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Abstract: In this paper, new probabilistic and dynamic (adaptive) strategies for creating multi-
method ensembles based on the coral reef optimization with substrate layers (CRO-SL) algorithm
are proposed. CRO-SL is an evolutionary-based ensemble approach that is able to combine different
search procedures for a single population. In this work, two different probabilistic strategies to
improve the algorithm are analyzed. First, the probabilistic CRO-SL (PCRO-SL) is presented, which
substitutes the substrates in the CRO-SL population with tags associated with each individual. Each
tag represents a different operator which will modify the individual in the reproduction phase. In
each generation of the algorithm, the tags are randomly assigned to the individuals with similar
probabilities, obtaining this way an ensemble that sees more intense changes with the application of
different operators to a given individual than CRO-SL. Second, the dynamic probabilistic CRO-SL
(DPCRO-SL) is presented, in which the probability of tag assignment is modified during the evolution
of the algorithm, depending on the quality of the solutions generated in each substrate. Thus, the
best substrates in the search process will be assigned higher probabilities than those which showed
worse performance during the search. The performances of the proposed probabilistic and dynamic
ensembles were tested for different optimization problems, including benchmark functions and a
real application of wind-turbine-layout optimization, comparing the results obtained with those of
existing algorithms in the literature.

Keywords: meta-heuristics; multi-method ensembles; optimization; coral reef optimization with
substrate layers

MSC: 68T20

1. Introduction

In optimization problems, an ensemble method refers to an algorithm that combines
different types of alternative algorithms, search strategies, or operators, in order to obtain
high-quality solutions [1]. The number of applications of ensemble approaches has been
massive in the last few years, due to the good results obtained by these combinations of
techniques in hard optimization problems and real applications. Following [1], there are
different types of ensemble approaches: high-level ensembles, focused on selecting the best
optimization algorithm for a given problem, and low-level ensembles, which are optimal
combinations of different types of search strategies or operators within a single approach.
In any case, the main idea of ensemble algorithms is to exploit the capacity of different
methods by combining them in several possible ways, in order to improve the searchability
of the final approach in optimization problems.
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1.1. Literature Review

It is possible to find different ensemble algorithms recently proposed in the literature,
including multi-method and multi-strategy approaches. Multi-method algorithms consider the
combination of different operators or algorithms to solve an optimization problem. An example
of a low-level competitive single population approach is [2], in which different operators
are applied in a single evolutionary-algorithm-based ensemble. An approach with a similar
idea was proposed in [3]. Multi-method approaches have also been applied to improve the
performances of meta-heuristics in multi-objective optimization problems [4]. There are also
multi-method algorithms which work on different sub-populations, such as [5]. Following this
idea, in [6] an anamorphic ensemble optimization is presented, where a set of algorithms form an
ensemble, demonstrating stronger performance on differing problems than each component on
its own. This approach exploits the concept of islands in algorithms, in such a way that several
populations, each based on different search approaches, are defined. An island model interface
strategy was then defined, where populations exchanging individuals is promoted, depending
on the performance of the algorithm associated with each population. There are also high-level
ensembles which combine operators with different strategies, such as those in [7]. Therein, a
portfolio of different algorithms for optimization problems was proposed. Note that a high-level
ensemble is similar to the general idea of hyper-heuristics [8]. In this case, the objective is to
choose the best combination of algorithms depending on the problem tackled. In [9], a high-level,
multi-strategy ensemble chose among different meta-heuristics, such as evolutionary algorithms,
particle swarm optimization (PSO), or evolutionary strategies. Ensembles of multi-strategy
approaches in which different versions of the same operator are chosen can be also found in the
literature, for example, PSO [10], artificial bee colony algorithms [11], and biogeography-based
optimization [12]. Note that alternative versions of optimization ensembles may involve other
algorithmic components (not only different search operators), such as neighborhood sizes [13]
or constraint-handling techniques [14], among others.

In consonance with the previous discussion, note that one of the most successful meta-
heuristics for constructing optimization ensembles and multi-strategy algorithms using
variants of the same technique is differential evolution [15]. Ensembles and multi-strategy
algorithms based on differential evolution (DE) started to appear over one decade ago.
Some of the first ensemble and multi-strategies approaches which merged different variants
of DE were reported in [16,17]. In [16], two DE variants with adaptive strategy selection
were proposed. The idea was that the algorithm will autonomously select the most suitable
strategy while solving the problem, according to their recent impacts on the optimization
process. In turn, Ref. [17] proposed an ensemble of DE-based mutation strategies, together
with control parameters, which are forced to coexist in a single population, and through-
out the evolution process, they compete to produce the best possible offspring. In [18],
a DE ensemble based on LSHADE [19], with ensemble parameter sinusoidal adaptation
(LSHADE-EpSin), was proposed. In [20] a multi-population ensemble based on tribes of
DE versions was introduced. In that approach, the population is clustered into multiple
tribes which use an ensemble of different mutation and crossover strategies. A competitive
success-based scheme is applied to determine the contribution of each tribe to the next
generation of the ensemble. The approach was successfully tested in CEC2014 benchmark
suites. In [21], an ensemble of multiple DE strategies based on a multi-population scheme
was proposed. Specifically, three DE mutation strategies were tested as part of the DE en-
semble: “current-to-pbest/1”, “current-to-rand/1”, and “rand/1”. The results on CEC 2005
benchmark functions were reported to be competitive compared to other meta-heuristic
approaches for continuous optimization problems. In [22], a multi-population-based DE
ensemble called ensemble of differential evolution variants (EDEV), was proposed to obtain
a efficient algorithm for real encoding optimization problems. Recently, in [23], the EDEV
approach was revisited and improved. In [24], a two-stage ensemble of DE variants for
numerical optimization was proposed. This ensemble approach is based on two different
stages. In the first one, a multi-population approach is used, which includes three different
DE variants (SHADE [25], JADE, and DE/current-to-rand/1). In the second stage of the
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algorithm, LSHADE is used to improve the convergence of the algorithm. This approach
was tested with functions from the CEC2005 benchmark suites. In [26], another ensemble
involving two DE versions was proposed. Specifically, two versions of the L-SHADE
approach, L-SHADE-EpSin and L-SHADE-RSP, were selected and inter-changed during
the searching process, forming an ensemble approach with two basic methods, in order to
improve the results in real-encoded optimization problems.

