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Abstract: In this review paper, our aim is to study the current research progress of q-difference
equations for generalized Al-Salam–Carlitz polynomials related to theta functions and to give an
extension of q-difference equations for q-exponential operators and q-difference equations for Rogers–
Szegö polynomials. Then, we continue to generalize certain generating functions for Al-Salam–
Carlitz polynomials via q-difference equations. We provide a proof of Rogers formula for general
Al-Salam–Carlitz polynomials and obtain transformational identities using q-difference equations. In
addition, we gain U(n + 1)-type generating functions and Ramanujan’s integrals involving general
Al-Salam–Carlitz polynomials via q-difference equations. Finally, we derive two extensions of the
Andrews–Askey integral via q-difference equations.
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1. Introduction
Let us review some notations and definitions for basic hypergeometric series [1].

Throughout the rest of this paper, we assume that 0 < q < 1. For complex numbers a, the
q-shifted factorials are defined by:

(a; q)0 := 1, (a; q)n =
n−1

∏
k=0

(1− aqk) and (a; q)∞ :=
∞

∏
k=0

(1− aqk), (1)

where n ∈ N := {1, 2, 3, · · · }. For m ∈ N := {1, 2, 3, · · · }, we have:

(a1, a2, . . . , ar; q)m = (a1; q)m(a2; q)m . . . (ar; q)m

and ( q
a

; q
)

n
= (−a)−n q(

n+1
2 ) (aq−n; q)∞

(a; q)∞
= (−a)−n q(

n+1
2 )(aq−n; q)n. (2)

Also, for m large, we have:

(a1, a2, . . . , ar; q)∞ = (a1; q)∞(a2; q)∞ . . . (ar; q)∞.

The q-binomial coefficient is defined by[
n
k

]
q

:=
(q; q)n

(q; q)k(q; q)n−k
=

(q−n; q)k
(q; q)k

(−1)kqnk−(k
2) (0 5 k 5 n). (3)
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The basic hypergeometric function is defined as follows ([2] Chapter 3), ([3] p. 347,
Equation (272)), [4,5]:

rΦs

 a1, a2, . . . , ar;

b1, b2, . . . , bs;
q; z

 :=
∞

∑
n=0

[
(−1)n q(

n
2)
]1+s−r (a1, a2, . . . , ar; q)n

(b1, b2, . . . , bs; q)n

zn

(q; q)n
, (4)

where the infinite series in Equation (4) is convergent for either |q| < 1 and |z| < ∞
when r ≤ s or |q| < 1 and |z| < 1 when r = s+ 1, provided that no zero appears in the
denominator.

The usual q-differential operator Dx and its dual θx, are defined by [6,7]

Dx{h(x)} = h(x)− h(xq)
x

, θx{h(x)} = h(xq−1)− h(x)
q−1x

. (5)

In the limit case, when the parameter is q→ 1−, we have:

lim
q→1−

{
(1− q)−1Dx

{
h(x)

}}
= h′(x) and lim

q→1−

{
(1− q)−1θx

{
h(x)

}}
= h′(x),

which implies that the derivative h′(x) exists.
The Leibniz rule for Dx or θx is the following identity [6–8]:

Dn
x{ f (x)g(x)} =

n

∑
k=0

qk(k−n)
[

n
k

]
q
Dk

x{ f (x)}Dn−k
x

{
g
(
xqk)}, (6)

or

θn
x{ f (x)g(x)} =

n

∑
k=0

[
n
k

]
q
θk

x{ f (x)}θn−k
x

{
g
(
xq−k)}, (7)

where D0
x and θ0

x are understood as the identities.
According to the action of operators Dx and θx, Chen and Liu [6,7] have developed

the clever method name “Parameter Augmentation” to derive several q-series identities by
introducing two suitable q-exponential operators, T(yDx) and E(yθx),

T(yDx) =
∞

∑
n=0

(
yDx

)n

(q; q)n
, E(yθx) =

∞

∑
n=0

q(
n
2)
(
yθx
)n

(q; q)n
, (8)

which are rich and powerful tools for basic hypergeometric series. The definition of (a; q)n
will be given in the next section. By the means of the two q-operators defined in (8),
Liu [9,10] deduced several results involving Bailey’s 6ψ6, q-Mehler formulas for Rogers–
Szegö polynomials and a q-integral of Sears’ transformation using q-difference equations.
For more information on q-exponential operators, see the details in [6,7,9–15].

In ([9] Theorems 1 and 2), Liu gave the proof of the following proposition.

Proposition 1. Let f (x, y) be a two-variable analytic function in the neighborhood of (x, y) =
(0, 0) ∈ C2.
(I.1) If the function f (x, y) satisfies the q-difference equation

b f (xq, y)− x f (x, yq) = (y− x) f (x, y),

then the function f (x, y) has the following form:

f (x, y) = T(yDx){ f (x, 0)}. (9)

(I.2) If the function f (a, b) satisfies the q-difference

x f (xq, y)− y f (x, yq) = (x− y) f (xq, yq),
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then the function f (x, y) has the following form:

f (x, y) = E(yθx){ f (x, 0)}. (10)

Proposition 2 ([16] Equations (2.2) and (2.3)). Let f (x, y) be a two-variable analytic function at
(0, 0) ∈ C2. Then,
(A) The function f can be expanded in terms of hn(x, y|q) if and only if f satisfies the functional

equation
y f (xq, y)− x f (x, yq) = (y− x) f (x, y). (11)

(B) The function f can be expanded in terms of gn(x, y|q) if and only if f satisfies the functional
equation

x f (xq, y)− y f (x, yq) = (x− y) f (xq, yq), (12)

where hn(b, c|q) and gn(b, c|q) are the Rogers–Szegö polynomials defined as [17]

hn(b, c|q) =
n

∑
k=0

[
n
k

]
q
bkcn−k,

and

gn(b, c|q) =
n

∑
k=0

[
n
k

]
q
qk(k−n)bkcn−k.

Liu [9,18] and Liu and Zeng [16] have systematically researched the methods of q-
difference equations and q-partial difference equations through a q-series theory. This
theory is called Liu’s calculus by Aslan and Ismail [19]. For further information about
q-difference equations and q-partial difference equations, see the details in [9,16,18–28].

In 1965, Al-Salam and Carlitz ([29] Equations (1.11) and (1.15)) introduced the follow-
ing polynomials:

φ
(a)
n (x|q) =

n

∑
k=0

[
n
k

]
q
(a; q)kxk,

and

ψ
(a)
n (x|q) =

n

∑
k=0

[
n
k

]
q
qk(k−n)(aq1−k; q

)
kxk.

Since then, these polynomials have been called Al-Salam–Carlitz polynomials. These
polynomials play important roles in the theory of q-orthogonal polynomials. For further
information about the Al-Salam–Carlitz polynomials, see the details in [4,23,24,30,31].

Askey and Suslov [32] came to the realization that the eigenfunctions of the q-oscillator
are precisely proportional to the Al-Salam–Carlitz polynomials. Kim [33] gained a new
combinatorial interpretation of the moments of Al-Salam–Carlitz polynomials. Wang [34]
obtained a q-integral representation of the Al-Salam–Carlitz polynomials. Chen, Saad
and Sun [35] deduced several properties of the Al-Salam–Carlitz polynomials. Fang [11]
deduced several multilinear generating functions of the homogeneous Al-Salam–Carlitz
polynomials via q-operators. Srivastava and Arjika [36] obtained bilinear generating
functions involving the generalized Al-Salam–Carlitz polynomials. For further information
about Al-Salam–Carlitz polynomials, see the details in [11,32–40].

In this paper, we use Liu’s calculus method to research and find the q-difference
equations of the general Al-Salam–Carlitz polynomials and to generalize the related results
of Al-Salam–Carlitz polynomials in the above references [11,34–36].

