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Abstract: Zero-shot super-resolution (ZSSR) has generated a lot of interest due to its flexibility in
various applications. However, the computational demands of ZSSR make it ineffective when dealing
with large-scale low-resolution image sets. To address this issue, we propose a novel meta-learning
model. We treat the set of low-resolution images as a collection of ZSSR tasks and learn meta-
knowledge about ZSSR by leveraging these tasks. This approach reduces the computational burden
of super-resolution for large-scale low-resolution images. Additionally, through multiple ZSSR task
learning, we uncover a general super-resolution model that enhances the generalization capacity
of ZSSR. Finally, using the learned meta-knowledge, our model achieves impressive results with
just a few gradient updates when given a novel task. We evaluate our method using two remote
sensing datasets with varying spatial resolutions. Our experimental results demonstrate that using
multiple ZSSR tasks yields better outcomes than a single task, and our method outperforms other
state-of-the-art super-resolution methods.
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1. Introduction

High-resolution (HR) images are important in remote sensing, such as object detection
and satellite imaging, as they contain more detailed information than low-resolution
(LR) images. However, due to equipment limitations, researchers have turned to using
image processing techniques to transform LR images into visually pleasing HR images.
Super-resolution is one such technique that generates HR images from LR ones using
algorithms. Image super-resolution has extensive applications in various fields, such as
medical imaging [1], military remote sensing [2], remote sensing satellite image processing,
multimedia communication, surveillance video, and security [3]. It also helps to improve
other computer vision tasks, such as image retrieval and image segmentation [4,5], etc.
Image super-resolution has long been a highly sought-after research topic. Dong et al. [6]
were the first to propose a super-resolution algorithm that incorporated convolutional
neural networks. Haque et al. [7] proposed a lightweight enhanced SR CNN (LESRCNN),
which extracts hierarchical low-resolution features and aggregates the obtained features
step-by-step to increase memory ability. Subsequently, Zhang et al. [8] improved perceptual
quality by designing a generative adversarial network for image super-resolution. A series
of super-resolution models with deep learning capabilities have achieved remarkable
results in the super-resolution of natural images.

Remote sensing images are primarily captured at high altitudes, and their acquisi-
tion is affected by various factors such as atmospheric disturbances, physical limitations
of imaging systems, and changes in scene motion. As a result, remote sensing images
are often more intricate and blurrier than ordinary images, containing a variety of sur-
face details. This makes it challenging for existing methods suitable for regular image
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super-resolution to effectively super-resolve remote sensing images. To address this is-
sue, Zheng et al. [9] proposed a Spatial Spectral Residual Attention Network (SSRAN) to
reconstruct hyperspectral images (HIS), which can explore both the spatial and spectral
information of multispectral (MSI). Dong et al. [10] not only explored the potential of
reference-based image super-resolution (RefSR) methods for remote sensing images but
also proposed an end-to-end reference-based remote sensing GAN (RRSGAN) for super-
resolution. Generative Adversarial Networks (GANs) have made tremendous progress
in the task of natural image super-resolution, for remote sensing images, there are more
low-frequency components than in natural images, making it difficult for the discriminator
to accurately distinguish low-frequency regions. To address this issue, Lei et al. [11] pro-
posed a super-resolution algorithm known as Coincidental Discriminative GAN (CDGAN)
for remote sensing images. Additionally, Feng et al. [12] proposed a remote sensing image
recursive residual network (WTCRR) combined with wavelet transform. However, deep
learning-based super-resolution methods rely on LR-HR training sample pairs, which can
be challenging to obtain in practice for remote sensing images. Therefore, using the internal
reproducibility of information within each image has long been a robust prior for natural
images, making it a widely used technique in tasks, such as image denoising [13,14] and
image super-resolution [8,15]. Additionally, network performance can be further enhanced
by implicitly learning strong image priors for non-local attributes, which are then integrated
into the network architecture [16,17]. Some researchers also proposed learning internal
distributions [18,19], while others explored combining the advantages of both internal and
external information in image restoration and super-resolution [20,21].

