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Abstract: Energy efficiency and throughput are concerns for energy-harvesting cognitive radio
networks. However, attaining the maximum level of both requires optimization of sensing duration,
harvested energy, and transmission time. To obtain the optimal values of these multiple parameters
and to maximize the average throughput and energy efficiency, a new hybrid technique for multi-
objective optimization is proposed. This hybrid optimization algorithm incorporates a Shapley value
and a game theoretic concept into metaheuristics. Here, particle swarm optimization grey wolf
optimization (PSOGWO) is selected as the source for the advanced hybrid algorithm. The concept of
the unbiased nature of wolves is also added to PSOGWO to make it more efficient. Multi-objective
optimization is formulated by taking a deep look into combined spectrum sensing and energy
harvesting in a cognitive radio network (CSSEH). The Pareto optimal solutions for the multi-objective
optimization problem of energy efficiency and throughput can be obtained using PSOGWO by
updating the velocity with the weights. In the proposed Shapley hybrid multi-objective optimization
algorithm, we used Shapley values to set up the weights that, in turn, updated the velocities of the
particles. This updated velocity increased the ability of particles to reach a global optimum rather
than becoming trapped in local optima. The solution obtained with this hybrid algorithm is the
Shapley–Pareto optimal solution. The proposed algorithm is also compared with state-of-the-art
PSOGWO, unbiased PSOGWO, and GWO. The results show a significant level of improvement in
terms of energy efficiency by 3.56% while reducing the sensing duration and increasing the average
throughput by 21.83% in comparison with standard GWO.

Keywords: optimization; cognitive radio network; energy harvesting; performance parameters;
spectrum sensing; metaheuristic

MSC: 68W50

1. Introduction

The process of continuous spectrum sensing by a cognitive radio results in high energy
consumption and low data transmission, particularly in densely occupied environments.
Energy harvesting in cognitive radio networks (CRNs) has emerged as a promising tech-
nology where the energy consumption by the CR is taken care of [1]. Energy harvesters
are equipped with the powerful capability of capturing and storing the energy from am-
bient energy as well as other forms of energy. Such wireless networks need continuous
performance enhancement. As these networks use harvesters, the performance measure
of such networks is calculated in terms of throughput, sensing duration, transmission
time, and energy efficiency (EE) [2]. The duration of sensing and transmission affect the
throughput and energy efficiency of the system. Higher throughput can be obtained by
providing more time for transmission, but at the cost of energy. Thus, spectrum sensing
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and energy harvesting in CRNs are performed simultaneously to enhance network perfor-
mance. The demand for energy efficiency with higher throughput cognitive radio networks
is achieved by utilizing various optimization algorithms; therefore, we focus on achieving
higher throughput and energy efficiency for the combined spectrum of sensing and energy
harvesting in CRNs [3]. The multiple objectives of the energy-harvesting cognitive radio
network (EHCRN), if optimized simultaneously, expedite the performance of the network,
making it more efficient. In such circumstances, choosing the optimization method is
incredibly important so that network performance is not degraded.

Most of the optimization problems are non-convex in nature, and it becomes difficult to
find a global optimal solution as they have more than one solution. Optimization problems
that have a large search space or are more complex in nature will be difficult to solve
using conventional mathematical optimization algorithms. The different metaheuristic
optimization algorithms present in the research arena are very capable of solving difficult
optimization problems. Each of the metaheuristic optimization algorithms has its own
strengths and potential for improvement. Some of them might converge faster, and others
may take a longer time to find the optimal solution. Nevertheless, there is a lot of scope
for further improvement in metaheuristic optimization algorithms. Here, a combination
of metaheuristic optimization [4], a Shapley value, and a game theoretic approach [5] is
considered. Until now, hybridization of metaheuristic techniques such as PSOGWO [6]
and game theory has not been reported in the field of energy harvesting and spectrum
sensing. Thus, in this work, we propose a novel Shapley-value-based hybrid metaheuristic
multi-objective optimization technique for EHCRN. The main contributions of this work
are listed as follows:

1. Mathematical formulation of the multi-objective optimization problem for combined
spectrum sensing energy harvesting (CSSEH).

2. A novel concept of unbiased search agents in the particle swarm optimization grey
wolf optimization algorithm.

3. The development of an extended hybrid algorithm that combines game theory
and a metaheuristic optimization algorithm shows faster convergence with a bet-
ter Pareto front.