In a dedication on the occasion of Srinivasa Ramanujan’s 125th birthday, Cao ([41]
Equation (4.7)) introduced the so-called generalized Al-Salam–Carlitz polynomials:

φ
(a,b,c)
n (x, y|q) =

n

∑
k=0

[
n
k

]
q

(a, b; q)k
(c; q)k

xkyn−k,
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and

ψ
(a,b,c)
n (x, y|q) =

n

∑
k=0

[
n
k

]
q

(−1)kq(
k+1

2 )−nk(a, b; q)k
(c; q)k

xkyn−k,

whose generating functions are ([41] Equations (4.10) and (4.11))

∞

∑
n=0

φ
(a,b,c)
n (x, y|q) tn

(q; q)n
=

1
(yt; q)∞

2Φ1

 a, b;

c;
q; xt

,
(

max{|yt|, |xt|} < 1
)
, (13)

and

∞

∑
n=0

ψ
(a,b,c)
n (x, y|q) (−1)nq(

n
2)tn

(q; q)n
= (yt; q)∞2Φ1

 a, b;

c;
q; xt

,
(
|xt| < 1

)
.

Recently, the authors of [25] generalized Arjika’s results [20] using q-difference equa-
tions. Saad and Abdlhusein [42] utilized the Cauchy operator in proving some identities
involving the homogeneous Rogers–Szegö polynomials. Jia, Khan, Hu and Niu [43] de-
duced several interesting types of generating functions for q-polynomials with six variables
using q-difference equations. For further results of general q-polynomials with more
variables, see, for example, [20,25,26,42,43].

It is natural to ask whether some general q-polynomials exist, which are solutions of
certain q-difference equations. The purpose of this paper is to search these q-difference
equations that are satisfied by some of the general q-polynomials, which we have inves-
tigated in this paper. In our present investigation, we have made use of a general family
of basic (or q-) polynomials, that is, the general Al-Salam–Carlitz polynomials with nine
variables, as well as two q-exponential operators, with a view to constructing several
q-difference equations involving nine variables. We have derived the Rogers formula
for the general Al-Salam–Carlitz polynomials considered in this paper, which generalize
the generating functions for the Al-Salam–Carlitz polynomials. We have also derived a
class of U(n + 1)-type generating functions and Ramanujan’s integrals involving general
Al-Salam–Carlitz polynomials by means of the above-mentioned q-difference equations.

In this review, our goal is to extend Arjika’s [20] and Cao et al.’s [25] works us-

ing q-difference equations. We first introduce new q-polynomials, φ
(a,b,c,d

e, f ,g )
n (x, y|q) and

ψ
(a,b,c,d

e, f ,g )
n (x, y|q), respectively,

φ
(a,b,c,d

e, f ,g )
n (x, y|q) ,

n

∑
k=0

[
n
k

]
q

(a, b, c, d; q)k
(e, f , g; q)k

xn−kyk, (14)

and

ψ
(a,b,c,d

e, f ,g )
n (x, y|q) ,

n

∑
k=0

[
n
k

]
q

(−1)kqk(k−n)(a, b, c, d; q)k
(e, f , g; q)k

xn−kyk. (15)

We obtain the following results for q-polynomials defined in (14) and (15).

Theorem 1. Let f (a, b, c, d, e, f , g, x, y) be a nine-variable analytic function in the neighborhood
of (a, b, c, d, e, f , g, x, y) = (0, 0, 0, 0, 0, 0, 0, 0, 0) ∈ C9.

(I) If f (a, b, c, d, e, f , g, x, y) can be expanded in terms of φ
(a,b,c,d

e, f ,g )
n (x, y|q) if and only if
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x{ f (a, b, c, d, e, f , g, x, y)− f (a, b, c, d, e, f , g, x, yq)− (e + f + g)q−1[ f (a, b, c, d, e, f , g, x, yq)

− f (a, b, c, d, e, f , g, x, yq2)] + (e f + eg + f g)q−2[ f (a, b, c, d, e, f , g, x, yq2)

− f (a, b, c, d, ev, xq, yq3)]− e f gq−3[ f (a, b, c, d, e, x, yq3)− f (a, b, c, d, e, f , g, x, yq4)]}
= y{[ f (a, b, c, d, e, f , g, x, y)− f (a, b, c, d, e, f , g, xq, y)]
− (a + b + c + d)[ f (a, b, c, d, e, f , g, x, yq)− f (a, b, c, d, e, f , g, xq, yq)]

+ (ab + ac + ad + bc + bd + cd)[ f (a, b, c, d, e, f , g, x, yq2)− f (a, b, c, d, e, f , g, xq, yq2)]

− (abc + abd + acd + bcd)[ f (a, b, c, d, e, f , g, x, yq3)− f (a, b, c, d, e, f , g, xq, yq3)]

− abcd[ f (a, b, c, d, e, f , g, x, yq4)− f (a, b, c, d, e, f , g, xq, yq4)]}. (16)

(II) If f (a, b, c, d, e, f , g, x, y) can be expanded in terms of ψ
(a,b,c,d

e, f ,g )
n (x, y|q) if and only if

x{ f (a, b, c, d, e, f , g, xq, y)− f (a, b, c, d, e, f , g, xq, yq)

− (e + f + g)q−1[ f (a, b, c, d, e, f , g, xq, yq)− f (a, b, c, d, e, f , g, xq, yq2)]

+ (e f + eg + f g)q−2[ f (a, b, c, d, e, f , g, xq, yq2)− f (a, b, c, d, e, f , g, xq, yq3)]

+ e f gq−3[ f (a, b, c, d, e, f , g, xq, yq3)− f (a, b, c, d, e, f , g, xq, yq4)]}
= y{[ f (a, b, c, d, e, f , g, xq, yq)− f (a, b, c, d, e, f , g, x, yq)]

− (a + b + c + d)[ f (a, b, c, d, e, f , g, xq, yq2)− f (a, b, c, d, e, f , g, x, yq2)]

+ (ab + ac + ad + bc + bd + cd)[ f (a, b, c, d, e, f , g, xq, yq3)− f (a, b, c, d, e, f , g, x, yq3)]

− (abc + abd + acd + bcd)[ f (a, b, c, d, e, f , g, xq, yq4)− f (a, b, c, d, e, f , g, x, yq4)]

− abcd[ f (a, b, c, d, e, f , g, xq, yq5)− f (a, b, c, d, e, f , g, x, yq5)]}. (17)

Remark 1. For d = g = 0 and f = d in Theoreom 1, we get the concluding remarks of
Cao et al. [25]. For c = d = e = f = g = 0, and b→ 1

b , y → yb, b → 0, then Equation (16)
reduces to the concluding remarks in [20]. For a = b = c = d = e = f = g = 0 in Theorem 1,
Equations (16) and (20) reduce to Equations (11) and (12), respectively.

In fact, the new q-polynomials (14) and (15) have the following operator representa-
tions:

φ
(a,b,c,d

e, f ,g )
n (x, y|q) = T(a, b, c, d, e, f , g, yDx){xn}, (18)

and

ψ
(a,b,c,d

e, f ,g )
n (x, y|q) = E(a, b, c, d, e, f , g, yθx){xn}, (19)

so we also obtain the following equivalent forms of Theorem 1.

Theorem 2. Let G(a, b, c, d, e, f , g, x, y) be a nine-variable analytic function in the neighborhood
of (a, b, c, d, e, f , g, x, y) = (0, 0, 0, 0, 0, 0, 0, 0, 0) ∈ C9.