1.2. Contribution and Structure

Recently, a multi-method ensemble known as coral reef optimization with substrate
layers (CRO-SL) was proposed [27–29] and successfully applied to very different optimiza-
tion problems in science and engineering, such as energy grid and microgrid design [30–32],
mechanical and structural design [33–37], and electrical engineering [38–40]. The CRO-SL
is a low-level, evolutionary-based multi-method ensemble which combines different types
of search operators within a single population (reef) by dividing it in different zones (sub-
strates), in which a different operator is applied. The evolution of the population is then
carried out by applying the different operators to the population, depending on the zone
in which a solution is located. A given solution may be formed by combination of other
solutions in the population with a given operator at a time (two-point crossover, multi-
point crossover, differential evolution, etc.) or modified with mutation-based operators
(Gaussian mutation, chaotic-based, Cauchy mutations, etc.), which may also form some of
the methods implemented in the ensemble. The new solutions are settled in the population
at random locations, which promotes the application of different operators in the evolution.
The number and types of methods included in the CRO-SL are decisions for the practitioner
and must be defined prior to the ensemble’s use.

Albeit CRO-SL has obtained notable success when tackling various optimization problems,
in this paper, the algorithm is revisited. New adaptive strategies to improve the algorithm’s
design and performance are proposed. Specifically, two different adaptive (probabilistic) strate-
gies for modification of CRO-SL’s dynamics are presented. The first one, called probabilistic
CRO-SL (PCRO-SL), substitutes the zones (substrates) in the classical CRO-SL population with
tags associated with each individual. Each tag then represents a different operator which will
modify the individual in the reproduction phase. In each generation of the ensemble, the
tags are randomly assigned to the individuals with similar probabilities, obtaining in this way
an ensemble with a more intense change resulting from the use of different operators for a
given individual. The second strategy proposed to improve the CRO-SL is called dynamic
probabilistic CRO-SL (DPCRO-SL), and in this case, the tag assignment of evolution methods
to each individual is kept, but the probability of assignment is modified during the evolution
of the algorithm, depending on the quality of the solutions generated in each substrate. Thus,
those substrates which obtain better results up to a given point in the search process will be
assigned higher probabilities than those which performed worse during the search. Note that
this process tries to promote the evolution with operators which obtain good results and by
reducing the evolution with other operators which do not contribute to the generation of good
solutions to the problem. We evaluated the different proposed versions of the CRO-SL-based
multi-method ensemble (PCRO-SL and DPCRO-SL) on a large set of benchmark instances, and
in a real optimization problem of wind-turbine layout, considering different sets of substrates.
We will compare the probabilistic and dynamical versions of the CRO-SL against the classical
CRO-SL version, and also with alternative meta-heuristics previously published in the literature.

The rest of the paper has been structured in the following way: The next section
presents the original CRO-SL ensemble and the theoretical bases of the different substrates
used, such as different versions of differential evolution, the firefly algorithm, two-point
crossover, BLX-α crossover, and Gaussian- and Cauchy-based mutations. Section 3 presents
the new probabilistic, adaptive CRO-SL proposed in this work. Section 4 presents the
experiments and results obtained with the new multi-method ensemble. Finally, Section 5
closes the paper with some conclusions and remarks on the research carried out.



Mathematics 2023, 11, 1666 4 of 22

2. Methods

In this section, the basic approaches which have been used are described. First, CRO-
SL is shown. Then, the most important characteristics of the commonly used heuristics and
meta-heuristics included as substrates in the CRO-SL algorithm are described.

2.1. The CRO-SL: A Multi-Method-Ensemble Evolutionary Algorithm

The coral reef optimization algorithm with substrate layers (CRO-SL) [27,28] is a low-level
ensemble for optimization [1], based on evolutionary computation. It was first proposed as an
advanced version of a basic original algorithm, CRO [41]. We describe CRO-SL here but start by
introducing the basic CRO approach first.

2.1.1. Basic CRO

The coral reef optimization algorithm (CRO) [29,41] is an evolutionary-type meta-
heuristic,—a class of hybrid between evolutionary algorithms [42] and simulated anneal-
ing [43]. CRO uses a model of a rectangular-shaped reef that is M × N, (Λ), where the
possible solutions to the problem at hand (corals) are set. Each space Λ(i, j), where i and j
are the space’s coordinates, can be empty or contain a coral xk. The algorithm evolves the
solutions in the reef, as follows:

1. Initialization: A fraction ρ0 of the total reef capacity is occupied with randomly
generated corals. The reef position that each coral occupies is also randomly selected.

2. Evolution: Once the reef has been populated, the evolutionary process begins. This
process is divided into five phases per generation:

(a) Sexual reproduction: In this phase, new solutions (larvae set) are created
from the ones belonging to the reef in order to compete for a place in the reef.
Sexual reproduction can be performed in two ways: external and internal. A
percentage (Fb) of the corals settled in the reef perform external reproduction
(Broadcast spawning), and the rest of them (1− Fb) reproduce themselves
through internal sexual reproduction (brooding). These reproduction processes
are performed as follows:

i. Broadcast spawning: from the set of corals selected for external sexual
reproduction (Fb), new solutions (larvae) are generated and released.

ii. Brooding: each one of the remaining corals (1− Fb) produces a larva
by means of a small perturbation and releases it.

(b) Larvae setting: In this step, all the larvae produced by broadcast spawning or
brooding try to find a spot in the reef to grow up. A reef position is randomly
chosen, and the larva will settle in that spot in only one of the following scenarios:

i. The spot is empty.
ii. The larva has a better health function value (fitness) than the coral

currently occupying that spot.

Each larva can try to settle in the reef a maximum of three times. If the larva
has not been able to settle down in the reef after that number of attempts, it
is discarded.

(c) Asexual reproduction: In this phase (also called budding), a fraction Fa of the
corals with better fitness present in the reef duplicate themselves, and after a
small number of mutations, are released. They will try to settle in the reef as in
the previously described step.

(d) Depredation: Finally, each coral belonging to the Fdep worst fraction can be
predated (erased from the reef) with a low probability, Pd.

This basic version of the algorithm works as an evolutionary-type approach, defined in
exploitation, not in exploration, as the majority of algorithms do. This means that we can use
any kind of search procedure in the CRO. In fact, the first algorithm in [41] uses a 2-point
crossover operator to perform the broadcast spawning, but in other cases, alternative
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operators are considered, such as harmony search operators [44] or β-hillclimbing [45]. Note
that this paves the way to defining an improved algorithm as a multi-method ensemble.

2.1.2. CRO with Substrate Layers (CRO-SL)

The CRO-SL algorithm [27,28] is a further evolution of the CRO approach towards
a multi-method ensemble. It generally proceeds as the basic CRO, but with a significant
difference: instead of having a single surface of M × N, it considers several substrate
layers (T) of approximately the same size in the reef (Figure 1). Each substrate, in turn,
represents a particular evolution strategy or searching procedure. Thus, the CRO-SL is a
multi-method ensemble algorithm [1], where several searching strategies are carried out
within a single population.