4. Optimum sensing duration for maximum average throughput and energy efficiency
by the Shapley adaptive weights.

To summarize, this paper focuses on the application of Shapley hybrid metaheuristics
to a combined spectrum sensing and energy-harvesting network, where spectrum sensing
by the cognitive radio is performed and this sensing energy is kept at a minimum to save the
harvested energy from the CR. Performance is improved for the EHCRN by our proposed
technique, which is demonstrated by the simulation results.

The rest of this paper is organized as follows: Section 2 presents the literature review.
The multi-objective problem formulation with detailed insight into CSSEH is described in
Section 3. In Section 4, the optimization techniques, including the design of the proposed
Shapley value-based PSOGWO, are discussed. In Section 5, the implementation of the
techniques, the simulation results, and a comparative performance analysis are presented.
Finally, Section 6 sums up the conclusion as well as the future direction of the research.

2. Literature Review

The multi-objective problem for the CSSEH can be addressed effectively by taking a
look at the two main aspects dedicated to such networks for performance enhancement.
The first is to modify the frame structure so that sensing and harvesting are completed at
the same time to save energy. The second is to develop a hybridized technique to solve the
constrained optimization problem. The literature review related to the contributions of our
work is divided into two Sections, Sections 2.1 and 2.2.
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2.1. Spectrum Sensing, Throughput, Energy Harvesting, and Energy Efficiency

In [7], the analysis of spectrum sensing and energy harvesting of a cognitive node opti-
mized for sensing and transmission of energy was proposed for the first time. The Markov
decision process was used to optimize secondary throughput and energy utilization. A
different approach of using a stochastic geometry model was proposed in [8] to analyze
and maximize the throughput of the secondary network, where the primary transmitter
and secondary transmitter are distributed according to independent homogeneous Pois-
son point processes (HPPPs). Based on this work, [9] extended the work by maximizing
the throughput of secondary users by jointly optimizing the sensing duration, sensing
threshold, and save-ratio. The trade-off that was not considered was investigated by [10]
between the spectral efficiency and energy efficiency of the Rayleigh flat fading channels.
The issues of energy efficiency were solved using optimization algorithms and the energy
efficiency maximization problem of the energy-harvesting network by considering the
outage probability and interference power constraint in [11]. The Kullback–Leibler diver-
gence technique was proposed in a cognitive radio network by [12] to evaluate the sum rate.
Sensing performance and throughput analysis were carried out through comparison with
conventional methods. The authors focused on maximizing the average throughput of
the secondary network with the interference power constraint and minimum throughput
constraint. The authors of [13] calculated the capacity of the secondary user; they observed
the effect of varying threshold levels on the signal-to-noise ratio (SNR) levels of the pri-
mary user and calculated the normalized achievable capacity of the secondary user for
various fading channels. In addition, in [14], the authors presented the performance of the
secondary users in terms of blocking probability, dropping probability, non-completion
probability, and throughput for three different cases of a heterogeneous licensed spectrum
environment in a CR ad hoc network. The authors of [15] proposed an algorithm to maxi-
mize the throughput of a non-linear energy-harvesting cognitive-radio-enabled network.
The algorithm is based on threshold censoring. In addition, [16] proposed throughput
maximization problems as non-linear optimization problems with an optimal solution in
the energy cooperation mode. The problems are non-convex optimization problems that
are converted to non-linear convex problems. The traditional approach to performance
optimization caters to the selection of the most prominent objective giving little attention
to the rest of the parameters.

To sum up, from the aforementioned literature, the common problem of throughput
and energy maximization is considered with a focus on secondary performance. However,
it is always desirable to obtain the optimized values of the parameters for the networks
enabled with a cognitive radio through new and improved optimization techniques. Ob-
taining the optimal value for multiple parameters becomes time-consuming, and moreover,
it does not always promise the best solution to the problem of interest.

2.2. Metaheuristic Optimization Algorithms

Over the past decade, the metaheuristic optimization framework presented in [17] has
attracted the attention of researchers. These techniques have applications to many real-
world problems, including cognitive radio networks. Bio-inspired techniques were used
for spectrum sensing and allocation by deriving optimal weights [18]. A joint-optimization
approach based on binary particle swarm optimization and geometric programming was
proposed by [19] to optimize the parameters in an energy-harvesting relay system. In [20],
the authors proposed self-adaptive particle swarm optimization (SA-PSO) for resource
allocation to jointly optimize the power and time for wireless power transfer in cognitive
wireless powered networks.

