach, J. Knowledge, attitudes, and practices about
malaria and its control in rural northwest Tanzania. Malar. Res. Treat. 2010, 2010, 794261. [CrossRef]

21. Misra, A.K.; Sharma, A.; Li, J. A mathematical model for control of vector borne diseases through media campaigns. Discret.
Contin. Dyn. Syst. 2013, 18, 1909. [CrossRef]

22. Al Basir, F.; Banerjee, A.; Ray, S. Exploring the effects of awareness and time delay in controlling malaria disease propagation. Int.
J. Nonlinear Sci. Numer. Simul. 2021, 22, 665–683. [CrossRef]

23. Ibrahim, M.M.; Kamran, M.A.; Naeem Mannan, M.M.; Kim, S.; Jung, I.H. Impact of awareness to control malaria disease: A
mathematical modeling approach. Complexity 2020, 2020, 1–13. [CrossRef]

24. Al Basir, F.; Ray, S.; Venturino, E. Role of media coverage and delay in controlling infectious diseases: A mathematical model.
Appl. Math. Comput. 2018, 337, 372–385. [CrossRef]

25. Agaba, G.O.; Kyrychko, Y.N.; Blyuss, K.B. Dynamics of vaccination in a time-delayed epidemic model with awareness. Math. Biosci.
2017, 294, 92–99. [CrossRef] [PubMed]

26. Smith, D.L.; McKenzie, F.E.; Snow, R.W.; Hay, S.I. Revisiting the basic reproductive number for malaria and its implications for
malaria control. PLoS Biol. 2007, 5, e42. [CrossRef] [PubMed]

27. Heffernan, J.M.; Smith, R.J.; Wahl, L.M. Perspectives on the basic reproductive ratio. J. R. Soc. Interface 2005, 2, 281–293. [CrossRef]
28. Lashari, A.A.; Aly, S.; Hattaf, K.; Zaman, G.; Jung, I.H.; Li, X.-Z. Presentation of malaria epidemics using multiple optimal controls.

J. Appl. Math. 2012, 2012, 946504. [CrossRef]
29. Castillo-Chavez, C.; Blower, S.; Driessche, P.; Kirschner, D.; Yakubu, A. Mathematical Approaches for Emerging and Reemerging

Infectious Diseases: Models, Methods, and Theory; Springer: Berlin/Heidelberg, Germany, 2002.
30. Fleming, W.H.; Rishel, R.W. Deterministic and Stochastic Optimal Control; Springer: Berlin/Heidelberg, Germany, 1975.
31. Roy, P.K.; Roy, A.K.; Khailov, E.N.; Basir, F.A.; Grigorieva, E.V. A model of the optimal immunotherapy of psoriasis by introducing

IL-10 AND IL-22 inhibitors. J. Biol. Syst. 2020, 28, 609–639. [CrossRef]
32. Abraha, T.; Basir, F.A.; Obsu, L.L.; Torres, D.F. Farming awareness based optimum interventions for crop pest control. Math. Biosci.

Eng. 2021, 18, 5364–5391. [CrossRef]

http://dx.doi.org/10.1111/j.1365-3156.2005.01361.x
http://dx.doi.org/10.1016/j.socscimed.2012.03.016
http://www.ncbi.nlm.nih.gov/pubmed/22541798
http://dx.doi.org/10.1155/2014/694863
http://www.ncbi.nlm.nih.gov/pubmed/24778895
http://dx.doi.org/10.1186/1475-2875-13-303
http://dx.doi.org/10.1016/j.biosystems.2012.09.008
http://dx.doi.org/10.1142/S0218127423500335
http://dx.doi.org/10.1016/j.chaos.2021.111476
http://dx.doi.org/10.1007/s12591-019-00466-y
http://dx.doi.org/10.3390/math9091031
http://dx.doi.org/10.11648/j.pamj.20200906.11
http://dx.doi.org/10.1186/s13662-019-2424-6
http://dx.doi.org/10.1371/journal.pmed.1000412
http://dx.doi.org/10.1111/j.1469-0691.2011.03664.x
http://dx.doi.org/10.4061/2010/794261
http://dx.doi.org/10.3934/dcdsb.2013.18.1909
http://dx.doi.org/10.1515/ijnsns-2019-0223
http://dx.doi.org/10.1155/2020/8657410
http://dx.doi.org/10.1016/j.amc.2018.05.042
http://dx.doi.org/10.1016/j.mbs.2017.09.007
http://www.ncbi.nlm.nih.gov/pubmed/28966060
http://dx.doi.org/10.1371/journal.pbio.0050042
http://www.ncbi.nlm.nih.gov/pubmed/17311470
http://dx.doi.org/10.1098/rsif.2005.0042
http://dx.doi.org/10.1155/2012/946504
http://dx.doi.org/10.1142/S0218339020500084
http://dx.doi.org/10.3934/mbe.2021272


Mathematics 2023, 11, 1687 25 of 25

33. Fleming, W.; Lions, P.-L. Stochastic Differential Systems, Stochastic Control Theory and Applications: Proceedings of a Workshop, Held at
IMA, 9–19 June 1986; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1986; Volume 10.

34. Lenhart, S.; Workman, J.T. Optimal Control Applied to Biological Models; Chapman & Hall/CRC: Boca Raton, FL, USA, 2007.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Mathematical Model Derivation
	Basic Properties of the Model
	Non-Negativity and Boundedness of the Solutions
	The Basic Reproduction Number

	Existence of Equilibrium Points
	The Disease-Free Equilibrium (DFE)
	The Endemic Equilibrium Point (EEP)

	Jacobian Matrix and Stability Analysis of Equilibrium Points
	Local Stability Analysis of Disease-Free Equilibrium (DFE)
	Global Stability of DFE
	Local Stability of EEP

	The Optimal Control Problem
	Existence of the Optimal Control Triple
	Characterization of the Optimal Control

	Numerical Simulations
	Numerical Solution of the Optimal Control Problem

	Discussion
	Conclusions
	Appendix A
	References