Zero-shot super-resolution has emerged as a flexible image processing technique in
recent years, attracting significant attention from researchers for its ability to leverage
internal image information to address LR-HR mismatches without relying on prior training.
This approach can also be well adapted to test images. To improve the super-resolution of
remote sensing images, we propose a zero-shot super-resolution method that capitalizes on
the unique characteristics of zero-shot learning to address challenges specific to remote sens-
ing imagery. However, when multiple images are provided for zero-shot super-resolution,
the network must be trained multiple times. As a result, the zero-shot super-resolution
network requires retraining for each image, which increases computational complexity.

Meta-learning has gained significant attention from researchers due to its ability to
leverage previous tasks to extract meta-knowledge that possesses strong representation
capabilities and can be generalized to new tasks. As one of the mainstream approaches
to solve few-shot learning problems, meta-learning has been combined with few-shot
learning, leading to the proposal of many methods such as those listed in [22–24]. Notably,
model-agnostic meta-learning (MAML) [22] has had a large impact by learning optimal
initialization parameters that allow for rapid adaptation of basic learners to new tasks
with only a few gradient steps. MAML leverages gradient updates as a meta-learner and
shows that gradient descent can approximate any learning algorithm [25]. Additionally,
Soh et al. [21] introduced meta-transfer into the field of image super-resolution, bringing
new insights to the domain.

Based on previous work, we propose a novel meta-learning model where we treat
each remote sensing image as a separate task and learn meta-knowledge during the ZSSR
process for that image. This approach not only reduces the computational cost of super-
resolution for large-scale low-resolution images, but also improves generalization through
multi-task learning. By leveraging the acquired meta-knowledge, our model achieves
impressive results with just a few gradient updates on any new task.

In the paper, the main contributions are as follows:

• For the first time, a meta-learning framework was introduced into zero-shot remote
sensing image super-resolution, and we propose a new solution;

• We learn to perform zero-shot super-resolution on remote sensing images from the
task level, and learn meta-knowledge of the task through meta-learning, achieving
good results with zero-shot remote sensing image super-resolution;
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• We take full advantage of the advantages of MAML and ZSSR, so solving the mis-
match between low-resolution remote sensing images and high-resolution remote
sensing images.

2. Related Work

In this section, we briefly introduce some representative works on image super-
resolution as well as meta-learning.

2.1. Zero-Shot Super-Resolution

According to the characteristics of the training dataset, image super-resolution can be
broadly classified into supervised and unsupervised methods. With the development of
deep learning, increasing deep learning-based super-resolution models have been proposed,
including ESPCN [6], VDSR [26], SRGAN [8], RCAN [27], and more. Deep learning has
made significant progress in this field. Generally, deep learning SR algorithms may differ
in various aspects, such as network architectures [26,27], loss functions [28,29], learning
rules, and strategies [30,31]. Meanwhile, most existing works mainly focused on supervised
learning. Specifically, supervised super-resolution involves using matched low-resolution
(LR) and high-resolution (HR) image pairs to learn the mapping from LR to HR images.

Compared to supervised learning, unsupervised learning can generate more accurate
models when applied to real-world situations. Shocher et al. [19] proposed the first “zero-
shot” super-resolution technique, which employs a convolutional neural network (CNN) in
an unsupervised manner and takes advantage of the internal information of a single image.
Unlike supervised methods, ZSSR can perform training and testing on-the-fly without
requiring any prior training. By downsampling the test images to create LR counterparts,
corresponding LR-HR pairs are generated. After continuous training on LR-HR pairs, SR
images are generated, which is the process by which ZSSR improves the resolution of
low-resolution images. However, for zero-shot super-resolution, the network needs to be
retrained for each new input image. Soh et al. [21] proposed a meta-transfer zero-shot
super-resolution method that uses both external and internal information. This approach
finds a suitable initialization parameter for internal learning and can produce impressive
results with only a single gradient update, in comparison with ZSSR’s gradient update.
To address the issue of the current image SR methods not generalizing well to real-world
scenarios due to the degradation process of the model, Xi et al. [32] proposed a zero-shot
image super-resolution for depth-guided internal degradation learning. This method
combines an image-specific degradation simulation network (DSN) with an image-specific
super-resolution network (SRN) to learn, and uses depth information from images to
extract unpaired high-resolution and low-resolution patch sets for training. Furthermore,
zero-shot learning is not limited to natural images. Cheng et al. [33] proposed zero-shot
light field super-resolution, which extracts samples from the input LR light field itself to
learn input-specific super-resolution maps. They also present different learning strategies
through zero-shot learning and offer a strategy for efficient learning with extremely limited
training data.