Different optimization techniques, such as particle swarm optimization (PSO), firefly
optimization (FFO), and antlion optimization (ALO), exist in the literature and yield good
results, but their solutions may stick to the local minima with a slower convergence speed.
Our idea is to have an efficient yet practical algorithm that will work most of the time and
that is able to produce a high-quality solution. For this, a balance between intensification
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and diversification should be maintained. Many hybrids of swarm intelligence-based
algorithms use animal behavior to solve complex optimization problems. Particle swarm
optimization grey wolf optimization (PSOGWO) [6] and the particle swarm optimization
genetic algorithm (PSO-GSA) [21] are some of them. The Pareto front of these algorithms
decides on the better solutions obtained for the problem under consideration. In com-
parison, these hybrid techniques provide better Pareto front optimal solutions than the
quality of the Pareto obtained using a single metaheuristic algorithm. The performance
of PSOGWO was improved by [9]. Nevertheless, there is scope for further improvement,
as none of these works focused on improving the biased nature of wolves. Moreover,
hybridization is based on parallel metaheuristics, and there are many restrictions on their
implementation.

Considering the above limitations and the possibility of improving PSOGWO, we
hybridized the improved PSOGWO with the Shapley technique. The merits of hybrid opti-
mization techniques allow the proposed technique to outperform both GWO and PSOGWO
for the throughput and energy efficiency problems in the EHCRN. The convergence results
are compared and show that the performance of the hybridization results in a better Pareto
front. Furthermore, the hybrid technique is applied to the multi-objective optimization
problem formulated in the subsequent section.

3. Multi-Objective Problem Formulation for Combined Spectrum Sensing and Energy
Harvesting (CSSEH)

In this section, an energy-harvesting cognitive radio network for multi-objective
problem formulation is considered. The first part comprises a mathematical model for
energy harvesting and the second part consists of obtaining the multiple fitness functions
for optimization.

Figure 1 comprises a primary transmitter (PT), an energy harvester (EH), and a spec-
trum sensing unit at the secondary transmitter (ST). The power from the RF signal of the
PT transfers to the energy harvester for charging first. Then, the ST performs spectrum
sensing and transmits the data to the secondary user (SU) using the harvested power.
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The received signal at the energy harvester is given as follows:

yk = hk
√

Ptxk + nk, (1)

where k = 1, 2, . . . , K denotes the K time slots used for energy harvesting (EH) by the
secondary transmitter (ST), hk is the fading coefficient of the channel between the primary
transmitter and the secondary transmitter, Pt is the transmission power of the primary
transmitter, xk is the transmitted signal with unit power E{xk 2} = 1, and nk is the complex
additive white Gaussian noise with mean zero and variance 2β2 denoted by CN (0, 2β2).
The channel coefficient is a complex Gaussian random variable with mean s = 0 and
variance 2α2 = 1. Hence, the Rayleigh fading channel is assumed in this work. Here, the
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average signal-to-noise ratio is SNR = P f Ps
2β2 where Pf is the average fading power given by

|s|2+ 2.
As the harvested energy is collected in the harvester, the total harvested energy over K

time slots is given by (2):
Eh = ∑K

k=1 ηk|yk|2τ, (2)

where ηk is the conversion efficiency of the energy harvester in the Kth time slot. Since a
single harvester is used, ηk = η for k = 1, 2, . . . , K. Each power transmission is completed in
τ seconds.

Ph = ητ∑K
k=1

∣∣∣hkxk
√

Pt + nk

∣∣∣2 = ητ σ2S, (3)

With

S =

(
1
σ2

) K

∑
k=1

∣∣∣hkxk
√

Pt + nk

∣∣∣2, (4)

where
2σ2 = 2α2Pt + 2β2. (5)

Now, the RF signal at the energy harvester is converted to a low pass signal and given
as follows:

i = ηk

∣∣∣hkxk
√

Pt + nk

∣∣∣2 + nrk, (6)

where nrk is the noise due to the rectifier unit with mean 0 and variance γ2. Some part
ib of the converted signal is used to charge the battery, and the remaining iss is used for
spectrum sensing given as follows:

iss = (1− ib). (7)

The performance of spectrum sensing is determined by the signal-to-noise ratio of the
iss and is not affected by ib as long as it is less than unity. Thus, the detection threshold
should be decreased with the increasing ib. The signal iss is sampled at the nth coherence
time with the set detection threshold ε with the total sample size of N to find the state of
the primary user. The spectrum state is determined as follows:

∑N
n iss ≥ε, H1, when PT is present, (8)

∑N
n iss ≤ε, H0, PT is absent.