(I) If G(a, b, c, d, e, f , g, x, y) satisfies the difference equation
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x{G(a, b, c, d, e, f , g, x, y)− G(a, b, c, d, e, f , g, x, yq)

− (e + f + g)q−1[G(a, b, c, d, e, f , g, x, yq)− G(a, b, c, d, e, f , g, x, yq2)]

+ (e f + eg + f g)q−2[G(a, b, c, d, e, f , g, x, yq2)− G(a, b, c, d, e, f , g, x, yq3)]

− e f gq−3[G(a, b, c, d, e, f , g, x, yq3)− G(a, b, c, d, e, f , g, x, yq4)]}
= y{[G(a, b, c, d, e, f , g, x, y)− G(a, b, c, d, e, f , g, xq, y)] (20)
− (a + b + c + d)[G(a, b, c, d, e, f , g, x, yq)− G(a, b, c, d, e, f , g, xq, yq)]

+ (ab + ac + ad + bc + bd + cd)[G(a, b, c, d, e, f , g, x, yq2)− G(a, b, c, d, e, f , g, xq, yq2)]

− (abc + abd + acd + bcd)[G(a, b, c, d, e, f , g, x, yq3)− G(a, b, c, d, e, f , g, xq, yq3)]

+ abcd[G(a, b, c, d, e, f , g, x, yq4)− G(a, b, c, d, e, f , g, xq, yq4)]},

then we have

G(a, b, c, d, e, f , g, x, y) = T(a, b, c, d, e, f , g, yDx){G(a, b, c, d, e, f , g, x, 0)}. (21)

(II) If G(a, b, c, d, e, f , g, x, y) satisfies the difference equation

x{G(a, b, c, d, e, f , g, xq, y)− G(a, b, c, d, e, f , g, xq, yq)

− (e + f + g)q−1[G(a, b, c, d, e, f , g, xq, yq)− G(a, b, c, d, e, f , g, xq, yq2)]

+ (e f + eg + f g)q−2[G(a, b, c, d, e, f , g, xq, yq2)− G(a, b, c, d, e, f , g, xq, yq3)]

− e f gq−3[G(a, b, c, d, e, f , g, xq, yq3)− G(a, b, c, d, e, f , g, xq, yq4)]}
= y{[G(a, b, c, d, e, f , g, xq, yq)− G(a, b, c, d, e, f , g, x, yq)] (22)

− (a + b + c + d)[G(a, b, c, d, e, f , g, xq, yq2)− G(a, b, c, d, e, f , g, x, yq2)]

+ (ab + ac + ad + bc + bd + cd)[G(a, b, c, d, e, f , g, xq, yq3)− G(a, b, c, d, e, f , g, x, yq3)]

− (abc + abd + acd + bcd)[G(a, b, c, d, e, f , g, xq, yq4)− G(a, b, c, d, e, f , g, x, yq4)]

+ abcd [G(a, b, c, d, e, f , g, xq, yq5)− G(a, b, c, d, e, f , g, x, yq5)]},

then we have

G(a, b, c, d, e, f , g, x, y) = E(a, b, c, d, e, f , g, yθx){G(a, b, c, d, e, f , g, x, 0)}. (23)

Remark 2. For a = b = c = d = e = f = g = 0 in Theorem 2, Equations (21) and (23) reduce
to Equations (9) and (10), respectively.

Our investigation is organized as follows: In Section 2, we give the proofs of the main
theorems. In Section 3, we provide some identities of q-exponential operators involving

the q- polynomials φ
(a,b,c,d

e, f ,g )
n (x, y|q) and ψ

(a,b,c,d
e, f ,g )

n (x, y|q). In Section 4, we deduce generating

functions for q- polynomials φ
(a,b,c,d

e, f ,g )
n (x, y|q) and ψ

(a,b,c,d
e, f ,g )

n (x, y|q). In Section 5, we obtain two

bilinear generating functions for q- polynomials φ
(a,b,c,d

e, f ,g )
n (x, y|q) and ψ

(a,b,c,d
e, f ,g )

n (x, y|q) using
q-difference equations. In Section 6, we gain a transformational identity from q-difference
equations. In Section 7, we deduce U(n + 1)-type generating functions for generalized q-

polynomials φ
(a,b,c,d

e, f ,g )
n (x, y|q) and ψ

(a,b,c,d
e, f ,g )

n (x, y|q) using q-difference equations. In Section 8, we
deduce generalizations of Ramanujan’s integrals. In Section 9, we consider two extensions
of the Andrews–Askey integral.

2. Proof of Main Results
To prove our main results, the following Hartogs’s theorem will be needed. For more

details, see [2,18].
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Lemma 1 ([44] Hartogs’s theorem). If a complex-valued function is holomorphic (analytic) in
each variable separately in an open domain D ∈ Cn, then it is holomorphic (analytic) in D.

Before proving Theorem 1, we need the following fundamental property of several
complex variables.

Lemma 2 ([45] Proposition 1). If F(x1, x2, . . . , xk) is analytic at the origin (0, 0, . . . , 0) ∈ Ck,
then, F can be expanded in an absolutely convergent power series,

F(x1, x2, . . . , xk) =
∞

∑
n1,n2,...,nk=0

αn1,n2,...,nk xn1
1 xn2

2 . . . xnk
k .

In order to prove our main results, we need the following lemmas.

Lemma 3. Let Dx be defined as in (5). Then, we have [9]

Dk
x

{
1

(xt; q)∞

}
=

tk

(xt; q)∞
, θk

x{(xt; q)∞} = (−t)k(xt; q)∞, (24)

Dk
x{xn} =


(q; q)n

(q; q)n−k
xn−k, 0 ≤ k ≤ n− 1

(q; q)n, k = n
0, k ≥ n + 1.

(25)

Lemma 4 ([46] Equation (13)). Let Dx be defined as in (5). Then, for n ∈ N, we have:

Dn
x

{
(xv; q)∞

(xt; q)∞

}
= tn(v/t; q)n

(
xvqn; q

)
∞

(xt; q)∞
. (26)

Lemma 5. Let Dx be defined as in (5). Then, for n ∈ N, we have:

Dn
x

{
(xbcd; q)∞

(xc, xd; q)∞

}
=

(xbcd; q)∞

(xc, xd; q)∞

n

∑
k=0

[
n
k

]
q

ckdn−k(xd; q)k
(xbcd; q)k

. (27)

Proof of Lemma 5. With straightforward calculations using Lemma 4, we have

Dn
x

{
(xbcd; q)∞

(xc, xd; q)∞

}
=

n

∑
k=0

qk(k−n)
[

n
k

]
q
Dk

x

{
(xbcd; q)∞

(xc; q)∞

}
Dn−k

x

{
1(

xdqk; q
)

∞

}

=
n

∑
k=0

qk(k−n)
[

n
k

]
q
cn(bd; q)∞

(
xbcdqk; q

)
∞

(xc; q)∞

(
dqk)n−k(

xdqk; q
)

∞

=
(xbcd; q)∞

(xc, xd; q)∞

n

∑
k=0

[
n
k

]
q

ckdn−k(xd; q)k
(xbcd; q)k

,

which is the right-hand side of Equation (27). The proof of Lemma 5 is complete.

Proof of Theorem 1. (I) Using Hartogs’s theorem and the theory of several complex vari-
ables, we assume there exists a sequence An ∈ C such that

F(a, b, c, d, e, f , g, x, y) =
∞

∑
k=0

Ak(a, b, c, d, e, f , g, x)yk. (28)
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First, substituting (28) into (16) yields

x
∞

∑
k=0

{
1− qk − (e + f + g)qk−1 + (e f + eg + f g)q2k−2 − e f gq3k−3

}
Ak(a, b, c, d, e, f , g, x)yk

=
∞

∑
k=0

{
1− (a + b + c + d)qk + (ab + ac + ad + bc + bd + cd)q2k

− (abc + abd + acd + bcd)q3k − abcdq4k
}

×
{

Ak(a, b, c, d, e, x)− Ak(a, b, c, d, e, xq)
}

yk+1, (29)

which implies

x
∞

∑
k=0

(1− qk)(1− eqk−1)(1− f qk−1)(1− gqk−1)Ak(a, b, c, d, e, f , g, x)yk

=
∞

∑
k=0

(1− aqk)(1− bqk)(1− cqk)(1− dqk)
{

Ak(a, b, c, d, e, f , g, x)

− Ak(a, b, c, d, e, f , g, xq)
}

yk+1. (30)

Equating coefficients of yk, k ≥ 1 on both sides of Equation (30), we have:

x(1− qk)(1− eqk−1)(1− f qk−1)(1− gqk−1)Ak(a, b, c, d, e, f , g, x)

= (1− aqk−1)(1− bqk−1)(1− cqk−1)(1− dqk−1)− (abc + abd + acd + bcd)q3k

×
{

Ak−1(a, b, c, d, e, f , g, x)− Ak−1(a, b, c, d, e, f , g, xq)
}

, (31)

which is equivalent to
Ak(a, b, c, d, e, f , g, x)

=
(1− aqk−1)(1− bqk−1)(1− cqk−1)(1− dqk−1)

(1− qk)(1− eqk−1)(1− f qk−1)(1− gqk−1)
· Dx{Ak−1(a, b, c, d, e, f , g, x)}.