2.2. Meta-Learning

Meta-learning, also known as learning to learn, aims to equip a model with the
ability to acquire the aptitude to learn to learn. By doing so, the model can gain meta-
knowledge from prior tasks, which it can use to quickly adapt to new tasks, thus improving
the efficiency and effectiveness of the model. Meta-learning is mainly used for few-shot
learning [22] and transfer learning [21]. Further details are available in [34]. Recently,
an increasing number of meta-learning algorithms have been proposed, which can be
divided into four categories.

The first category is Bayesian meta-learning [35,36], which uses Bayesian inference
to learn prior and posterior distributions and infer parameters for new tasks. The sec-
ond category is memory-based meta-learning [37,38], which adapts to new tasks using
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experience from previous tasks. The third category is reinforcement learning-based meta-
learning [39,40], which learns reinforcement learning algorithms on meta-learning tasks
to adjust model parameters for new tasks. The fourth category is gradient-based meta-
learning [22,41], which adjusts model parameters by learning gradient descent on meta-
learning tasks to enable the learner to better adapt to various tasks. MAML is the most
influential and representative method in this category. These categories are not mutually
exclusive, and some meta-learning algorithms may combine multiple techniques. We are
proud to introduce meta-learning into zero-shot remote sensing image super-resolution,
leveraging the advantages of MAML. MAML learns from tasks, with the goal of enabling
the model to identify an optimal initialization parameter that is effective for all tasks.
However, the initialization parameters may not be optimal for every task. Depending on
the learned initialization parameters, only one or a few gradient updates are necessary to
obtain optimal results for a given new task.

Meta-learning is a useful approach for facilitating few-shot learning, and previous
studies [42,43] have applied meta-learning techniques to the field of image super-resolution.
Meta-learning offers new perspectives for addressing the super-resolution challenge,
and we, therefore, introduce the Model-Agnostic Meta-Learning (MAML) algorithm to
zero-shot remote sensing image super-resolution, based on its unique characteristics.

3. Proposed Method

In practical scenarios, acquiring images of varying resolutions within a single scene
can prove to be challenging. Therefore, LR (low-resolution) images are frequently obtained
by downsampling HR (high-resolution) images, as demonstrated in Equation (1) and cited
by [44].

ILR = (IHR ⊗ k) ↓ s + n, (1)

where ILR and IHR refer to the low-resolution and high-resolution images, ⊗ denotes
convolution, k represents the blur kernel, ↓ s signifies downsampling with a scale factor
of s, and n denotes the presence of noise. It is worth mentioning that real-world scenarios
often exhibit a multitude of degraded conditions, including a wide range of unknown
values for k, ↓ s, and n.

Convolutional Neural Networks (CNNs) have remarkable capabilities in image super-
resolution (SR) due to their spatial invariance, feature extraction, multi-scale processing,
and residual learning. However, they heavily rely on external supervised data for training,
which prevents them from exploiting the intrinsic data within images. One of the major
challenges faced by current SR techniques is the lack of supervised samples. To address this
issue, our method is based on the assumption that images possess inherent reproducible
factors. This implies that small blocks (such as 5× 5 or 3× 3) can be repeated with the same
or different scales within a single image to enhance visual effects, reduce computational
costs, and improve network generalization performance.