For accurate spectrum sensing by the ST, the main performance parameters are the
probability of false alarm and misdetection. The sensing duration and detection threshold
are the parameters that simultaneously affect the probability of detection Pd(τs, ε) and Pf
(τs, ε) given by:

Pf (τ, ε) = Q
((

ε

σ2
w
− 1
)√

τ fs

)
, (9)

Pd(τ, ε) = Q

((
ε

σ2
w + σ2

p
− 1

)√
τ fs

)
. (10)

The average throughput at the ST is maximized only if these parameters are maintained
up to a certain level in keeping with the view of the QOS of the primary user. We consider
the integrated scenario of combined spectrum sensing and energy harvesting (CSSEH)
which increases the harvested energy and reduces the energy consumption for spectrum
sensing, thus making more energy available for data transmission which finally increases
the throughput. The frame structure of the CSSEH scenario can be explained by considering
the two states, S1 and S0, which the secondary transmitter can acquire (Figure 2).
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For the given frame structure, we considered that the secondary transmitter harvests
the energy by detecting the primary transmitter in (K − 1) consecutive timeslots. The slots
can be explained by the state of the channel being busy or idle. The availability of the
channel puts the ST in two states. All the (K − 1) slots (0 to τ) of state S1 are of equal length
and consist of the same harvesting time (i.e., τh1 = τh2 = τh3 = . . . . . . = τhk−1) and the
sensing time (i.e., τs1 = τs2 = τs3 = . . . . . . = τsk−1 = τs).

Case-I: when ST is in State S1

The secondary transmitter is in state S1 when the channel is busy (i.e., the primary
transmitter is present), with the probability of a busy channel as π1. During this time slot
(0–τ), the harvester can harvest the RF energy for the entire slot (i.e., τh1 = τh2 = τh = τ),
where τh is the harvesting time. The τh duration is assumed to be the same for all the
slots and long enough so that the harvested energy is larger than the energy consumed
for spectrum sensing. During the (τh–τs) time slot of the energy-harvesting period, only
energy harvesting is performed, while for the remaining τs period, spectrum sensing and
energy harvesting are executed simultaneously. The ST is not transmitting during this state
and the probability of state S1 is given by:

Pr(S1) = Pr(S0|PT absent)Pf (τs) + Pr(S1|PT present)(1− Pm(τs)). (11)

The parameters, π1 = Pr(S1|PT present) and π0 = Pr(S0|PT absent), denote the station-
ary probabilities that the channel is busy and idle, respectively, and are given by:

π1 = α1/α1 + α0 and π0 = α0/α0 + α1,π1 + π0 = 1.

Case-II: When ST Is in State S0

The ST in State S0 involves harvesting, sensing, and transmitting time structure in
the Kth time slot. When the channel is idle, i.e., the primary transmitter is absent, the
probability of an idle channel is π0. S0 is further divided into S00 and S01 (i.e., when the
channel is idle and busy, respectively).

• State S00 consists of harvesting and sensing. In this state, the harvesting time is reduced
to τ − τt= τhk. When the primary transmitter is not present, the secondary transmitter
transmits data to the secondary receiver with the harvested energy over the period τt.
The probability of ST being in state S00 is given by:

Pr(S00) = Pr(S0|PT absent)(1− P f (τsk)). (12)

• State S01 is the state when the channel is busy, that is, neither sensing nor harvesting
takes place, and only data are transmitted for the remaining time, i.e., τt.
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The probability of ST being in state S01 is given by:

Pr(S01) = Pr(S1|PT present)Pm(τsk)). (13)

The net stored energy Ense, after staying in state S1 (K times) before going into state S0
at the end of the (K − 1)th time slot is given as follows:

The net stored energy Ense, in state S00 after staying in state S1 (K − 1 times), is given
as follows:

Ense,(K−1) = (k− 1)π1Eh|τh=τ
+ π0Eh|τh=τ−τt

,

where Eh|τh = Phτh − (Ph(1− ρ) + Ps)τs,

Eh|τh=τ
= Phτ − (Ph(1− ρ) + Ps)τs,

Ense|τh=τ−τt
= Phτ − (Ph(1− ρ) + Ps)τs)− Phτt,

Finally,

Ense,(K−1) = (k− 1)π1[P hτh − (Ph(1− ib) + Ps)τs] + π0[P hτ − (Ph(1− ib) + Ps)τs)−Phτt]. (14)

The Ense,(K−1) will be further used by the ST for data transmission in state S01.
For the discussed scenario of combined sensing and harvesting, the multiple optimiza-

tion objectives are formulated by taking the throughput of the individual states and then
taking their average.

R00 =
τt

τ
C00, (15)

R01 =
τt

τ
C01, (16)

where R00 and R01 are the throughput for the S00 and S01 states considered, respectively.
Thus, the average throughput can be expressed as the sum of throughput of ST

formulated as the fitness function as follows:

F1(x) : R0 = ∑K
k=1

τt

τK
[C00 + C01], (17)

F1(x) : R0 = ∑K
k=1

τt

τK
[C00Pr(S1)Pr(S00) + C01Pr(S1)Pr(S01)], (18)

where C00 = log (1+|hk|2Pτt/σ2
n), Pτt is the power for transmitting the data, σ2

n is the noise

power at the secondary receiver, and C01 = log (1 + |gs |2Pτt

σ2
n+|gp|2Pt

). Where gs and gp are the

channel gain between ST and SU and PT and SU, respectively.
As data transmission takes place with the harvested energy, the harvested energy

at the secondary transmitter needs to be maximized so that more power is available for
transmission, which finally increases the throughput. The energy efficiency of the EHCRN,
given as the ratio of the average throughput to the average energy consumption, is used to
measure the network’s performance subject to the detection constraints in (8). The total
energy consumption includes the energy consumed for spectrum sensing represented as
τs1 Es1. Thus, using (18), energy efficiency is given below:

EE =
Ro

τs1Es1
. (19)
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Based on Equations (18) and (19), the optimization problem can be formulated as a
maximization problem. F(x): {maxF1(x), F2(x)}, subject to the constraints on energy and
the interference.

Hence, F2(x) = max EE,
s.t Es1 < Eh.

The multi-objective optimization problem can be solved using hybrid metaheuristic
techniques. PSO and GWO are metaheuristic optimization techniques used in many
optimization problems; they target finding the best solution to a problem. PSO is inspired
by swarms, whereas GWO is a metaheuristic optimization technique that is inspired by
grey wolves. Particle swarm optimization is known for its exploitation capability, while
grey wolf optimization is known for its exploration ability.

PSOGWO is a nature-inspired technique that integrates the qualities of individual
PSO and GWO algorithms to determine the best position of the wolves. Hybrid PSOGWO
shows faster convergence for standard optimization problems as compared to PSO and
GWO. In PSOGWO, both algorithms run in parallel by using the governing equations in
the best possible manner.

In particle swarm optimization, the initial population pop N is generated randomly
and, in each iteration, ‘iter’, the position posi[n] and velocity veli[n] of particle i in iteration
step n in the swarm are updated in memory using the following equations:

posi[n + 1] = posi[n] + veli[n + 1], (20)

veli[n + 1] = W × veli[n] + c1r1 × (pbesti[n]− posi[n]) + c2r2 ×
(

pbestg[n]− posi[n]
)

. (21)

Here, W is the inertia weight parameter and r1 and r2 are random values between 0
and 1 with c1 and c2 as the acceleration coefficients with a positive value. pbesti[n] gives
the best position obtained by the i-th particle and pbestg[n] gives the best position achieved
globally in the swarm.

To increase the chance of achieving a global solution and not becoming trapped in
local minima, the GWO algorithm supports PSO. In grey wolf optimization, the leadership
hierarchy consists of three types of wolves: alpha α, beta β, and delta δ. Where the first one
represents the best solution and the second and third represent the next best solutions. The
population that has other wolves too, follows the position pos of these three leader wolves
that are hunting wolves.