By iteration, we gain

Ak(a, b, c, d, e, f , g, x) =
(a, b, c, d; q)k
(q, e, f , g; q)k

· Dk
x{A0(a, b, c, d, e, f , g, x)}.

Letting F(a, b, c, d, e, f , g, x, 0) = A0(a, b, c, d, e, f , g, x) =
∞

∑
n=0

µnxn yields

Ak(a, b, c, d, e, f , g, x) =
(a, b, c, d; q)k
(q, e, f , g; q)k

·
∞

∑
n=0

µn
(q; q)n

(q; q)n−k
xn−k, (32)

we have

F(a, b, c, d, e, f , g, x, y) =
∞

∑
k=0

(a, b, c, d; q)k
(q, e, f , g; q)k

∞

∑
n=0

µn
(q; q)n

(q; q)n−k
xn−kyk

=
∞

∑
n=0

µn

∞

∑
k=0

[
n
k

]
q

(a, b, c, d; q)k
(e, f , g; q)k

xn−kyk

=
∞

∑
n=0

µnφ
(a,b,c,d

e, f ,g )
n (x, y|q).

On the other hand, if the function F(a, b, c, d, e, f , g, x, y) can be expanded in terms of

φ
(a,b,c,d

e, f ,g )
n (x, y|q), we verify that F(a, b, c, d, e, f , g, x, y) satisfies (16). Similarly, we deduce (II).

The proof of Theorem 1 is complete.
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Before proving Theorem 2, we need to define the following two generalized q-exponential
operators as

T(a, b, c, d, e, f , g, yDx) =
∞

∑
n=0

(a, b, c, d; q)n

(q, e, f , g; q)n
(yDx)

n, (33)

and

E(a, b, c, d, e, f , g, yθx) =
∞

∑
n=0

(−1)nq(
n
2)(a, b, c, d; q)n

(q, e, f , g; q)n
(yθx)

n. (34)

Proof of Theorem 2. Starting from the theory of several complex variables, we begin to
solve for the q-difference. First, we may assume there exists a sequence An ∈ C such that

G(a, b, c, d, e, f , g, x, y) =
∞

∑
k=0

Ak(a, b, c, d, e, f , g, x)yk. (35)

Substituting this equation into (20) and comparing coefficients of yk k ≥ 1, we readily
find that

x(1− qk)(1− eqk−1)(1− f qk−1)(1− gqk−1)Ak(a, b, c, d, e, f , g, x)

= (1− aqk−1)(1− bqk−1)(1− cqk−1)(1− dqk−1)

×
{

Ak−1(a, b, c, d, e, f , g, x)− Ak−1(a, b, c, d, e, f , g, xq)
}

, (36)

which implies

Ak(a, b, c, d, e, x)

=
(1− aqk−1)(1− bqk−1)(1− cqk−1)(1− dqk−1)

(1− qk)(1− eqk−1)(1− f qk−1)(1− gqk−1)
· Dx{Ak−1(a, b, c, d, e, f , g, x)}.

By iteration, we find that

Ak(a, b, c, d, e, f , g, x) =
(a, b, c, d; q)k
(q, e, f , g; q)k

· Dk
x{A0(a, b, c, d, e, f , g, x)}. (37)

Now, we return to calculate A0(a, b, c, d, e, f , g, x). By taking y = 0 in Equation (35),
we immediately obtain

A0(a, b, c, d, e, f , g, x) = G(a, b, c, d, e, f , g, x, 0).

Substituting (37) into (35), we achieve (21) directly. This completes the proof of
Theorem 2.

3. Some Identities of q-Exponential Operators Involving the New q-Polynomials
In this section, we derive identities of q-exponential operators (38) and (39) below,

which have some relation to the families of q-polynomials φ
(a,b,c,d

e, f ,g )
n (x, y|q), ψ

(a,b,c,d
e, f ,g )

n (x, y|q).

Theorem 3. Let the operators T(a, b, c, d, e, f , g, yDx) and E(a, b, c, d, e, f , g, yθx) be defined as
in (33) and (34). For max{|xs|, |xω|, |ys|, |yω|} < 1, we have:

T(a, b, c, d, e, f , g, yDx)

{
1

(xs, xω; q)∞

}

=
1

(xs, xω; q)∞

∞

∑
n=0

(a, b, c, d; q)n(ys)n

(q, e, f , g; q)n
5Φ4

 aqn, bqn, cqn, dqn, xs;

eqn, f qn, gqn, 0;
q; yω

. (38)
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For max{|yω|, |xωsy/q|} < 1, we have:

E(a, b, c, d, e, f , g, yθx){(xs, xω; q)∞}

= (xs, xω; q)∞

∞

∑
n=0

q(
n
2)(a, b, c, d; q)n(yω)n

(q, e, f , g; q)n

× 5Φ4

 aqn, bqn, cqn, dqn, q/(xω);

eqn, f qn, gqn, 0;
q;− xωsy

q

. (39)

Proof. By applying (6), we observe that

T(a, b, c, d, e, f , g, yDx)

{
1

(xω, xs; q)∞

}
=

∞

∑
n=0

(a, b, c, d; q)n yn

(q, e, f , g; q)n
Dn

x

{
1

(xω, xs; q)∞

}

=
∞

∑
n=0

(a, b, c, d; q)n yn

(q, e, f , g; q)n

n

∑
k=0

qk(k−n)

[
n
k

]
q

Dk
x

{
1

(xω; q)∞

}
Dn−k

x

{
1

(xsqk; q)∞

}

=
∞

∑
n=0

(a, b, c, d; q)n yn

(q, e, f , g; q)n

n

∑
k=0

qk(k−n)

[
n
k

]
q

ωk

(xω; q)∞
Dn−k

x

{
1

(xsqk; q)∞

}

=
∞

∑
n,k=0

(a, b, c, d; q)n+k yn+k

(q, e, f , g; q)n+k

ωkq−nk

(q; q)k(q; q)n(xω; q)∞
Dn

x

{
1

(xsqk; q)∞

}

=
∞

∑
n,k=0

(a, b, c, d; q)n+k yn+k

(q, e, f , g; q)n+k

ωkq−nk

(q; q)k(q; q)n(xω; q)∞

(sqk)n

(xsqk; q)∞

=
1

(xω, xs; q)∞

∞

∑
n=0

(a, b, c, d; q)n (ys)n

(q, e, f , g; q)n

∞

∑
k=0

(aqn, bqn, cqn, dqn, xs; q)k (yω)k

(q, eqn, f qn, gqn; q)k

=
1

(xs, xω; q)∞

∞

∑
n=0

(a, b, c, d; q)n(ys)n

(q, e, f , g; q)n
5Φ4

 aqn, bqn, cqn, dqn, xs;

eqn, f qn, gqn, 0;
q; yω

. (40)

Similarly, by applying (7), we find that:

E(a, b, c, d, e, f , g, yθa){(xω, xs; q)∞}

=
∞

∑
n=0

(−1)nq(
n
2)(a, b, c, d; q)n yn

(q, e, f , g; q)n
θn

x{(xω, xs; q)∞}

=
∞

∑
n=0

(−1)nq(
n
2)(a, b, c, d; q)n yn

(q, e, f , g; q)n

n

∑
k=0

[
n
k

]
q

θk
x{(xω; q)∞} θn−k

x

{
(xsq−k; q)∞

}

=
∞

∑
n=0

(−1)nq(
n
2)(a, b, c, d; q)n yn

(q, e, f , g; q)n

n

∑
k=0

[
n
k

]
q

(−ω)k(xω; q)∞ θn−k
x

{
(xsq−k; q)∞

}

=
∞

∑
n,k=0

(−1)n+kq(
n+k

2 )(a, b, c, d; q)n+k yn+k

(q, e, f , g; q)n+k

(−ω)k(xω; q)∞

(q; q)k(q; q)n
θn

x

{
(xsq−k; q)∞

}

=
∞

∑
n,k=0

(−1)n+kq(
n+k

2 )(a, b, c, d; q)n+k yn+k

(q, e, f , g; q)n+k

(−ω)k(xω; q)∞

(q; q)k(q; q)n
(−sq−k)n(xsq−k; q)∞

= (xω, xs; q)∞

∞

∑
n,k=0

(−1)n+kq(
n+k

2 )(a, b, c, d; q)n+k yn+k

(q, e, f , g; q)n+k

(−ω)k(xsq−k; q)k
(q; q)k(q; q)n

(−sq−k)n

= (xs, xω; q)∞

∞

∑
n=0

q(
n
2)(a, b, c, d; q)n(yω)n

(q, e, f , g; q)n

× 5Φ4

 aqn, bqn, cqn, dqn, q/(xω);

eqn, f qn, gqn, 0;
q;− xωsy

q

 (41)
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as asserted by Theorem 3.

4. Generating Functions for q-Polynomials
In this section, we establish and prove generating functions for q-polynomials using

q-difference equations.

Theorem 4. Each of the following assertions hold true:

∞

∑
n=0

φ
(a,b,c,d

e, f ,g )
n (x, y|q) tn

(q; q)n
=

1
(xt; q)∞

4Φ3

 a, b, c, d;

e, f , g;
q; yt

, (max{|xt|, |yt|} < 1), (42)

∞

∑
n=0

ψ
(a,b,c,d

e, f ,g )
n (x, y|q) tn

(q; q)n
= (xt; q)∞ 4Φ4

 a, b, c, d;

0, e, f , g;
q;−yt

, (|yt| < 1). (43)

Remark 3. For d = g = 0 in Theorem 4, we get the concluding remarks of [25]. For d = c = f =
g = 0 in Theorem 4, Equation (42) reduces to Equation (13).

Proof of Theorem 4. Let F(a, b, c, d, e, f , g, x, y) be the right-hand side of Equation (42).
Then, we can verify that G(a, b, c, d, e, f , g, x, y) satisfies (16). So, we have

G(a, b, c, d, e, f , g, x, y) =
∞

∑
k=0

µnφ
(a,b,c,d

e, f ,g )
n (x, y|q),

and

G(a, b, c, d, e, f , g, x, 0) =
∞

∑
k=0

µnxn =
1

(xt; q)∞
=

∞

∑
n=0

tn

(q; q)n
xn.

So, G(a, b, c, d, e, f , g, x, y) is equal to

G(a, b, c, d, e, f , g, x, y) =
∞

∑
k=0

φ
(a,b,c,d

e, f ,g )
n (x, y|q) tn

(q; q)n
,

which is the right-hand side of Equation (42).
Similarly, let G(a, b, c, d, e, f , g, x, y) be the right-hand side of Equation (43). We can

verify that G(a, b, c, d, e, f , g, x, y) satisfies (17). So, we can use the same method to achieve
Equation (43). This completes the proof.

Now, we will give and prove the following extended generating function for q-
polynomials using q-difference equations.

Theorem 5 (Extended generating function for φ
(a,b,c,d

e, f ,g )
n (x, y|q)). Let the polynomials

φ
(a,b,c,d

e, f ,g )
n (x, y|q) be defined as (14). For s ∈ N0, we have:

∞

∑
n=0

φ
(a,b,c,d

e, f ,g )

n+s (x, y|q) tn

(q; q)n

=
xs

(xt; q)∞

∞

∑
n=0

(a, b, c, d; q)n

(q, e, f , g; q)n
(yt)n

n

∑
j=0

[
n
s

]
q

(−1)jqnj−( j
2)(q−s, xt; q)j

(xt)j (44)

provided that max{|xt|, |yt|} < 1.

Remark 4. For s = 0 in Theorem 5, Equation (44) reduces to (42).
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Proof of Theorem 5. Let F(a, b, c, d, e, f , g, x, y) be the right-hand side of (44). Then, we
have:

F(a, b, c, d, e, f , g, x, y) =
xk

(xt; q)∞

∞

∑
n=0

(a, b, c, d; q)n

(q, e, f , g; q)n
(yt)n

n

∑
j=0

[
n
k

]
q

(−1)jqnj−( j
2)(q−k, xt; q)j

(xt)j . (45)

By a direct computation, one can check that (45) satisfies (16), so there exists a sequence
µn ∈ C such that

F(a, b, c, d, e, f , g, x, y) =
∞

∑
k=0

µnφ
(a,b,c,d

e, f ,g )
n (x, y|q). (46)

For y = 0, Equation (46) becomes

F(a, b, c, d, e, f , g, x, 0)

=
∞

∑
n=0

µnxn =
xs

(xt; q)∞
=

∞

∑
n=0

xs (xt)n

(q; q)n
=

∞

∑
n=0

xn+s tn

(q; q)n
=

∞

∑
n=s

xn tn−s

(q; q)n−s
.

Hence,

F(a, b, c, d, e, f , g, x, y) =
∞

∑
n=s

φ
(a,b,c,d

e, f ,g )
n (x, y|q) tn−s

(q; q)n−s
=

∞

∑
n=0

φ
(a,b,c,d

e, f ,g )

n+s (x, y|q) tn

(q; q)n
.

This completes the proof of Theorem 5.

Theorem 6 (Mixed generating function for φ
(a,b,c,d

e, f ,g )
n (x, y|q)). We have:

∞

∑
n=0

φ
(a,b,c,d

e, f ,g )
n (x, y|q) pn(t, s)

(q; q)n
=

(xs; q)∞

(xt; q)∞
5Φ4

 a, b, c, d, s/t;

e, f , g, xs;
q; yt

, (47)

with max{|xt|, |yt|} < 1, where pn(x, y) is the Cauchy polynomial

∞

∑
n=0

pn(x, y)
tn

(q; q)n
=

(yt; q)∞

(xt; q)∞
. (48)

Corollary 1. We have:

∞

∑
n=0

φ
(a,b,c,d

e, f ,g )
n (x, y|q) (−1)nq(

n
2)tn

(q; q)n
= (xt; q)∞ 4Φ4

 a, b, c, d;

e, f , g, xt;
q; yt

, (49)

where |yt| < 1.

Remark 5. Setting t = 0, in Theorem 6, Equation (47) reduces to (49). For s = 0 in Theorem 6,
Equation (47) reduces to (42), respectively.

Proof of Theorem 6. Let G(a, b, c, d, e, f , g, x, y) be the right-hand side of (47). We can verify
that G(a, b, c, d, e, f , g, x, y) satisfies (16). So, there exists a sequence µn ∈ C such that

G(a, b, c, d, e, f , g, x, y) =
∞

∑
n=0

µnφ
(a,b,c,d

e, f ,g )
n (x, y|q). (50)

For y = 0, we have:

G(a, b, c, d, e, f , g, x, 0) =
∞

∑
n=0

µnxn =
(xs; q)∞

(xt; q)∞
=

∞

∑
n=0

pn(t, s)
(q; q)n

xn.
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By a direct computation, one can complete the proof.

Theorem 7. For max |x1x2t|, |x1y2t|, |y1/x1|, |x2y1t| < 1, we have:

∞

∑
n=0

φ
(

a1,b1,c1,d1
e1, f1,g1

)

n (x1, y1|q)φ
(

a2,b2,c2,d2
e2, f2,g2

)

n (x2, y2|q)
tn

(q; q)n

=
1

(x1x2t; q)∞

∞

∑
n=0

(a2, b2, c2, d2; q)n(x1y2t)n

(q, e2, f2, g2; q)n

×
∞

∑
j=0

(qn−j+1, x1x2t, a1, b1, c1, d1; q)j(
y1
x1
)j

(q, e1, f1, g1; q)j
4Φ3

 a1qj, b1qj, c1qj, d1qj;

e1qj, f1qj, g1qj;
q; x2y1t

. (51)

Remark 6. For a1 = b1 = c1 = d1 = e1 = f1 = g1 = a2 = b2 = c2 = d2 = e2 = f2 = g2 = 0 in
Theorem 7, Equation (51) reduces to the following corollary.