Figure 1 shows a visual description of the CRO-SL procedure. This new approach adds
a dimension to the reef Λ, so a reef’s position is now given by three coordinates Λ(t, i, j),
where t is the substrate index, and i and j have the same meanings as in basic CRO. In
Figure 1, the third dimension is represented with colors. Thus, the evolutionary process is
the same as in the basic CRO at a general level, but the reproduction phase is performed at
the substrate level, so that a different search operator is applied depending on the substrate
the solution is allocated. The brooding phase remains the same as the basic CRO, for all
substrates. The produced larvae are released to a common reservoir, and then the larvae
setting procedure is carried out as in the basic CRO, regardless of its original substrate.

GM

DE
2Px

CM

Fa

Figure 1. Reef in the CRO-SL example. An example where 5 different substrates stand for different
search procedures: Gaussian mutation (GM), differential evolution (DE), two-point crossover (2Px),
Cauchy mutation (CM), and the firefly algorithm (Fa).

2.2. Substrate Layers Defined in the CRO-SL

Very different search strategies can be defined in the CRO-SL as part of the multi-method
approach, and they affect the performance of the ensemble. They are usually defined at
the practitioner’s discretion. In related articles, different combinations of well-known meta-
heuristics have been defined. In this case, we again tested regular combinations of previously-
defined heuristics and meta-heuristics, depending on the problem at hand. Specifically, we have
defined and applied the following substrates in the CRO-SL and its new variants: DE (different
versions), the Firefly algorithm (Fa), classical two-point crossover (2Px), BLX-α crossover (BLX),
Gaussian-based mutation (GM), and Cauchy-based mutation (CM).

1. DE: The DE algorithm [15] is a stochastic population-based method specifically de-
signed for global optimization problems [46]. In its more common form, DE maintains
a population with Np individuals, where every individual within the population
stands for a possible solution to the problem. Individuals are represented by a vector
Xi,g, where i = 1, . . . , Np and g refers to the index of the generation. A normal DE cy-
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cle consists of three consecutive steps: mutation, crossover, and selection. We adapted
the algorithm for the CRO-SL by considering only the mutation and crossover parts of
the meta-heuristic. Thus, mutation is carried out to generate random perturbations on
the population. For each individual, a mutant vector is generated. There are different
approaches for DE mutation in the literature [15]. We describe here the procedure
known as the “best mutation strategy” [47], which has been successfully applied in
many optimization problems before. It attempts to mutate the best individual of the
population, according to Equation (1), where Vi,g denotes the mutated vector, i is the
index of the vector, g stands for the generation index, r1, r2 ∈ 1, . . . , Np are randomly
created integers, Xbest,g denotes the best solution in the population, and F is the scaling
factor in the interval [0, 2]. This mutation strategy uses the scaled difference between
two randomly selected vectors to mutate the best individual in the population.

Vi,g = Xbest,g + F · (Xr1,g − Xr2,g) (1)

A crossover procedure is then applied between the mutated vector created in the
mutation stage and an individual randomly chosen from the population. The new
solutions created are called trial vectors and denoted by Ti,g for individual i at genera-
tion g. Every parameter in the trial vector is decided following Equation (2), where j
represents the index of every parameter in a vector, CR is the probability of recom-
bination, and Jrand denotes a randomly selected integer within (1, . . . , Np) to ensure
that at least one parameter from the mutated vector enters the trial vector:

Ti,g[j] =
{

Vi,g[j] if rand[0, 1] < CR or j = jrand
Xi,g[j] otherwise

(2)

2. Fa: The Fa is a kind of swarm intelligence algorithm based on the flashing patterns
and behavior of fireflies in nature [48,49]. In this algorithm, the pattern movement of
a firefly i attracted to another (brighter) firefly j is calculated as follows:

xt+1
i = xt

i + β0e−γr2
ij(xt

j − xt
i) + αεt

i (3)

where β0 stands for the attractiveness at distance r = 0. The specific Fa mutation
implemented in the CRO-SL is a modified version of the algorithm known as the
neighborhood attraction firefly algorithm (NaFa) [50]. It has been implemented as
follows: When a coral (solution) in the reef belongs to the Fa substrate, it is updated
following Equation (3). All the parameters of the equation are tuned during the
CRO-SL evolution. The corals in the Fa substrate consider as swarm a neighborhood
among all other corals in the reef (not only the Fa substrate). Thus, the corals in the Fa
substrate are updated taking into account some solutions from other substrates, since
all the corals in the reef share the same objective function.

3. 2Px: Classical 2-point crossover. The crossover operator is the most classical ex-
ploration mechanism in genetic and evolutionary algorithms [42,51]. It consists of
coupling individuals at random, choosing two points for the crossover, and inter-
changing the genetic material between both points. In the classical version of the
CRO-SL, one individual to be crossed is from the 2Px substrate, whereas the couple
can be chosen from any part of the reef.

4. BLX: BLX-α crossover. This crossover operator [52] considers two real-encoded
vectors, x1 = (x11, . . . , xn1) and x2 = (x12, . . . , xn2), and generates two offspring,
hk = (hk

1, . . . , δk
i , . . . , hk

n), k = 1, 2, where δk
i is a randomly (uniformly) chosen num-

ber from the interval [xmin − Iα, xmax + Iα], where xmax = max (xi1, xi2), xmin =
min (xi1, xi2), and I = xmax − xmin.
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5. GM: Gaussian mutation with a σ value linearly decreasing during the run, from
0.2 · (A − B) to 0.02 · (A − B), where [B, A] is the domain search. Specifically, the
Gaussian probability density function is:

fG(0,σ2)(x) =
1

σ
√

2π
e−

x2

2σ2 .

The reason for adapting the value of σ throughout the generations is to provide more
mutations in the beginning of the optimization and fine tuning with smaller displace-
ments nearing the end. The mutated larva is thus calculated as: x′i = xi + δNi(0, 1),
where Ni(0, 1) is a random number following the Gaussian distribution.

6. CM: Cauchy mutation. The one-dimensional Cauchy density function centered at the
origin is defined by:

ft(x) =
1
π

t
t2 + x2 (4)

where t > 0 is a scale parameter [53]; in this case, t = 1. Note that the Cauchy
probability distribution looks like the Gaussian distribution, but it approaches the
axis so slowly that an expectation does not exist. As a result, the variance of the
Cauchy distribution is infinite [53]. In this case, the mutated larva is calculated as:
x′i = xi + ηδ, where η stands for a variance and δ is a random number following the
Cauchy distribution.