The position of the three wolves while encircling their prey is governed by the follow-
ing equations:

posα = |c1 × Xα(t)− X(t)|, (22)

posβ =
∣∣c1 × Xβ(t)− X(t)

∣∣, (23)

posδ = |c1| × Xδ(t)− X(t). (24)

Xα(t), Xβ(t), and Xδ(t) are the positions of the best wolves in each iteration and X (t)
is the location of the grey wolves.

The PSO directs some particles to random positions with the possibility of them
becoming trapped in local minima. Thus, GWO helps them to get away from local minima
by improving their positions. The updated position of the best three agents with the
weights added is given by the following equations:

posα = |c1 × α pos(j)− w× pos(i, j)|,
X1 = α pos(j)− a1 × posα,

(25)
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posβ = |c2 × β pos(j)− w× pos(i, j)|,
X2 = β pos(j)− a2 × posβ,

(26)

posδ = |c3 × δ pos(j)− w× pos(i, j)|,
X3 = δ pos(j)− a3 × posδ.

(27)

Here X1, X2, and X3 give information on the best positions about the agents (wolves).
The above equations are used to update the velocity equation of the PSO as follows:

veln+1
i = w× veln

i + c1r1
(
X1 − Xn

i
)
+ c2r2

(
X2 − Xn

i
)
+ c3r3

(
X3 − Xn

i
)
,

Xn+1
i = Xn

i + veln+1
i .

(28)

There is scope for improvement in PSOGWO. It was found that the biased behavior of
wolves sometimes does not give the best solution. This biased nature is handled by making
the wolves unbiased so that their walk is more refined. The fittest wolf is selected rather
than a random wolf, and the wolves are arranged in a decreasing order with the fittest wolf
at the top. Thus, the position of the wolves is updated by updating the velocity equation
as follows:

veln+1
i = wn

ub × (veln
i + c1r1(X1 − Xn

i ) + c2r2(X2 − Xn
i ) + c3r3(X3 − Xn

i )). (29)

Here, wn
ub is the parameter that is changed as per the updated position of the wolves

based on their fitness.
In each iteration, it is important that the wolves move towards their prey without being

trapped in the local Pareto, so instead of their walk being random, their walk arrangement
is completed in the decreasing order of their fitness value, as shown in Figure 3.
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It is important that the leaders are always fit to guide the other wolves to catch their
prey. This biased nature of the wolves in state-of-art PSOGWO to reach the optimal solution
motivates us to improve their behavior, so that they are unbiased. Moreover, the fittest wolf
is always followed, rather than the vice versa situation. This results in obtaining the Pareto
optimal solution.

4. Proposed Shapley Hybrid Multi-Objective Optimization Algorithm

The proposed unbiased PSOGWO shows faster convergence to the constrained opti-
mization problem in which unbiased wolves explore the search space efficiently thereby
maintaining a good balance between exploration and exploitation. A more robust solution
to complex multi-objective optimization problems may evolve by incorporating the hy-
bridization of metaheuristics with other approaches. In this paper, we aim to propose the
hybridization of metaheuristic techniques with game theoretic approaches. This approach
is different from the approach whereby an optimization algorithm is directly applied to the
multi-objective problem. In particular, we combine unbiased PSOGWO with the Shapley
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value, a game theoretic approach, which is used to obtain a better Pareto front in the
multi-objective optimization problem formulated in Section 4.

Design of the Shapley Value Based on Weight Adaptation for Optimization

Contrary to the updated velocity Equation (29) in the above section, the Shapley
value is introduced as a weight adaptation parameter that acts as a control parameter. The
weighting method is used to obtain the Pareto optimal solution, as there is no specific
way to set up the weights. The Shapley value is used to determine the weights. Here,
the weights play the role of creating a balance between exploration and exploitation. The
weights in the updated velocity equation of unbiased PSOGWO are replaced using the
Shapley value vector w(v) = (w1(v), w2(v), . . . , wn (v)). Here, wi(v) is the fair payoff received
by player i under an agreement. The weights satisfy the following agreement set by the
Shapley axioms:

∑i∈S wi(v) = v(S). (30)

The pay-off or achieved value by sub-team S in coalition with all the players ‘N’
given by v(S) and (v(s)− v(S\{i})) gives the fair amount of player i’s contribution to the
coalition game.

wi(v) = ∑{S:i∈S⊆N}
(|S| − 1)!(|N| − |S|)!

|N|! .(v(s)− v(S\{i})). (31)

Here, the weights are normalized as per the following equation:

wshapley =
−
wi(v) =

wi(v)
∑n

k=1 wk(v)
f or i = 1, . . . , n, (32)

where 0 <
−
wi(v) < 1 for all i = 1, . . . n. The weight wshapley avoids the local minima here.