Corollary 2 ([47] Theorem 5). We have:

∞

∑
n=0

hn(a, b|q)hn(c, d|q) tn

(q; q)n
=

(abcdt2; q)∞

(act, adt, bct, bdt; q)∞
, (52)

where max{|act|, |adt|, |bct|, |bdt|} < 1.

Proof of Theorem 7. Let H(a1, b1, c1, d1, e1, f1, g1, x1, y1) be the right-hand side of (51). We
have:

H(a1, b1, c1, d1, e1, f1, g1, x1, y1) =
1

(x1x2t; q)∞

∞

∑
n=0

(a2, b2, c2, d2; q)n(x1y2t)n

(q, e2, f2, g2; q)n

×
∞

∑
j=0

(qn−j+1, x1x2t, a1, b1, c1, d1; q)j(
y1
x1
)j

(q, e1, f1, g1; q)j
4Φ3

 a1qj, b1qj, c1qj, d1qj;

e1qj, f1qj, g1qj;
q; x2y1t

. (53)

Because Equation (57) satisfies (20), we have:

H(a1, b1, c1, d1, e1, f1, g1, x1, y1)

= T(a1, b1, c1, d1, e1, f1, g1, y1Dx1){H(a1, b1, c1, d1, e1, f1, g1, x1, 0)}

= T(a1, b1, c1, d1, e1, f1, g1, y1Dx1)

{
1

(x1x2t; q)∞

∞

∑
n=0

(a2, b2, c2, d2; q)n(x1y2t)n

(q, e2, f2, g2; q)n

}

= T(a1, b1, c1, d1, e1, f1, g1, y1Dx1)

{
∞

∑
n=0

φ
(

a2,b2,c2,d2
e2, f2,g2

)

n (x2, y2|q)
(x1t)n

(q; q)n

}

=
∞

∑
n=0

φ
(

a2,b2,c2,d2
e2, f2,g2

)

n (x2, y2|q)
tn

(q; q)n
T(a1, b1, c1, d1, e1, f1, g1, y1Dx1){x

n
1}

=
∞

∑
n=0

φ
(

a1,b1,c1,d1
e1, f1,g1

)

n (x1, y1|q)φ
(

a2,b2,c2;d2
e2, f2,g2

)

n (x2, y2|q)
tn

(q; q)n
.

This completes the proof of Theorem 7.

5. Bilinear Generating Functions for φ
(a,b,c,d

e, f ,g )
n (x, y|q) and ψ

(a,b,c,d
e, f ,g )

n (x, y|q)
We will provide a q-difference equation approach to bilinear generating functions for

φ
(a,b,c,d

e, f ,g )
n (x, y|q) and ψ

(a,b,c,d
e, f ,g )

n (x, y|q).
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Theorem 8. Let the polynomials φ
(a,b,c,d

e, f ,g )
n (x, y|q) be defined as (14); then:

∞

∑
n=0

∞

∑
m=0

φ
(a,b,c,d

e, f ,g )

n+m (x, y|q) ωn

(q; q)n

sm

(q; q)m

=
1

(xs, xω; q)∞

∞

∑
n=0

(a, b, c, d, xs; q)n(yω)n

(q, e, f , g; q)n
4Φ3

 aqn, bqn, cqn, dqn;

eqn, f qn, gqn;
q; sy


(max{|xs|, |xω|, |yω|, |sy|} < 1). (54)

Theorem 9. Let the polynomials ψ
(a,b,c,d

e, f ,g )
n (x, y|q), as in (15). For max{|yω|, |xωsy/q|} < 1,

then:

∞

∑
n=0

∞

∑
m=0

(−1)n+m q(
n
2)+(m

2 ) ψ
(a,b,c,d

e, f ,g )

n+m (x, y|q) tn

(q; q)n

sm

(q; q)m

= (xs, xω; q)∞

∞

∑
n=0

q(
n
2)(a, b, c, d; q)n(yω)n

(q, e, f , g; q)n

× 5Φ4

 aqn, bqn, cqn, dqn, q/(xω);

eqn, f qn, gqn, 0;
q;− xωsy

q

. (55)

Proof of Theorems 8 and 9. Let H(a, b, c, d, e, f , g, x, y) be the right-hand side of (54). For
y = 0, we have

H(a, b, c, d, e, f , g, x, 0) =
1

(xs, xω; q)∞
.

Because Equation (54) satisfies (20), we have

H(a, b, c, d, e, f , g, x, y) = T(a, b, c, d, e, f , g, yDx){H(a, b, c, d, e, f , g, x, 0)}

= T(a, b, c, d, e, f , g, yDx)

{
1

(xs, xω; q)∞

}
= T(a, b, c, d, e, f , g, yDx)

{
∞

∑
n=0

(xω)n

(q; q)n

∞

∑
m=0

(xs)m

(q; q)m

}

=
∞

∑
n=0

∞

∑
m=0

T(a, b, c, d, e, f , g, yDx)
{

xn+m} ωn

(q; q)n

sm

(q; q)m

=
∞

∑
n=0

∞

∑
m=0

φ
(a,b,c,d

e, f ,g )

n+m (x, y|q) ωn

(q; q)n

sm

(q; q)m
, (56)

which is the left-hand side of (54). The proof of Theorem 8 is complete.
Similarly, let H′(a, b, c, d, e, f , g, x, y) be the right-hand side of (55). For y = 0, we have:

H′(a, b, c, d, e, f , g, x, 0) = (xs, xω; q)∞.
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Because Equation (55) satisfies (22), we have:

H′(a, b, c, d, e, f , g, x, y)

= E(a, b, c, d, e, f , g, yθx)
{

H′(a, b, c, d, e, f , g, x, 0)
}

= E(a, b, c, d, e, f , g, yθx){(xs, xω; q)∞}

= E(a, b, c, d, e, f , g, yθx)

{
∞

∑
n=0

(−1)n q(
n
2)(xω)n

(q; q)n

∞

∑
m=0

(−1)m q(
m
2 )(xs)m

(q; q)m

}

=
∞

∑
n=0

∞

∑
m=0

(−1)n+m q(
n
2)+(m

2 ) E(a, b, c, d, e, f , g, yθx)
{

xn+m} ωn

(q; q)n

sm

(q; q)m

=
∞

∑
n=0

∞

∑
m=0

(−1)n+m q(
n
2)+(m

2 ) ψ
(a,b,c,d

e, f ,g )

n+m (x, y|q) ωn

(q; q)n

sm

(q; q)m
. (57)

This completes the proof of the assertion of Theorem 9.

6. A Transformational Identity from q-Difference Equations
This section is devoted to transformational identities involving generating functions

for q-polynomials using the q-difference equation. For more details, see [4,15,48].

Theorem 10. Let f (k) and g(k) be two sequences such that

∞

∑
k=0

f (k)xk =
∞

∑
k=0

g(k)
(xtqk; q)∞

(xqk; q)∞
(58)

is convergent. Then, we have:

∞

∑
k=0

f (k)φ
(a,b,c,d

e, f ,g )

k (x, y|q) =
∞

∑
k=0

g(k)
(xtqk; q)∞

(xqk; q)∞
5Φ4

 a, b, c, d, 1/t;

e, f , g, xtqk;
q; yqk

, (59)

and both sides of (59) are also convergent.

Corollary 3. For max{|r|, |x|, |s|, |y|} < 1, we have:

∞

∑
k=0

φ
(a,b,c,d

e, f ,g )

k (x, y|q) (t, s; q)k
(q, r; q)k

=
(xt, s; q)∞

(x, r; q)∞

∞

∑
k=0

(r/s, x; q)ksk

(q, xt; q)k
5Φ4

 a, b, c, d, 1/t;

e, f , g, xtqk;
q; yqk

. (60)

Remark 7. Upon taking g(k) and g(k) as in (63), Equation (59) reduces to (60). Setting y = 0 in
(60), we obtain the Heine’s q-Euler transformations ([29] Equation (1.4.1)) given in (62) below.