3. Proposed Probabilistic Dynamic Ensembles with the CRO-SL

In this section, we present the two newly proposed multi-method ensemble methods
based on CRO-SL. Note that the main contribution of these new ensembles is the way
that each search procedure is selected for offspring generation, in such a way that it only
affects the broadcast spawning process, which was previously defined. In the original
CRO-SL algorithm, each search procedure is assigned to a set of positions of the popula-
tion (substrate). Thus, every individual settled on one of these positions will follow the
same search method in every iteration. Now, in these new CRO-SL versions, the search
procedures are chosen dynamically for each parent in each iteration of the run. This means
that the search procedures are no longer tied to a set of positions, but a coral will produce
the offspring in each iteration following one of the search procedures, which is randomly
chosen. The main difference between both versions is whether the probabilities are fixed
and maintained during the algorithm’s run or changed dynamically according to the search
procedure’s performance.

3.1. Probabilistic CRO-SL Ensemble

The probabilistic CRO-SL ensemble (PCRO-SL) is constructed from using the original
CRO-SL, by changing the substrate structure for a tag associated with each coral (solution)
in the reef. Each tag t stands for the substrate index in this case. The main difference
with the CRO-SL is that in each generation, the assignment of tags to corals is changed, so
for a given coral, the search procedure changes in each generation according to a given
probability distribution, usually a uniform one. Figure 2 shows an example of the PCRO-SL,
comparing a reef in it with one in the original CRO-SL.
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Original CRO-SL

Probabilistic CRO-SL

X11  X12  X13  ...  X1N
X21  X22  X23  ...  X2N
X31  X32  X33  ...  X3N
X41  X42  X43  ...  X4N
X51  X52  X53  ...  X5N...

XM1  XM2  XM3  ...  XMN

GM

DE
2Px

CM

Fa

Figure 2. PCRO-SL (proposed) and CRO-SL (original).

In essence, PCRO-SL lets the search methods be independent of the positions in the reef,
which still has a size of M× N. Now, the substrates are not defined by specific positions in
the reef, but they will be formed by a set of individuals randomly distributed throughout
the reef. The probability of using one search method or another for an individual in any
iteration of the run is defined by Equation (5).

pi = 1/T (5)

where pi stands for the probability that an individual belongs to substrate i and T stands
for the number of search procedures (substrates) considered. Note that, in this case, the
probabilities pi do not change during the run; however, the assignment of individuals to
each substrate is carried out every generation. Algorithm 1 shows the pseudo-code of this
PCRO-SL version.
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Algorithm 1 Probabilistic CRO-SL.
Input: values of the algorithm parameters within the range, including the probabilities of
each search method. Output: the fittest solution found for the problem at hand.

Step 1: set the initial population and empty positions, and calculate their fitness values.
Step 2: each individual can create new solutions in two ways:
if Fb then

with a high probability Fb it is generated offspring by the broadcast spawning process:
in this version, one search method is randomly selected (with probability pi, given by
Equation (5)) among the candidates.
else

with a low probability (1− Fb) it is generated offspring by the brooding process.
end if
Step 3: perform the settlement of the offspring.
Step 4: with probability Pd the depredation process is carried out.
Step 5: return the optimal solution if the stopping criterion is hold or go back to step 2
otherwise.

3.2. Dynamic Probabilistic CRO-SL Ensemble

The PCRO-SL ensemble method described above can be improved by including a
dynamic procedure of method-probability assignment, in such a way that the most efficient
methods have higher chances of being assigned than other search approaches, which have
not been so good during the search. Note that there are different methods for carrying
out this dynamical assignment. Specifically, we have evaluated three different ways of
calculating the probability of the search method to be assigned to corals in the reef:

1. Larval success rate metric. The first probability-assignment procedure depends on the
rate of success of the larvae (new solutions) produced by the corals in each substrate.
In other words, during the larvae setting phase, we keep track of the substrate (search
method) from which each larva was produced, and we note the number of them that
were successful in being inserting into the reef. The probability of each searching
method in the next step is obtained as the rate of successes of the total number of
generated larvae.

2. Raw fitness metric. The second probability-assignment procedure uses the fitness of
the generated solutions; i.e., it considers the quality of individual solutions to obtain
a metric for each substrate. In other words, if the operator applied generates good
solutions, it will have a higher probability of being assigned to an individual in the
next step. Note that there are different ways of implementing this metric: for example,
we can take the average of the fitness levels of all the larvae produced, the best fitness
across all of them, the worst one, etc.

3. Improvement of fitness. The last procedure for assigning the methods probabilities is
a differential approach, based on the difference from the best fitness level obtained in
the previous generation. It works very similarly to the previous strategy, giving higher
values to those substrates that generated solutions with better fitness. This method
also allows some variants, so we can take the average of the difference, the best value,
or the worst value to assign the probability of the method being used in the next step.

Once each substrate has been evaluated, the probability distribution can be calculated
from the metric considered, to finally assign the probability for a given substrate in the next
generation. To do this, the softmax function is used, so the probability assigned to one of
the T substrates i with a metric mi can be calculated as follows:

pi =
emi/τ

∑S
j=0 emj/τ

(6)

where the parameter τ gives a way of "amplifying" the probabilities, i.e., making similar
changes in the metric of each substrate giving high probabilities for low values of τ. Note
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that this process of new probability assignment is carried out after a number of generations,
T—enough generations that we can evaluate the performances of the different search
methods in the problem at hand. Figure 3 shows an outline of the DPCRO-SL ensemble.

GM

DE
2Px

CM

Fa

Dynamic Probabilistic CRO-SL

P
er

fo
rm

an
ce
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et

ri
c 

(m
)

Probability
Assignment

Assign tags 

X11  X12  X13  ...  X1N
X21  X22  X23  ...  X2N
X31  X32  X33  ...  X3N
X41  X42  X43  ...  X4N
X51  X52  X53  ...  X5N...

XM1  XM2  XM3  ...  XMN

Figure 3. Outline of the dynamic probabilistic CRO-SL algorithm (DPCRO-SL).

To ensure that the space of operators is effectively explored, a probability threshold is
set, ε, so that all substrates have at least a probability ε of being assigned to an individual.
This probability can be very small but must be enough to ensure that the operator will
eventually be chosen. Algorithm 2 shows the pseudo-code of the DPCRO-SL version.

Algorithm 2 Dynamic probabilistic CRO-SL.
Input: values of the algorithm parameters within the range. Output: the fittest solution
found for the problem at hand.

Step 1: set the initial population and empty positions, and calculate their fitness values.
Step 2: each individual can create new solutions in two ways:
if Fb then

with a high probability Fb it is generated offspring by the broadcast spawning process:
in this version, one search method is randomly selected (with probability pi given by
Equation (6)) among the candidates.
else

with a low probability (1− Fb) it is generated offspring by the brooding process.
end if
Step 3: perform the settlement of the offspring.
Step 4: calculate the success ratio of each search method and update the probabilities
following Equation (6).
Step 5: with probability Pd the predation process is carried out.
Step 6: return the optimal solution if the stopping condition is met, go back to step 2
otherwise.
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4. Experimental Results

The evaluation of the proposed CRO-SL variants was carried out in different bench-
mark functions and also in a real application of wind-turbine layout.