To address the challenge of super-resolving unsupervised images, researchers have
introduced a versatile technique called Zero-Shot (ZSSR), which has gained attention.
However, the ease of use of ZSSR also brings some drawbacks. For instance, when multiple
images are given to ZSSR for super-resolution, the calculation becomes complex as ZSSR
needs to be trained several times. In contrast, Meta-Learning has captivated researchers
with its noteworthy advantages, particularly its ability to enable models to learn how
to learn.

Building on the aforementioned discussion, we propose a novel meta-learning model that
combines Meta-Learning MAML with Zero-Shot Remote Sensing Image Super-Resolution to
tackle the challenges related to ZSSR. Specifically, our aim is to leverage the benefits of MAML
to learn how to perform Zero-Shot remote sensing Image Super-Resolution on Remote Sensing
images at the task level, using ZSSR for each remote sensing image in the task. During this
process, the model can acquire meta-knowledge about ZSSR, which can subsequently reduce
the time required for ZSSR on subsequent images. Additionally, learning from multiple
tasks can reduce the complexity of applying ZSSR. For a new task, the model only requires a
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few gradient updates to produce satisfactory results. The neural network diagram for our
proposed method is illustrated in Figure 1.

Figure 1. Inner: Learning meta-knowledge θi in the process of ZSSR within the task. External: Let
the network learn an optimal representation of θM through the meta-knowledge θi.

In Figure 1, we begin by downsampling the low-resolution image ILR to obtain a lower
version ILR ↓ s (where s represents the scaling factor required for super-resolution). We then
use a lightweight CNN that has been trained to reconstruct ILR from ILR ↓ s. This trained
CNN, along with the given image ILR, is used to produce the desired super-resolution
result ILR ↑ s and learn meta-knowledge for training the parameters θi in the ZSSR process
outlined above. Ultimately, we use meta-learning MAML to enable θM to learn the optimal
representation from the different θi.

In our approach, we define the data D as a task distribution p(T ), and sample tasks
{Ti}Ti=1 from the task distribution p(T ). We use the model fθ(•), which is parameterized
by θ, to represent the trained CNN for the super-resolution of a given image. We measure
the similarity between the low-resolution LR image and the super-resolution SR image by
minimizing the loss. Based on the image quality loss discussed in this paper and [43], we
propose the loss function shown in Equation (2):

L(ILR, fθ(ILR)) = ‖ fθ(ILR)− ILR‖2
2, (2)

where θ represents the network parameters that Meta-learning aims to optimize. On re-
ceiving a new task Ti, the parameters θ of the model are updated to θi. Subsequently,
the updated parameters θi are used to process the input image ILRi and its reduced ver-
sion ILRi ↓. After computing one or more gradients on the task Ti, θi is then computed.
The adaptation formulation of updating rules is shown in Equations (3) and (4):

θ1 = θ − α5θ LT1( fθ(ILR1 ↓), ILR1), (3)

θi = θi−1 − α5θi−1 LTi ( fθi−1(ILRi ↓), ILRi ), (4)

where α controls the learning rate of the inner update procedure. Additionally,5 denotes
the gradient operator. Once the gradient update of θi is finished, the meta-learning parame-
ter θM needs to be updated through θi. To achieve this, we adopt the stochastic gradient
descent method to update the parameter θM. The update rule that we propose is illustrated
in Equation (5):

θM ← θi − β5θM ∑Ti∼p(T ) LTi ( fθi (ILRi ), ILRi ), (5)

where β controls the meta-update step, and θM represents the parameter trained in meta-
learning. These update procedures are iteratively repeated in meta-learning until conver-
gence is achieved. Finally, we obtain an optimal parameter θM, which can be easily applied
to any differentiable SR network.
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4. Algorithm

To perform a new task Ti, we first perform batch distribution for the task Ti according
to p(T ). We then downsample the test image using Equation (1) to obtain ILRi ↓. Next, we
employ stochastic gradient descent (SGD) for batches of Ti for each task, calculating the
value of θi using Equations (3) and (4). We then randomly initialize the parameters θM and
use θi and θM to calculate and update the value of θM through Equation (5), resulting in
the model fθM (•). By inputting the subsampled image ILRi ↓ of the test image, the super-
resolution image ISR after image quality restoration can be output. The specific algorithm
is presented in Algorithm 1.