When the weights are taken to be the normalized Shapley values given in Equation (32),
the optimal solution of the weighting problem is then called a Shapley–Pareto optimal
solution. The updated equation for the hybrid Shapley-value-based PSOGWO can be given
as follows:

veln+1
i = wshapley × (veln

i + c1r1(X1 − Xn
i ) + c2r2(X2 − Xn

i ) + c3r3(X3 − Xn
i )). (33)

The velocity of each particle is initially updated in each iteration using the local best
position and the global best position. Here, Xn

i and veln
i . give the position and velocity of

the i-th particle. Using Equation (33), the velocity is updated so that the particles move
towards the global best. This new velocity is used to update the position of each particle
which moves the particle towards the optimal value.

Xn+1
i = Xn

i + veln+1
i . (34)

Hence, the particle acquires a new position given by Equation (34), thus enhancing the
exploration capability. The fitness of each particle is calculated and the local best of each
is updated. If the fitness value of the particle is higher than the local best of the particle,
then the local best is updated to that higher value. Then, the higher value, i.e., the global
best, is updated to the current best position. This yields the highest fitness value among all
personal bests until the iteration along with the highest throughput for the same sensing
duration is found.

Algorithm 1 shows the pseudo-code of the proposed Shapley hybrid multi-objective
optimization problem and Algorithm 2 depicts the evaluation of the fitness functions
considered for the optimization problem. The flowchart of the proposed algorithm is
shown in Figure 4.
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Algorithm 1: Shapley hybrid multi-objective optimization algorithm

1. Begin
2. Initialization of grey wolf population, PSO parameters, population size N, and iteration iter
3. Define Objective function EE, throughput
4. Initialize a, c1, c2, c3, and wshapley

5. Calculate fitness value for each search grey wolf
6. posα = Best alpha search wolf
7. posβ = Best beta search wolf
8. posδ = Best delta search wolf
9. While I < maximum number of iterations
10. For each grey wolf

Update the velocity and position of search grey wolf using Shapley

11. End for
12. Update a, c1, c2, c3, wshapley

13. Calculate the fitness values of all search grey wolf
14. Update posα, posβ, and posδ

15. Increase iteration count I
16. end while
17. Return posα

Algorithm 2: Evaluate Fitness Energy Efficiency (EE) and Throughput

1. Input required parameters: frame period, sensing time, transmission time, power
consumption, and conversion efficiency

2. Calculate the total harvested energy of the system using Equation (14)
3. Compute power for transmission of data of the system using Equations (14) and (3)
4. Compute the throughput of the system using Equation (18)
5. Compute the energy efficiency of the system using Equation (19)
6. Return throughput and energy efficiency
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5. Results and Discussion

The simulation was executed on a Windows 10 operating system. The system has
8 GB RAM with 11th Gen Intel (R) i5—1135 G7 @ 2.4 GHz 1.3 GHz and a 64-bit processor.
MATLAB version (2021a) was used as the tool of choice for implementing the Shapley
hybrid multi-objective optimization algorithm; the number of executed times was 100 (runs),
and the best solution of these runs was selected as the optimum solution. The resultant
archive, as an outcome of the multi-objective optimization problem, will have all of the
possible non-dominant solutions.

The performance of the proposed Shapley hybrid multi-objective optimization algo-
rithm was compared with that of unbiased PSOGWO, PSOGWO, and GWO, as mentioned
in Section 2. Figure 5 shows the convergence characteristics of Shapley hybrid PSOGWO,
unbiased PSOGWO, PSOGWO, and GWO. The Shapley-based PSOGWO converges faster
than the other algorithms. The archiving process presents more convergence and the leader
selection based on unbiased nature brings diversity to the search mechanism. The Pareto
front obtained by the proposed algorithm exhibits superior characteristics in terms of
searching space as well as population diversity.
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The Pareto optimal front obtained by the four algorithms on the fitness function f1
(in our case, the energy efficiency) and f2 (the sensing duration) is illustrated in Figure 6.
It can be observed by inspecting the figure that the Pareto optimal solution obtained in
the proposed Shapley hybrid multi-objective optimization algorithm is much closer to the
optimum value of the constraint boundaries. The most interesting pattern is that the Pareto
optimal solutions obtained by unbiased PSOGWO, PSOGWO, and GWO provide solutions
but are scattered, away from the optimum region of interest. This shows that the Shapley
hybrid multi-objective optimization algorithm has the potential to outperform the other
algorithms considered.