4.1. Comparison in Benchmark Functions

In this section, we compare the performances of PCRO-SL and DPCRO-SL with those
of CRO-SL and other state-of-the-art algorithms on different benchmark functions, to
evaluate the goodness of the two newly proposed probabilistic CRO-SL ensembles. The
definitions of the 25 benchmark functions considered can be found in the Appendix A.
In a first set of experiments, both PCRO-SL and DPCRO-SL were evaluated considering
the combination of four DE approaches in the ensemble as search methods. The reason
for defining a DE-based ensemble for the experiments with benchmark functions is that
DE-based approaches have obtained excellent results in the past in these kinds of problems,
such as the linear population size reduction success-history based adaptive differential
evolution (LSHADE) approach [19,26]. For each of the 25 benchmark functions 10 to 3× 105

evaluations of the objective functions were considered (the latter being the limit), and the
best, average, and standard deviation were obtained for the 10 executions carried out.

The defined DE-based CRO-SL is a version of the algorithm in which the operators
to be used in each substrate are restricted to a variant of the cross operation in the DE
(differential evolution) algorithm (see Section 2.2). To define a DE variant, the notation is
usually "DE/a/b", where a determines which vectors are going to selected and b determines
how many differences are going to be calculated. Hence, the variant DE/rand/2 will take
5 vectors at random from the population—Xr1,g, Xr2,g, Xr3,g, Xr4,g, Xr5,g—and will calculate
the vector V:

Vi,g = Xr1,g + F · (Xr2,g − Xr3,g) + F · (Xr4,g − Xr5,g)

which will be crossed with the individual chosen in the same way as in the DE algorithm.
In these experiments on benchmark functions, we first used the following DE variants:

1. DE/best/1
Vi,g = Xbest,g + F · (Xr1,g − Xr2,g)

2. DE/best/2
Vi,g = Xbest,g + F · (Xr1,g − Xr2,g) + F · (Xr3,g − Xr4,g)

3. DE/current-to-best/1

Vi,g = Xi,g + U · (Xbest,g − Xi,g) + F · (Xr1,g − Xr2,g)

4. DE/current-to-pbest/1

Vi,g = Xi,g + F · (Xpbest,g − Xi,g) + F · (Xr1,g − Xr2,g)

where U is a random value following a uniform probability distribution between 0 and 1,
Xbest,g is the individual with the best fitness in generation g, Xpbest,g is a solution picked at
random from the p% best ones in the generation, Xi,g is the individual chosen to be crossed
with, and Xrn,g is an individual chosen at random from the population.

Before further testing the performances of the proposed ensembles, the different
methods of probability assignment proposed were evaluated. Figure 4a–c compare different
methods of probability assignment in the DPCRO-SL (raw fitness assignment, fitness
improvement, and larval success rate, as described in Section 3.2). Note that the probability
is depicted in a relative plot fashion, so a color’s thickness represents the probability of
the given search method’s assignment. This is an example for the optimization of the
Rosenbrock function (F5) with a limit of 3 · 105 evaluations of the function. The probability
that is assigned to each operator in each generation of the algorithm is shown in the figure. It
is possible to see differences in the probability-assignment process. After some experimental
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tests, the best results were obtained with the raw fitness probability-assignment process.
The rest of the results in these benchmark functions were therefore obtained with this
probability-assignment method.

(a) (b)

(c)
Figure 4. Probability-assignment methods’ performances in F5 (Rosenbrock benchmark function).
The probability is depicted in a relative plot, so a color’s thickness represents the probability of the
given search method’s assignment. Note that the sum of the assignment probabilities in each genera-
tion must be 1. (a) Larval-raw-fitness probability-assignment method. (b) Larval-fitness-improvement
probability-assignment method. (c) Larval-success-rate probability-assignment method.

Table 1 shows the results obtained in the optimization of bechmark functions with
the different CRO-SL approaches proposed, and the original one. As can be seen, PCRO-
SL showed better performance than the classic CRO-SL in general. However, it is the
DPCRO-SL approach which showed the best results of all CRO-SL versions, leading to
very significant overall improvement in performance for all test functions. These results
indicate that the DPCRO-SL performs more efficient management of the search resources
in the ensemble, by means of modifying the probability of each search procedure as the
algorithms evolve. However, this improvement is less noticeable from the 16th function
onward. CRO-SL obtained a better mean for the fitness values. Note that this set of
functions is different from the rest, since they have lower dimensionality, most of them
having as an input a 2-dimensional vector, which could imply that the DPCRO-SL method
is better suited for higher dimensional problems.
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Table 1. Comparison among different CRO-SL ensemble variants (CRO-SL, PCRO-SL and DPCRO-SL)
with 4 DE-based substrates. We indicate the best mean fitness for each CRO variant in bold text.