Algorithm 1: Meta-learning Zero-shot Image Super-resolution.
Input: LR test image ILR, inner loop update parameter θ, meta-learning trained

parameter θM, distribution p(T ) over tasks, step size hyperparameters α, β
1 Randomly initialize θ with θM
2 while not converged do
3 Sample batch of tasks Ti ∼ p(T )
4 Generate ILRi ↓ from Ti
5 for each Ti do
6 Evaluate ∇θLTi ( fθ(ILRi ↓), ILRi ) using L
7 Compute adapted parameters with SGD
8 θ1 = θ − α5θ LT1( fθ(ILR1 ↓), ILR1),

9
...

10 θi = θi−1 − α5θi−1 LTi ( fθi−1(ILRi ↓), ILRi ),
11 end
12 Updated θM ← θi − β5θM ∑Ti∼p(T ) LTi ( fθi (ILRi ), ILRi ).
13 end
14 return ISR = fθ(ILR)

Output: Super-resolution ISR

5. Experiments

In this section, we introduce two baseline datasets and three image quality evaluation
indices. The primary objective of the experiments is to answer the following research ques-
tions: (1) How does our method perform compared to previous super-resolution methods
when dealing with diverse types of remote sensing images, such as aircraft, parking lots,
and buildings? (2) How does our approach compare to previous super-resolution methods
in terms of PSNR, SSIM, and GSSIM on the two datasets? (3) What is the computational
advantage of our method compared to ZSSR in terms of computational burden?

Our approach is implemented on a deep learning server via OpenCV (http://opencv.
org/(accessed on 8 March 2023)) and Pytorch (http://pytorch.org/(accessed on 8 March
2023)), The server is powered by a GeForce GTX 1050Ti GPU, 8 GB RAM, and 4 GB VRAM.
Our experiment code will be available at (https://github.com/elessarsnow/czz001).

5.1. Dataset, Evaluation Indicators, and Training Details

Dataset: The UC Merced Land Use dataset [45] is a well-known and widely used
dataset in research. It consists of 21 object categories, including aircraft, buildings, parking
lots, forests, and more, with 100 images per category. In our experiments, we focused on
the aircraft, buildings, and parking lots categories from this dataset, as shown in Figure 2.
It should be noted that the aircraft category may contain one or more similar images, while
the parking lot category includes images featuring vehicles of various colors and models.
The buildings category exhibits a variety of structures in each image, making these three
categories representative for evaluation.

http://opencv.org/
http://opencv.org/
http://pytorch.org/
https://github.com/elessarsnow/czz001
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Figure 2. Representative class images in the UC Merced dataset.

To evaluate how well our model performs on remote sensing data with different spatial
resolutions, we incorporated the NWPU-RESISC45 dataset [46], which was compiled
by Northwestern Polytechnical University, in our experiments. This dataset is shown
in Figure 3 and contains 45 categories of remote sensing scenarios, each consisting of
700 images. These scenarios depict a range of environments, including aircraft, railway
stations, airports, clouds, and more. For our experiment, we specifically focused on the
aircraft, buildings, and parking lot categories.

Figure 3. Partial sample display of NWPU-RESISC45 dataset.

Evaluation Indicators: The peak signal-to-noise ratio (PSNR), structural similarity
index (SSIM), and gradient-based structural similarity index (GSSIM) are commonly used
evaluation metrics for super-resolution images. Higher experimental values indicate a
superior super-resolution effect. Equations (6) and (7) show the computation of PSNR.

MSE =
1

h× w

h

∑
a=1

w

∑
b=1

(IH(a, b)− IS(a, b))2, (6)

PSNR = 10lg
2552

MSE
, (7)

where h and w denote the height and width of the image, respectively, and MSE refers
to the mean squared error between the original image IH and the super-resolution image
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IS. The parameters a and b correspond to the horizontal and vertical axes, respectively.
Equation (8) illustrates the calculation formula for SSIM.