Proof of Theorem 10. Let F(a, b, c, d, e, f , g, x, y) be the right-hand side of (59). We can
check that the function F(a, b, c, d, e, f , g, x, y) satisfies (16). Then, there exists a sequence
{µn}, such that:

F(a, b, c, d, e, f , g, x, y) =
∞

∑
k=0

µnφ
(a,b,c,d

e, f ,g )
n (x, y|q). (61)
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Taking y = 0, the equation (61) becomes:

F(a, b, c, d, e, f , g, x, 0) =
∞

∑
k=0

µnxn =
∞

∑
k=0

g(k)
(xtqk; q)∞

(xqk; q)∞
by (58)

=
∞

∑
k=0

f (k)xk.

Hence,

F(a, b, c, d, e, f , g, x, y) =
∞

∑
k=0

f (k)φ
(a,b,c,d

e, f ,g )

k (x, y|q),

which reads the left-hand side of (59). This completes the proof of Theorem 10.

Proof of Corollary 3. Now, let us turn back and make use of the Heine’s q-Euler transfor-
mations ([29] Equation (1.4.1))

2Φ1

 t, s;

r;
q; x

 =
(s, xt; q)∞

(r, x; q)∞
2Φ1

 r/s, x;

xt;
q; s

. (62)

Setting

f (k) =
(t, s; q)k
(q, r; q)k

and g(k) =
(s; q)∞

(r; q)∞

∞

∑
k=0

(r/s; q)k
(q; q)k

sk, (63)

the formula (58) is valid. Next, making use of (59), we get the desired result. This completes
the proof of Corollary 3.

7. U(n + 1)-Type Generating Functions for Generalized Al-Salam–Carlitz Polynomials

In this section, we derive U(n + 1)-type generating functions for q-polynomials using
the q-difference equation method as an application of our study.

Theorem 11. Let b, z and x1, . . . , xn be indeterminate, and let n ≥ 1. Suppose that none of
the denominators in the following identity vanish, and that 0 < |q| < 1, |y| < 1 and |z| <
|x1, . . . , xn||xm|−n|q|(n−1)/2, for m = 1, 2, . . . , n. Then, the following assertion

∑
yn ≥ 0

k = 1, 2, . . . , n

{
∏

1≤r<s≤n

[
1− (xr/xsqyr−ys)

1− (xr/xs)

] n

∏
r,s=1

(q
xr

xs
; q)−1

yr

n

∏
i=1

(xi)
nyi−(y1+...+yn)

× (−1)(n−1)(y1+...+yn)qy2+2y3+...+(n−1)yn+(n−1)[(y1
2 )+...+(yn

2 )]−e2(y1,...,yn)

× φ
(r,s,t,ω

u,v,α )
y1+...+yn

(z, y|q)(b; q)y1+...+yn

}
=

(bz; q)∞

(z; q)∞
5Φ4

 r, s, t, ω, b;

u, v, α, bz;
q; y

, (64)

holds, where e2(y1, . . . , yn) is the second elementary symmetric function of the variables {y1, . . . , yn}.

For y = 0, in Theorem 11, Equation (64) reduces to the following nonterminating
U(n + 1) generalizations of the q-binomial theorem.
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Proposition 3 ([9] Theorem 5.42). Let b, z and x1, . . . , xn be indeterminate, and let n ≥ 1.
Suppose that none of the denominators in the following identity vanishes, and that 0 < |q| < 1 and
|z| < |x1, . . . , xn||xm|−n|q|(n−1)/2, for m = 1, 2, . . . , n. Then

∑
yn ≥ 0

k = 1, 2, . . . , n

{
∏

1≤r<s≤n

[
1− (xr/xsqyr−ys)

1− (xr/xs)

] n

∏
r,s=1

(q
xr

xs
; q)−1

yr

n

∏
i=1

(xi)
nyi−(y1+...+yn)

× (−1)(n−1)(y1+...+yn)qy2+2y3+...+(n−1)yn+(n−1)[(y1
2 )+...+(yn

2 )]−e2(y1,...,yn)

× (b; q)y1+...+yn zy1+...+yn

}
=

(bz; q)∞

(z; q)∞
, (65)

where e2(y1, . . . , yn) is the second elementary symmetric function of {y1, . . . , yn}.

Proof of Theorem 11. Let f (r, s, t, ω, u, v, z, α, y) be the right-hand side of Equation (64).
On can easily verify that f (r, s, t, ω, u, v, z, α, y) satisfies (20). Then, we have:

f (r, s, t, ω, u, v, z, α, y)
= T(r, s, t, ω, u, v, α, yDz){ f (r, s, t, ω, u, v, z, α, 0)}

= ∑
yn ≥ 0

k = 1, 2, . . . , n

{
∏

1≤r<s≤n

[
1− (xr/xsqyr−ys)

1− (xr/xs)

] n

∏
r,s=1

(q
xr

xs
; q)−1

yr

n

∏
i=1

(xi)
nyi−(y1+...+yn)

× (−1)(n−1)(y1+...+yn)qy2+2y3+...+(n−1)yn+(n−1)[(y1
2 )+...+(yn

2 )]−e2(y1,...,yn)(b; q)y1+...+yn

×T(r, s, t, ω, u, v, z, α, yDz){zy1+...+yn}
}

= T(r, s, t, ω, u, v, α, yDz)

{
(bz; q)∞

(z; q)∞

}
.

Using (14) and (59), we get the desired result. This completes the proof of Theo-
rem 11.

8. A Generalization of Ramanujan’s Integrals
In this section, we give the following generalization using the q-difference equation

method.

Theorem 12. For 0 < q = e−2k2
< 1, m ∈ R, and supposing that max{|abq|, |byq|} < 1, we

have:

∫ ∞

∞

e−x2+2mx

(aq1/2e2ikx, bq1/2e−2ikx; q)∞
4Φ3

 r, s, t, ω;

u, v, z;
q; yq1/2e2ikx

dq x

=
√

πem2 (−aqe2mki,−bqe−2mki; q)∞

(abq; q)∞
5Φ4

 r, s, t, ω, e2mki/b;

u, v, z,−aqe2mki;
q; ybq

. (66)

Remark 8. Upon taking y = 0 in Theorem 12, Equation (66) reduces to the well-known Ramanu-
jan’s integral ([49] Equation (2))

∫ ∞

∞

e−x2+2mx

(aq1/2e2ikx, bq1/2e−2ikx; q)∞
dq x =

√
πem2 (−aqe2mki,−bqe−2mki; q)∞

(abq; q)∞
, (67)

where 0 < q = e−2k2
< 1, m ∈ R and |abq| < 1.
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Proof of Theorem 12. If we denote by G(r, s, t, u, v, a, y) the right-hand side of (66), one
can verify that G(r, s, t, u, v, a, y) satisfies (16). Then, there exists a sequence {µn}n ∈ C,
such that:

G(r, s, t, ω, u, v, z, a, y) =
∞

∑
n=0

µnφ
(r,s,t,ω

u,v,z )
n (a, y|q). (68)

Taking y = 0 in (68), we obtain:

G(r, s, t, ω, u, v, z, a, 0) =
∞

∑
n=0

µnan =
√

πem2 (−aqe2mki,−bqe−2mki; q)∞

(abq; q)∞
by (67)

=
∫ ∞

−∞

e−x2+2mx

(aq1/2e2ikx, bq1/2e−2ikx; q)∞
dq x

=
∫ ∞

−∞

e−x2+2mx

(bq1/2e−2ikx; q)∞

{
∞

∑
n=0

(q1/2e2ikx)n

(q; q)n
an

}
dq x.