Function DPCRO-SL PCRO-SL CRO-SL

# Best Mean Std Best Mean Std Best Mean Std

F1 4.16× 10−78 3.20 × 10−76 4.99× 10−76 7.60× 10−62 1.20× 10−60 1.95× 10−60 1.91× 10−68 8.07× 10−58 1.91× 10−57

F2 2.63× 10−77 6.86 × 10−75 1.29× 10−74 2.98× 10−61 7.20× 10−60 9.00× 10−60 5.07× 10−63 1.19× 10−56 3.57× 10−56

F3 1.75× 10−72 1.42 × 10−69 3.12× 10−69 1.83× 10−55 1.05× 10−54 1.45× 10−54 3.22× 10−61 2.26× 10−48 6.03× 10−48

F4 1.63× 10−81 1.42 × 10−78 2.25× 10−78 4.00× 10−64 3.43× 10−63 3.41× 10−63 1.68× 10−68 5.00× 10−54 1.50× 10−53

F5 2.34× 10−16 1.49 × 10−10 4.44× 10−10 8.98× 10−13 3.99× 10−1 1.20 1.19× 10−15 6.63× 10−8 1.33× 10−7

F6 3.55× 10−15 3.55 × 10−15 0.00 3.55× 10−15 3.55 × 10−15 0.00 3.55× 10−15 3.55 × 10−15 0.00

F7 −6.00× 101 −6.00 × 101 2.66× 10−14 −6.00× 101 −6.00 × 101 3.03× 10−14 −6.00× 101 −6.00 × 101 3.87× 10−14

F8 0.00 2.71× 10−3 4.33× 10−3 0.00 7.40 × 10−4 2.22× 10−3 0.00 1.97× 10−3 4.09× 10−3

F9 1.39× 101 5.73× 101 5.57× 101 1.79× 101 3.24 × 101 2.54× 101 1.49× 101 4.99× 101 5.48× 101

F10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

F11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

F12 −4.06× 102 −4.06 × 102 5.68× 10−14 −4.06× 102 −4.06 × 102 5.68× 10−14 −4.06× 102 −4.06 × 102 5.68× 10−14

F13 4.94× 10−1 5.18 × 10−1 1.37× 10−2 4.92× 10−1 5.18 × 10−1 1.45× 10−2 4.98× 10−1 5.20× 10−1 1.25× 10−2

F14 2.20× 108 2.20 × 108 1.65× 10−1 2.20× 108 2.20 × 108 2.18× 10−1 2.20× 108 2.20 × 108 4.99× 10−1

F15 3.47× 10−1 3.47 × 10−1 1.98× 10−8 3.47× 10−1 3.47× 10−1 3.62× 10−8 3.47× 10−1 3.47× 10−1 2.33× 10−8

F16 5.95× 10−4 2.04× 10−2 1.70× 10−2 2.58× 10−5 1.90× 10−2 1.79× 10−2 3.23× 10−3 1.72 × 10−2 1.44× 10−2

F17 1.17× 101 1.21× 101 6.01× 10−1 1.17× 101 1.26× 101 7.13× 10−1 1.17× 101 1.20 × 101 5.77× 10−1

F18 1.18× 10−3 1.20× 10−3 2.87× 10−5 1.18× 10−3 5.15× 10−3 7.92× 10−3 1.00× 10−4 1.09 × 10−3 3.29× 10−4

F19 −1.00 −1.53× 10−1 2.85× 10−1 −1.00 −2.52 × 10−1 3.75× 10−1 −1.00 −1.76× 10−1 2.75× 10−1

F20 3.72× 109 3.72 × 109 0.00 3.72× 109 3.72 × 109 0.00 3.72× 109 3.72 × 109 0.00

F21 −4.58× 101 −4.58 × 101 6.74× 10−15 −4.58× 101 −4.58 × 101 2.25× 10−15 −4.58× 101 −4.58 × 101 7.11× 10−15

F22 0.00 1.94× 10−3 3.89× 10−3 0.00 2.91× 10−3 4.45× 10−3 0.00 9.72 × 10−4 2.91× 10−3

F23 −3.31 −3.24 8.12× 10−2 −3.31 −3.28 7.33× 10−2 −3.31 −3.25 8.31× 10−2

F24 −6.13 −6.13 0.00 −6.13 −6.13 0.00 −6.13 −6.13 0.00

F25 0.00 3.00 × 10−3 5.98× 10−3 0.00 6.25× 10−3 7.15× 10−3 0.00 3.00 × 10−3 5.98× 10−3

We indicate in bold text the best mean fitness for each algorithm.

Further experiments were performed by carrying out a comparison with two existing
meta-heuristic approaches that obtained excellent performances in previous works. Specifi-
cally, DPCRO-SL, a version of the PSO algorithm [54], and the LSHADE algorithm [26] were
tested. Table 2 shows the results obtained in this comparison. It is shown that DPCRO-SL
is able to obtain similar (in some cases better) performances to the PSO and LSHADE
algorithms. In the most difficult benchmark functions, the differences were indeed sig-
nificant. It is important to note that from function 16 onward, there was a significant
performance drop by the LSHADE algorithm. This can be explained by the fact that these
benchmark functions have one less dimension, and since the LSHADE approach uses a
crossing procedure, the diversity obtained while running is reduced, and it is not able to
successfully explore the whole space of possible solutions.
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Table 2. Comparison of the DPCRO-SL ensemble with PSO [54] and LSHADE [26]. We indicate the
best mean fitness for each algorithm in bold text.