SSIM(IH , IS) =
(2µIH µIS + C1)(2σIH IS + C2)

(µ2
IH

+ µ2
IS
+ C1)(σ

2
IH

+ σ2
IS
+ C2)

, (8)

where µIH , σIH and µIS , σIS , respectively, represent the average gray value and variance of
the original image IH and the super-resolution image IS, and σIH IS represent the covariance
of the original image and the super-resolution image.

The spatial structure of a scene can capture its structural information, which is often
shared among remote sensing images of the same region, displaying similar or identical
patterns [47]. The gradient-based structural similarity index (GSSIM) is a metric that
effectively measures the similarity between structural information and features of images.
It does so by integrating measures of luminance comparison l(IH , IS), contrast comparison
c(IH , IS), and gradient-based structural comparison g(IH , IS) in the equation below:

GSSIM(IH , IS) = [l(IH , IS)]
α[c(IH , IS)]

β[g(IH , IS)]
γ, (9)

where

l(IH , IS) =
2µIH µIS + C1

µ2
IH

+ µ2
IS
+ C1

, (10)

c(IH , IS) =
2σIH IS + C2

σ2
IH

+ σ2
IS
+ C2

, (11)

g(IH , IS) =
2 ∑j ∑i GIH (i, j)GIS(i, j) + C3

∑j ∑i[GIH (i, j)]2 + ∑j ∑i[GIS(i, j)]2 + C3
, (12)

where µIH and µIS denote the mean value of the two images, respectively, and reflect
the luminance comparison information. The standard deviations σIH and σIS correspond
to the contrast comparison information of the two images, respectively. GIH (i, j) and
GIS(i, j) represent the gradient value of the pixel at row i and column j in the two images,
respectively. The small constants C1, C2, and C3 are used to prevent the denominator
from being zero, with C1 = (K1L)2, C2 = (K2L)2, and C3 = C2/2 and K1, K2 ≤ 1.
The parameters α, β, and γ are greater than zero. In this paper, we set α = β = γ = 1,
C1 = C2 = 0.001, and C3 = 0.0005. A higher GSSIM value indicates greater similarity
between the two images.

Training Details: To process the UC Merced and NWPU-RESISC45 remote sensing
datasets for segmentation, we selected three specific image categories and randomly al-
located 80% and 20% of each category to the training and test sets, respectively. We set
the image size to 128 × 128 and adjusted the weights using the Adam optimizer with a
learning rate of 0.001. Next, we randomly selected five images from the training set for each
task, and applied ZSSR to each image while learning meta-knowledge during the process.
This is because the relationship between low-resolution (LR) and high-resolution (HR)
is relatively simple for a single image, which facilitates the learning of meta-knowledge.
Moreover, our approach involves using ZSSR on the same category of images with the help
of meta-knowledge, resulting in faster ZSSR speeds over time.

In this paper, we used an eight-layer convolutional neural network as our image-
specific model. The network consisted of eight hidden layers, each comprising 64 channels,
with ReLU serving as the activation function for each layer. To accelerate training and
avoid the impact of test image size during network execution, we randomly selected fixed-
size crops of dimensions 128 × 128 from a pair of selected samples during each iteration.
For our experiments, we set the learning rate to 0.001 and performed linear fitting for
the reconstruction errors. Whenever the accuracy of linear fitting fell below the standard
deviation, we divided the learning rate by 10. We performed zero-lens superresolution
processing on the image until the learning rate reached 10−6, resulting in a corresponding
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superresolution reconstruction image. We used Adam as the optimizer and stochastic
gradient descent (SGD) for gradient updates to optimize the model. For the inner loop
of the experiment, we employed 15-step gradient updates, enabling the adaptation of
parameters through only 15 expansion steps. We subjected remote sensing data to ×2
and ×4 magnification, respectively, to effectively test each model’s performance. These
tasks also facilitated the acquisition of useful meta-knowledge that could be employed in
novel tasks.