A comparison of the proposed Shapley PSOGWO algorithm with unbiased PSOGWO,
PSOGWO, and GWO in terms of the maximum, the standard deviation, and average energy
efficiency and throughput is tabulated in Table 1.
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Table 1. Comparison of statistical results of energy efficiency and throughput of EHCRN.

Objective Function Energy Efficiency Throughput

Algorithm Max Energy
Efficiency Std Deviation Average Max

Throughput
Std

Deviation Average

Shapley PSOGWO 1.543 0.313 1.276 0.173 0.021 0.127
Unbiased PSOGWO 1.495 0.362 1.205 0.149 0.025 0.126

PSOGWO 1.492 0.321 1.169 0.148 0.029 0.125
GWO 1.490 0.347 1.193 0.142 0.026 0.111

In our considered system, the default values of various parameters are adopted as
given in Table 2.

Table 2. System Parameters.

Parameter Values Table

Key Parameter Value

Time frame 0.01 ms

Average harvested energy −35

Noise power at the secondary receiver −40

Transmission power −40

Conversion efficiency 0.3

Percentage of energy stored in the harvester 0.9%

Channel gain 1

Search agents 30

Number of iterations 1000

From Equation (18), the system’s throughput and energy efficiency depend on the
various parameters ib, iss τt, |hk|2, Pτt, σ2

n . Thus, we studied the effect of different parameters
on the system’s throughput and energy efficiency individually. Figure 7 plots the average
throughput of the system vs. the sensing duration of the spectrum sensing unit at the
SU. The average transmission time was considered from 0.0005 to 0.001. For various
values of the transmission time, the throughput was high when the sensing duration was
low. However, as the sensing duration increased and for a given transmission time, the
throughput gradually decreased. This was more pronounced when the transmission times
were higher. Thus, this resulted in the throughput of the system first increasing up to an
optimal value and then it started to decrease.
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Figure 8 shows that the energy efficiency of the system first increased up to an optimal
point with increasing transmission time and then it started to decrease. Here, the EE is at a
maximum for τt = 0.003 s.
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There is a decrease in the EE for all the values of transmission time. At higher τt
transmission, energy efficiency increases and there is an increase in throughput. With the
high data rate, the transmission time seems to be limited to handle a large amount of data.
Therefore, there is an increase in energy consumption, which leads to a decrease in energy
efficiency. Furthermore, the behavior of the throughput was also observed by varying
ib and iss, as shown in Figure 9. With the increase in iss, the throughput dropped swiftly
initially until iss was 0.5; however, following that drop, it continued to fall but became more
gradual. The behavior of ib vs. the throughput was observed to follow a reverse trend as
observed with iss.
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6. Conclusions

This paper proposes a Shapley hybrid multi-objective optimization algorithm. First,
our motive was to improve upon the existing PSOGWO, and then we hybridized it with the
Shapley value. The PSOGWO algorithm was combined with the advantages of the Shapley
value where weights were updated, thus avoiding trapping solutions in local minima. The
algorithm was compared with other algorithms: Shapley PSOGWO, unbiased PSOGWO,
PSOGWO, and GWO. All the algorithms were applied to the multi-objective optimization
problem formulated for combined spectrum sensing and the energy-harvesting cognitive
radio network. The proposed algorithm outperforms the others in the search for an optimal
set of solutions, thereby maximizing throughput and energy efficiency. A significant level
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of improvement in terms of energy efficiency of 3.56% was achieved, while the sensing
duration was reduced, the average throughput increased by 21.83%. For future work, the
proposed methods can be leveraged for optimizing parameters other than sensing time,
throughput, and energy efficiency. Furthermore, the algorithm can be further optimized
by introducing new operators, such as penalty functions, to enhance the search process
and efficiency.
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