Using relation (14), we have:

G(r, s, t, ω, u, v, z, a, y) =
∫ ∞

−∞

e−x2+2mx

(bq1/2e−2ikx; q)∞

{
∞

∑
n=0

φ
(r,s,t,ω

u,v,z )
n (a, y|q) (q

1/2e2ikx)n

(q; q)n

}
dq x. (69)

By making use of relation (38) in the right-hand side of (69), we get the left-hand side
of (66). This completes the proof of Theorem 12.

9. Two Extensions of the Andrews–Askey Integral
In 1981, Andrews and Askey [50] derived a famous formula of integration from

Ramanujan’s 1ψ1 summation.

Proposition 4 ([50] Equation (2.1)). For max{|ac|, |ad|, |bc|, |bd|} < 1, we have:∫ d

c

(qθ/c, qθ/d; q)∞

(aθ, bθ; q)∞
dq θ =

d(1− q)(q, dq/c, c/d, abcd; q)∞

(ac, ad, bc, bd; q)∞
. (70)

They also show that the integral (70) plays an important role in the system of q-
series theory [1]. Motivated by this, our aim in this section is to derive the following two
extensions of the Andrews–Askey integral using the q-difference equation method.

Theorem 13. For max{|ac|, |ad|, |bc|, |bd|, |cy|, |dy|} < 1, we have:

∫ d

c

(qθ/c, qθ/d; q)∞

(aθ, bθ; q)∞
4Φ3

 r, s, t, ω;

u, v, z;
q; yθ

dq θ

=
d(1− q)(q, dq/c, c/d, abcd; q)∞

(ac, ad, bc, bd; q)∞

∞

∑
k=0

(r, s, t, w, ad; q)k(cy)k

(q, u, v, z, ac, ad, abcd; q)k

× 6Φ5

 rqk, sqk, tqk, wqk, 0, 0;

uqk, vqk, zqk, acqk, adqk;
q; dy

. (71)
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Theorem 14. For max{|ac|, |ad|, |bc|, |bd|, |dy|} < 1, we have:

∫ d

c

(qθ/c, qθ/d; q)∞

(aθ, bθ; q)∞
5Φ4

 r, s, t, ω, c/θ;

u, v, z, ac;
q; yθ

dq θ

=
d(1− q)(q, dq/c, c/d, abcd; q)∞

(ac, ad, bc, bd; q)∞
5Φ4

 r, s, t, ω, bc;

u, v, z, abcd;
q; dy

. (72)

Remark 9. Upon setting y = 0 in Theorems 13 and 14, Equations (71) and (72) reduce to the
Andrews–Askey integral given in (70).

In order to prove main theorems in Section 9, we need the following lemma.

Lemma 6. For max{|ac|, |ad|, |cy|, |dy|} < 1, we have:

T(r, s, t, w, u, v, z, yDa)

{
(abcd; q)∞

(ac, ad; q)∞

}

=
(abcd; q)∞

(ac, ad; q)∞

∞

∑
k=0

(r, s, t, w, ad; q)k(cy)k

(q, u, v, z, ac, ad, abcd; q)k
6Φ5

 rqk, sqk, tqk, wqk, 0, 0;

uqk, vqk, zqk, acqk, adqk;
q; dy

. (73)

Proof of Lemma 6. Let Da be defined as in (5). By the definition of q-operator T in
Equation (14), we have:

T(r, s, t, w, u, v, z, yDa)

{
(abcd; q)∞

(ac, ad; q)∞

}
=

∞

∑
n=0

(r, s, t, ω; q)nyn

(q, u, v, z; q)n
Dn

a

{
(abcd; q)∞

(ac, ad; q)∞

}
. (74)

Upon using (27), relation (74) becomes:

T(r, s, t, w, u, v, z, yDa)

{
(abcd; q)∞

(ac, ad; q)∞

}
=

∞

∑
n=0

(r, s, t, ω; q)nyn

(q, u, v, z; q)n

(abcd; q)∞

(ac, ad; q)∞

n

∑
k=0

[
n
k

]
q

ckdn−k(ad; q)k
(abcd; q)k

,

which is the right-hand side of Equation (73) after simplification. This completes the proof
of Lemma 6.

Now, we are in a position to prove Theorem 13.

Proof of Theorem 13. We denote f (r, s, t, ω, u, v, z, y, a) by the right-hand side of Equa-
tion (71). By using Lemmas 4–6, we check that the right-hand side of Equation (71) satisfies
Equation (16). So, we have

f (r, s, t, ω, u, v, z, y, a) =
∞

∑
n=0

µnφ
(r,s,t,ω

u,v,z )
n (a, y|q). (75)

Letting y = 0 in Equation (75) yields

f (r, s, t, ω, u, v, z, 0, a) =
∞

∑
n=0

µnan =
d(1− q)(q, dq/c, c/d, abcd; q)∞

(ac, ad, bc, bd; q)∞
. (76)
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Utilizing the Andrews–Askey integral (70) and equating the coefficients of an in (75),
we obtain:

µn =
∫ d

c

(qθ/c, qθ/d; q)∞

(bθ; q)∞

{
∞

∑
n=0

θn

(q; q)n

}
dq θ. (77)

Thus, we have

f (r, s, t, ω, u, v, z, y, a) =
∫ d

c

(qθ/c, qθ/d; q)∞

(bθ; q)∞

 ∞

∑
n=0

φ
(r,s,t,ω

u,v,z )
n (a, y|q)θn

(q; q)n

dq θ

=
∫ d

c

(qθ/c, qθ/d; q)∞

(bθ; q)∞

 1
(aθ; q)∞

4Φ3

 r, s, t, ω;

u, v, z;
q; yθ

dq θ.

Using (42), we obtain the left-hand side of Equation (71). This completes the proof of
Theorem 13.

Proof of Theorem 14. In the proof of Theorem 14, we need:

T(r, s, t, w, u, v, z, yDa)

{
(abcd; q)∞

(ad; q)∞

}
=

(abcd; q)∞

(ad; q)∞
5Φ4

 r, s, t, ω, bc;

u, v, z, abcd;
q; yd

, (78)

T(r, s, t, w, u, v, z, yDa)

{
(ac; q)∞

(aθ; q)∞

}
=

(ac; q)∞

(aθ; q)∞
5Φ4

 r, s, t, ω, c/θ;

u, v, z, ac;
q; yθ

, (79)

which are derived from Lemma 4. Because we use the same procedure as in the proof of
Theorem 13, we achieve the proof of Theorem 14.

10. Concluding Remarks
In our present investigation, motivated by methods of “parameter augmentation”

and q-difference equations, it is natural to ask whether some general q-polynomials exist,
which are solutions of certain q-difference equations and have expressions by q-exponential
operators. We focus on new generalized Al-Salam–Carlitz polynomials and search their
q-difference equations. We calculate some identities of q-exponential operators involving
the new generalized Al-Salam–Carlitz polynomials, count generating functions for new
generalized Al-Salam–Carlitz polynomials, deduce two bilinear generating functions for
generalized Al-Salam–Carlitz polynomials using q-difference equations, obtain a transfor-
mational identity from q-difference equations, obtain U(n + 1)-type generating functions
for generalized Al-Salam–Carlitz polynomials using q-difference equations and gain gener-
alizations of Ramanujan’s integrals.

We remark in conclusion that we consider two theorems (Theorems 1 and 2) to be
related to the q-difference equations. The results in the two theorems are the same, but they
have completely different power in calculating q-series. It is difficult but meaningful to
augment parameters and to generalize the q-difference equations for q-polynomials with
more variables. Our findings not only generalize some of the results presented in [11,14–
16,20,29,31,42], but also enable the production of q-difference equations with a large number
of new results by augmenting the parameters involved or by exploring the q-version of
the recent works by Wituła et al. (see [51]) and Hetmaniok et al. (see [52–54]), which will
bring new perspectives for further exploration of the theory of q-difference equations and
q-polynomials.
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52. Hetmaniok, E.; Pleszczyński, M.; Słota, D.; Wituła, R. On similarities between exponential polynomials and Hermite polynomials.

J. Appl. Math. Comput. Mech. 2013, 12, 93–104.
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