5.2. Visualize Images and Results

In this section, we compare the peak signal-to-noise ratio (PSNR) of our proposed ap-
proach with several classic methods, such as Bicubic, SRCNN [6], VDSR [26], LGCNet [48]
and ZSSR, among others. We selected three distinct image types - building, parking lot,
and airplane - and evaluated our approach using ×2 and ×4 super-resolution images to
gauge its efficacy.

Figure 4 shows the comparison of the super-resolution visualization results of “air-
plane00” by×2 in different methods. Figure 5 shows the comparison of×4 super-resolution
visualization results of “airplane00” on different methods.

Figure 6 shows the comparison of the super-resolution visualization results of “park-
inglot00” by×2 in different methods. Figure 7 shows the comparison of×4 super-resolution
visualization results of “parkinglot00” on different methods.

Figure 8 shows the comparison of the super-resolution visualization results of “build-
ing05” by ×2 in different methods. Figure 9 shows the comparison of ×4 super-resolution
visualization results of “building05” on different methods.

(a) GT (b) Bicibic (c) RCAN (d) VDSR (e) ZSSR (f) Ours

Figure 4. Select the “airplane00” image from the airplane class data to display the visual effects of ×2
super-resolution on different methods.

(a) GT (b) Bicibic (c) RCAN (d) VDSR (e) ZSSR (f) Ours

Figure 5. Select the “airplane00” image from the airplane class data to display the visual effects of ×4
super-resolution on different methods.

(a) GT (b) Bicibic (c) RCAN (d) VDSR (e) ZSSR (f) Ours

Figure 6. Select the “parkinglot00” image from the parkinglot class data to display the visual effects
of ×2 super-resolution on different methods.
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(a) GT (b) Bicibic (c) RCAN (d) VDSR (e) ZSSR (f) Ours

Figure 7. Select the “parkinglot00” image from the parkinglot class data to display the visual effects
of ×4 super-resolution on different methods.

(a) GT (b) Bicibic (c) RCAN (d) VDSR (e) ZSSR (f) Ours

Figure 8. Select the “building05” image from the building class data to display the visual effects of
×2 super-resolution on different methods.

(a) GT (b) Bicibic (c) RCAN (d) VDSR (e) ZSSR (f) Ours

Figure 9. Select the “building05” image from the building class data to display the visual effects of
×4 super-resolution on different methods.

From Figures 4–9, we can easily observe that the super-resolution images generated
by our approach are more visually similar to the real images, providing further evidence
of its efficiency. To provide a quantitative comparison, Table 1 displays the average PSNR
results of the three types of data from the UC Merced land use dataset at different scale
factors, obtained using various methods.

Table 1. Average PNSR values of the UC Merced dataset under different methods and different
scale factors.

CLASS SCALE
PSNR

Bicubic SRCNN VDSR LGCNetR ZSSR Ours

Airplane ×2 28.138 32.091 36.234 36.327 42.859 42.928
×4 23.582 26.034 29.122 29.019 35.963 35.987

Parking Lot ×2 23.412 27.401 30.303 30.217 38.724 38.824
×4 19.073 20.845 22.609 22.719 31.560 31.836

Building ×2 26.305 31.201 34.458 34.327 42.582 42.711
×4 21.561 24.019 26.578 26.703 35.747 35.826

Table 1 presents the PSNR values of the super-resolution images obtained by our
approach and other SR techniques, showing that our method consistently achieves higher
PSNR scores. Moreover, we conducted ×2 and ×4 super-resolution on both the UC
Merced land use dataset and the NWPU-RESISC45 remote sensing dataset using various
SR methods to assess the effectiveness of our approach at different spatial resolutions.
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To quantitatively evaluate the results, we used SSIM, PSNR, and GSSIM as three indicators,
which are presented in Table 2.

Table 2. Comparison of PSNR, SSIM, and GSSIM values between UC Merced data set and NWPU-
RESISC45 data set.