Function DPCRO-SL PSO LSHADE

# Best Mean Std Best Mean Std Best Mean Std

F1 4.16× 10−78 3.20 × 10−76 4.99× 10−76 4.98× 10−33 5.98× 10−31 9.51× 10−31 1.21× 10−79 1.90× 10−73 5.70× 10−73

F2 2.63× 10−77 6.86 × 10−75 1.29× 10−74 2.48× 104 1.72× 105 9.93× 104 4.14× 10−73 1.60× 10−67 4.56× 10−67

F3 1.75× 10−72 1.42 × 10−69 3.12× 10−69 2.24× 10−25 8.00× 103 4.00× 103 2.05× 10−72 3.89× 10−66 1.04× 10−65

F4 1.63× 10−81 1.42 × 10−78 2.25× 10−78 5.27× 10−33 6.29× 101 4.86× 101 8.53× 10−77 3.61× 10−73 6.33× 10−73

F5 2.34× 10−16 1.49 × 10−10 4.44× 10−10 1.25× 10−1 2.02× 105 3.99× 105 6.13× 10−3 8.84× 10−1 9.16× 10−1

F6 3.55× 10−15 3.55 × 10−15 0.00 7.11× 10−15 1.21× 10−14 3.26× 10−15 3.55× 10−15 3.91× 10−15 1.07× 10−15

F7 −6.00× 101 −6.00 × 101 2.66× 10−14 −6.00× 101 −6.00 × 101 2.59× 10−14 −6.00× 101 −6.00 × 101 0.00

F8 0.00 2.71× 10−3 4.33× 10−3 0.00 1.28× 10−2 1.06× 10−2 0.00 0.00 0.00

F9 1.39× 101 5.73× 101 5.57× 101 6.77× 101 1.35× 102 4.08× 101 1.35× 10−6 4.76 × 10−5 1.10× 10−4

F10 0.00 0.00 0.00 0.00 2.21× 102 2.45× 102 0.00 0.00 0.00

F11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

F12 −4.06× 102 −4.06× 102 5.68× 10−14 −4.06× 102 −4.06× 102 5.68× 10−14 −2.04× 103 −2.04 × 103 2.27× 10−13

F13 4.94× 10−1 5.18× 10−1 1.37× 10−2 4.90× 10−1 4.93× 10−1 2.08× 10−3 4.96× 10−1 5.03 × 10−1 3.58× 10−3

F14 2.20× 108 2.20 × 108 1.65× 10−1 2.20× 108 4.56× 108 2.88× 108 2.20× 108 2.20 × 108 2.68× 10−1

F15 3.47× 10−1 3.47 × 10−1 1.98× 10−8 7.40× 10−1 7.44× 10−1 2.60× 10−3 4.73× 10−1 4.75× 10−1 5.65× 10−3

F16 5.95× 10−4 2.04 × 10−2 1.70× 10−2 4.62× 10−3 3.10× 10−2 1.52× 10−2 2.29× 102 2.29× 102 2.84× 10−14

F17 1.17× 101 1.21 × 101 6.01× 10−1 1.18× 101 1.40× 101 1.52 3.44× 102 3.44× 102 0.00

F18 1.18× 10−3 1.20 × 10−3 2.87× 10−5 1.00× 10−4 1.24× 10−2 1.73× 10−2 1.24 1.24 2.22× 10−16

F19 −1.00 −1.53 × 10−1 2.85× 10−1 −1.00 −1.41× 10−1 2.89× 10−1 −8.04× 10−5 −8.04× 10−5 0.00

F20 3.72× 109 3.72 × 109 0.00 3.72× 109 3.72 × 109 0.00 3.89× 109 3.89× 109 0.00

F21 −4.58× 101 −4.58 × 101 6.74× 10−15 −4.58× 101 −4.58 × 101 5.94× 10−15 5.16× 102 5.16× 102 0.00

F22 0.00 1.94 × 10−3 3.89× 10−3 9.72× 10−3 9.72× 10−3 0.00 4.99× 10−1 4.99× 10−1 0.00

F23 −3.31 −3.24 8.12× 10−2 −3.31 −3.05 2.57× 10−1 5.03× 101 5.03× 101 0.00

F24 −6.13 −6.13 0.00 −6.13 −6.13 0.00 0.00 0.00 0.00

F25 0.00 3.00 × 10−3 5.98× 10−3 2.60× 10−3 7.99× 10−2 1.10× 10−1 5.19× 101 5.19× 101 0.00

4.2. Comparison in a Real Problem—Wind-Turbine Assignment

To further test the performance of the proposed approach, DPCRO-SL, a case study
of wind-turbine assignment has been addressed. The challenge is described in [55]. This
challenge was proposed by the National Renewable Energy Lab (NREL) in the US, together
with IEA (International Energy Agency) Wind Task 37, as a case competition in 2019. A
circular symmetry wind farm is considered in this problem, on flat and level terrain. The
wind turbines’ (x, y) locations are restricted to be on or within the boundary radius of the
wind farm. A separation constraint between turbines is also taken into account (a minimum
distance of two rotor diameters between turbines is considered).

The wind characteristics considered for this challenge are specified in [55] and also
described in [32]. Briefly, the wind distribution frequency and wind speed are the same for
all wind-farm scenarios. Free-stream wind velocity is constant in all wind directions, fixed
to 9.8 m/s, for all days. The challenge considers a wind rose (Figure 5a) with an off-axis
wind frequency distribution, binned for 16 directions.

Regarding the turbines’ characteristics, the case study considers the use of the IEA’s 3.35-
MW reference turbine. Its attributes are open source, and it is designed as a baseline for onshore
wind turbine specifications [56]. The specifics of the turbine are shown in Table 3.
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Table 3. Attributes for NREL’s 3.35-MW onshore reference turbine [56].

Parameter Value Units

Rotor Diameter 130 m
Turbine Rating 3.35 MW

Cut-In Wind Speed 4 m/s
Rated Wind Speed 9.8 m/s

Cut-Out Wind Speed 25 m/s

Figure 5a shows the turbine power curve considered.

(a)

(b)

Figure 5. (a) Wind rose of the challenge [55]. (b) Power curve of the NREL’s 3.35-MW onshore
reference turbine [55].

Equation (7) provides its analytic expression:

P(V) =



0 V < Vcut−in

Prated

(
V −Vcut−in

Vrated −Vcut−in

)3
Vcut−in < V < Vrated

Prated Vrated < V < Vcut−out

0 Vcut−out < V

(7)

The first scenario of the challenge was used, consisting of a wind farm boundary radius
of 1300 m with 16 turbines to be positioned. The metric used in this challenge was the
annual energy production (AEP) for the turbine layout, which has the following expression:

AEP =

(
m

∑
i=1

fiPi

)
8760

hrs
yr

, (8)

where fi is the corresponding frequency for direction i and Pi is the wind farm power for
direction i. Note that 8760 is the number of hours in a year.

Results

In this case the performance of DPCRO-SL is evaluated, considering five substrates
in the search, DE/best/1, Fa, BLX, GM, and CM. A local search given by a Cauchy-based
mutation was also applied.

Table 4 shows the results obtained with DPCRO-SL, and a performance comparison
among DPCRO-SL and alternative approaches in the literature (from [55]), where SNOPT is the
Sparse Nonlinear OPTimizer, WEP is the Wake Expansion Continuation, PSQP is Preconditioned
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Sequential Programming and fmincon is finite difference method to find gradients. The different
approaches are classified in gradient-based (G) or gradient-free (GF) algorithms. As can be seen,
the best performance in this problem was obtained by DPCRO-SL, which achieved a peak AEP
of 419935.8. It was followed by different gradient-based approaches (see [55] for details on these
approaches). Note that alternative meta-heuristics, such as PSO and evolutionary algorithms,
performed far worse than DPCRO-SL in this problem.

Table 4. Results for a wind farm boundary radius of 1300 m with 16 turbines, where our algorithm
is highlighted.

Rank Algorithm Grad. AEP

1 DPCRO-SL GF 419935.7905
2 SNOPT+WEC G 418924.4064
3 fmincon G 414141.2938
4 SNOPT G 412251.1945
5 SNOPT G 411182.2200
6 PSQP G 409689.4417
7 Multistart Interior-Point G 408360.7813

8 Full Pseudo-Gradient
Approach GF 402318.7567

9 Basic Genetic Algorithm GF 392587.8580

10 Simple Particle Swarm
Optimization GF 388758.3573

11 Simple Pseudo-Gradient
Approach GF 388342.7004

Figure 6 shows the best layout obtained in the problem with DPCRO-SL. This solution
is also shown in Table 5. As can be seen, the best solution spreads as many wind turbines as
possible to the edges of the wind farm, with almost regular separation. The rest of turbines are
distributed over the center of the wind farm, with sufficient distances between them.