DATASETS SCALE
PSNR

Bicubic SRCNN VDSR LGCNet ZSSR Ours

UC Merced ×2 30.152 31.749 33.580 33.660 40.310 40.530
×4 25.133 26.323 27.276 27.354 33.389 33.460

NWPU-RESISC45 ×2 30.752 30.601 32.735 32.631 41.851 42.078
×4 26.380 27.393 27.551 27.696 34.742 35.164

SSIM

UC Merced ×2 0.8286 0.8619 0.8932 0.8904 0.9857 0.9858
×4 0.6718 0.6895 0.7098 0.7220 0.9704 0.9710

NWPU-RESISC45 ×2 0.8313 0.8151 0.8900 0.8860 0.9864 0.9867
×4 0.6427 0.6758 0.7003 0.7103 0.9750 0.9761

GSSIM

UC Merced ×2 0.8249 0.8569 0.8876 0.8845 0.9816 0.9825
×4 0.6598 0.6815 0.7037 0.7139 0.9585 0.9636

NWPU-RESISC45 ×2 0.8256 0.8102 0.8845 0.8802 0.9811 0.9808
×4 0.6326 0.6683 0.6916 0.6987 0.9664 0.9673

As shown in Table 2, a comparison of×2 and×4 super-resolution images using various
methods on two different remote sensing datasets reveals that our approach achieves the
highest PSNR, SSIM, and GSSIM values across both datasets and resolutions. This outcome
demonstrates the robustness of our technique and its ability to produce satisfactory results
across diverse remote sensing datasets. Moreover, the image generated using meta-learning
for zero-shot remote sensing image super-resolution more closely approximates the original
image, therefore better meeting user requirements.

While our approach only provides a marginal improvement in image quality restora-
tion compared to ZSSR, it has a clear advantage in terms of speed. As shown in Table 3,
during the training of five tasks, our approach took slightly longer than ZSSR, but dur-
ing testing, it was two-thirds faster than ZSSR. Furthermore, as we trained for 10 tasks,
the training time for each task progressively decreased, resulting in a total training time
even shorter than that of ZSSR. Our approach demonstrated even more significant testing
advantages, as it required only about half the time. Therefore, when dealing with a sub-
stantial number of tasks in practical scenarios, our approach generally outperforms ZSSR
in both performance and efficiency.

Table 3. Comparing the training and testing time of ZSSR and our method for the same task, where
time is in minutes.

TASKS STAGE
TIME (mins)

ZSSR OURS

5 Train 15 16
Test 15 9

10 Train 30 25
Test 30 16
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Furthermore, after completing the three types of tasks on the UC Merced dataset, we
directly tested our model on “river00” and “river01”. Due to the meta-knowledge learned
by our model regarding the connections between remote sensing images, we only needed
to perform a few gradient updates to achieve satisfactory super-resolution results, as shown
in Figure 10.

(a) River00 (b) River01
Figure 10. “River00” image and “River01” image display the visual effects of ×2 super-resolution.

The results clearly demonstrate the effectiveness of zero-shot super-resolution of
images at the task level. Our meta-learning approach for zero-shot remote sensing image
super-resolution effectively resolves the mismatch issue between low-resolution and high-
resolution remote sensing images.

6. Conclusions

This paper presents a meta-learning-based approach to zero-shot remote sensing
image super-resolution. Using Model-Agnostic Meta-Learning (MAML), we can learn zero-
shot super-resolution at the task level. Specifically, we define zero-shot super-resolution
for each remote sensing image as a task, and our model learns meta-knowledge by per-
forming zero-shot super-resolution on multiple tasks. This meta-knowledge can be used to
construct a general model that is applicable to various tasks, simplifying the application
of ZSSR. Our network does not require any prior training and instead uses a given image
to generate LR-HR sample pairs. Leveraging the small diversity of LR-HR sample pairs,
we employ an eight-layer convolutional neural network as an image-specific network.
Through meta-learning zero-shot remote sensing image super-resolution, we solve the
problem of mismatching high-resolution and low-resolution remote sensing images. Fur-
thermore, by learning zero-shot super-resolution at the task level, our method can adapt to
any new task based on the learned meta-knowledge. Experimental results demonstrate
that our approach outperforms state-of-the-art SR methods in both qualitative and quanti-
tative metrics, making it the first to introduce meta-learning into zero-shot remote sensing
image super-resolution.
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