− 1 5 0 0 − 1 0 0 0 − 5 0 0 0 5 0 0 1 0 0 0 1 5 0 0

− 1 5 0 0

− 1 0 0 0

− 5 0 0

0

5 0 0

1 0 0 0

1 5 0 0

D i s t r i b u t i o n  o f  t u r b i n e s

Figure 6. Turbine layout by means of DPCRO-SL (16 turbines, 1300m radius).
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Table 5. Best turbine layout solution obtained by the DPCRO-SL (16 turbines, 1300 m radius).

i 1 2 3 4 5 6 7 8

x −335.6 1273.3 1210.0 −521.1 -798.7 −226.9 124.6 1018.1
y 1255.7 −261.8 356.3 98.0 −1003.0 −1125.9 548.6 −798.7

i 9 10 11 12 13 14 15 16

x −1233.3 −975.6 805.6 676.7 −1098.8 549.4 353.1 −98.7
y −375.5 831.4 1019.8 684.4 237.8 −109.7 −1250.9 −556.0

5. Conclusions

In this paper, two new probabilistic and dynamic multi-method ensembles were pro-
posed, both based on the coral reef optimization with substrate layers (CRO-SL). First, the
probabilistic CRO-SL was defined, where the classical substrates of the original algorithm
are changed by tags associated with each coral (solution), i.e., associated with a given search
method. In this version, the tags which relate solutions and search methods are changed
in every generation of the algorithm, leading to a probabilistic version of the ensemble, in
contrast to the original static CRO-SL. Second, the dynamic version of the multi-method en-
semble was proposed, where the chances of the tags’ assignment vary during the evolution
of the algorithm, depending on the performances of the search methods in the problem at
hand. We have tested the performance of the proposed multi-method ensembles in different
optimization problems, including different benchmark functions and a real problem of
wind-turbine layout. Comparison with state of the art algorithms has shown the excellent
performance of the proposed ensembles, especially for the dynamic probabilistic version of
CRO-SL. These good results show that the novel multi-method ensembles proposed here
are potentially excellent algorithms for a large number of optimization problems, including
real-world optimization tasks. Finally, we provide free access to the Python code of the
DPCRO-SL, via GitHub, so any researcher can download the code, modify it, add new
search strategies, and test it in any other optimization problem.
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Appendix A

Appendix A.1 Benchmark Functions

• F1: Sphere.

f1(x) =
N

∑
i=1

x2
i

• F2: High Condition Elliptic.

https://github.com/jperezaracil/PyCROSL.git
https://github.com/jperezaracil/PyCROSL.git
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f2(x) =
N

∑
i=1

106 i−1
N−1 x2

i

• F3: Bent Cigar.

f3(x) = x2
1 + 106

N

∑
i=2

x2
i

• F4: Discus.

f4(x) = 106x2
1 +

N

∑
i=2

x2
i

• F5: Rosenbrock.

f5(x) =
N−1

∑
i=1

100(xi+1 − x2
i )

2 + (1− x1)
2

• F6: Ackley.

f6(x) = e− 20exp

−0.2 ·

√√√√ N

∑
i=1

x2
i

− exp

(
1
N

N

∑
i=1

cos(2πxi)

)
+ 20

• F7: Weierstrass (limited to 20 iterations).

f7(x) =
N

∑
i=1

20

∑
j=1

0.5j · cos(2π · 3j · (xi + 0.5))

• F8: Griewank.

f8(x) = 1 +
1

4000

N

∑
i=1

x2
i −

n

∏
i=1

cos
(

xi√
i

)
• F9: Rastrigin.

f9(x) = 10N +
N

∑
i=1

[
x2

i − 10cos(2πxi)
]

• F10: Modified Schwefel.

g10(x) =


−x sin

(√
x
)

x = 500

−
(

500− [x mod 500] · sin
(√

500− [x mod 500]
))

+
(

x−500
N2100

)2
x > 500

−
(
−500− [x mod 500] · sin

(√
500− [x mod 500]

))
+
(

x+500
N2100

)2
x < 500

f10(x) = N
N

∑
i=1

g10(xi)

• F11: Katsuura.

f11(x) =
10
N2

N

∏
i=1

[
1 + (i + 1)

N

∑
k=1
b2kxic2−k

]
• F12: Happy Cat.

f12(x) = (‖x‖2 − N)0.25 +
1
N

(
1
2
‖x‖2 +

N

∑
i=1

xi

)
+

1
2
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• F13: HGBat.

f13(x) =

‖x‖4 −
(

N

∑
i=1

xi

)2
0.25

+
1
N

(
1
2
‖x‖2 +

N

∑
i=1

xi

)
+

1
2

• F14: Griewank plus Rosenbrock.

g14(x) =

N−1

∑
i=1

[
1

4000
(100(x2

i − xi+1) + (xi − 1)2)2−

cos(100(x2
i − xi+1) + (xi − 1)2) + 1

]
f14(x) = g14(x) +

1
4000

f5(x)2 − cos( f5(x)) + 1

• F15: Exp Shaffer F6.

f15(x) = 1 +
sin2

(√
∑N−1

i=1 (x2
i + x2

i+1)
)
− 0.5[

1 + 0.001 ∑N−1
i=1 (x2

i + x2
i+1)

]2 +
sin2

(√
(N − 1)2 + x2

1

)
− 0.5[

1 + 0.001((N − 1)2 + x2
1)
]2

• F16: Bukin F6.

f16(x) = 100
√
|x2 − 0.01x2

1|+ 0.01|x1 + 10|

• F17: Cola; d is a triangular matrix of size 10 × 10.

f17(x) =
n

∑
i<j

(ri,j − di,j)
2

ri,j =
√
(xi − xj)2 + (yi − yj)2

• F18: CrownedCross.

f18(x) = 0.0001

∣∣∣∣∣∣exp

∣∣∣∣∣∣100−

√
x2

1 + x2
2

π

∣∣∣∣∣∣
sin(x1)sin(x2)

∣∣∣∣∣∣+ 1

0.1

• F19: CrossLegTable.

f19(x) = −0.0001
f18(x)

• F20: Meyer. Regression with 3 parameters. Fit the model p to 16 observations. We are
given a vector α of predictors and a vector β of targets:

p(x, α) = x1exp
(

x2

α + x3

)
f20(x) =

16

∑
i=1

(βi − p(x, αi))
2

• F21: Paviani.

f21(x) =
10

∑
i=1

[
log2(10− xi) + log2(x1 − 2)

]
−
(

10

∏
i=1

x10
i

)0.2
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• F22: SineEnvelope.

f22(x) = −
n−1

∑
i=1

 sin2
(√

x2
i+1 + x2

i − 0.5
)

(0.001(x2
i+1 + x2

i ) + 1)2
+ 0.5


• F23: Trefethen.

f23(x) = 0.25x2
1 + 0.25x2

2 + esin(50x1) − sin(10x1 + 10x2)+

+ sin(60ex2) + sin(70sin(x1)) + sin(sin(80x2))

• F24: Alpine F2.

f24(x) =
n

∏
i=1

√
xisin(xi)

• F25: BiggsExp F5.

f25(x) =
11

∑
i=1

(
x3e−0.1·i·x1 + x4e−0.1·i·x2 + 3e−0.1·i·x5 + e−0.1·i + 5e−10·0.1·i + 3e−4·0.1·i

)
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