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Abstract: A solution of the governing equation representing the drawdown in a horizontal confined
aquifer, where groundwater flow is unsteady, was first provided by Theis and is famously known
as the Theis solution. This solution was given in terms of an exponential integral, also called the
well function, for which simple and reliable approximations are preferred due to their practical
applications. To that end, several approximations are available in the literature, of which some are
based on series approximations for the integral, and others are numerical approximations. This study
employs three kinds of homotopy-based methods, namely the homotopy analysis method (HAM),
homotopy perturbation method (HPM), and optimal homotopy asymptotic method (OHAM), for
analytically solving the governing partial differential equation (PDE). For convenience, the PDE is
first converted to a boundary value problem (BVP) using a similarity transformation. Comparing the
series approximations obtained using these methods with the Theis solution, it is found that the 10th-
order HAM, and just three terms of OHAM-based solutions, provide accurate approximations. On
the other hand, the HPM-based solution is found to be accurate only within a small domain. Further,
the proposed approximations are compared with several series and numerical approximations
available in the literature using the percentage error. The proposed methodology provides accurate
approximations of the well function by directly solving the governing differential equation in a
general framework and thus can be adapted to other practical situations arising in groundwater flow.

Keywords: Theis solution; well function; homotopy analysis method; asymptotic series expansion;
confined aquifer

MSC: 76-10

1. Introduction

Pumping test analysis in groundwater flow is one of the key methods for determining
aquifer parameters, such as transmissivity and storativity. Unsteady groundwater flow
in confined aquifers is described by coupling the continuity equation and the Darcy flux
law. The resulting equation is a partial differential equation (PDE) of diffusion type.
Under simplified assumptions, approximate analytical solutions of the PDE have been
derived. One common assumption is that the confined aquifer is of uniform thickness and
is homogeneous and isotropic. Using Boltzmann transformation, Theis [1] transformed
the partial differential equation to an ordinary differential equation and then derived a
solution in terms of an exponential integral, which came to be known as the well function,
and gave tabular values of this function for different values of the Boltzmann variable
or the argument of the well function. Theis found the unsteady flow of groundwater
to be analogous to the unsteady flow of heat in a homogeneous solid and derived the
desired solution.
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In general, the exponential integral can occur in many applications of transient ground-
water flow, hydrological problems, mathematical physics, and applied mathematics ([1–3]).
The direct explicit evaluation of this integral may not be analytically tractable. Thus, most
of the evaluations are based on approximations using either series expansion or numerical
behavior. In groundwater studies, this integral is commonly known as the well function.
Expressing this function as a power series and considering only two terms of the series, an
approximate solution has also been proposed [4]. However, this series approximation is
valid only within a small domain. The asymptotic (divergent) series can also be proposed
for large values of the argument [5]. Many studies that are valid within a restricted domain
are available for finding the approximation, based on polynomial or rational approximation
or series expansions ([6–11]). Swamee and Ojha [12] combined several approximations
valid for a specific region of the argument to provide an approximation to the well function.
Barry et al. [13] constructed an approximation using the interpolation between large and
small asymptotes. In recent work, Vatankhah [14] proposed a simple and very accurate
approximation for the well function by combining the approximations of small and large
values of the argument. However, these studies are based on the computational aspects of
the exponential integral, not the solution methodology of the governing equations.

Differential equations play one of the most important roles in modelling in science and
engineering. Therefore, the methods for solving these equations analytically are key topics
of research. Most of the mathematical tools available are valid only for a specific class of
nonlinear equations. On the other hand, Liao [15] proposed a methodology, namely the
homotopy analysis method (HAM), using the basic concept of homotopy from topology
to solve nonlinear equations analytically in series form. It was shown that the method
provided great freedom for solving nonlinear problems, and its applicability was not con-
fined to a small class of problems [16,17]. Following the usefulness of the method, two
other variants, namely, the homotopy perturbation method (HPM) and optimal homotopy
asymptotic method (OHAM), have also been proposed [18,19]. One of the key advantages
of these methods is that they do not depend on the presence of a small/large parameter in
the governing equation or boundary conditions. While these methods have been applied in
several disciplines of science and engineering, their application to water engineering prob-
lems is limited. Further, apart from the well-known series expressions, the approximation
of the well function using the closed-form formula mentioned in the previous paragraph is
based on empirical observation or the characteristics of the function. Thus, the change in
flow configuration or incorporation of other flow factors, which changes the solution to the
problem, cannot be explained by the proposed approaches. Following this, the objective of
this work is to apply the homotopy-based methods to unsteady groundwater flow in a con-
fined aquifer and obtain an approximation for the well function by solving the governing
differential equation itself. For that purpose, first, the methods are briefly described in a
general framework and then applied to the considered problem. The convergence of the
series solution is also discussed.

2. Brief Overview of Homotopy-Based Methods

For the convenience of the reader, here, we describe a general framework for three
variants of homotopy-based methods. It may be noted that all of these methods are based
on the fundamental concept of homotopy from topology, which describes the continuous
deformations between two mathematical objects. Specifically, two objects can be called
homotopic if one can be continuously deformed into the other. The circle and square
in 2D and the doughnut and coffee cup in 3D are two examples of homotopy. In the
context of differential equations, this idea was extended by [15], as they represent curves
(or functions) in a mathematical sense. Liao [15] developed the homotopy analysis method
(HAM), which was further extended by deriving two variants of this method, namely the
homotopy perturbation method (HPM) and the optimal homotopy asymptotic method
(OHAM). These three methods are employed in this paper.
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2.1. Homotopy Analysis Method

Let us write a general differential equation in the following form:

N (u(x, t)) = 0 (1)

where N is the nonlinear operator or the original operator of the equation; u is the depen-
dent (unknown) variable; and x and t are the independent variables, e.g., space and time.
Now, the zeroth-order deformation equation is constructed as follows [16]:

(1− q)L[Φ(x, t; q)− u0(x, t)] = qћH(x, t)N [Φ(x, t; q)] (2)

subject to the boundary conditions:

B
(

Φ,
∂Φ
∂x

,
∂Φ
∂t

)
= 0 (3)

Here, q is the embedding parameter; Φ(x, t; q) is the representation of solution across
q; u0(x, t) is the initial approximation; h̄ is the auxiliary parameter; H(x, t) is the auxiliary
function; and L and N are the linear and nonlinear operators, respectively. Following
Equation (2), the core idea of HAM is that as q varies from 0 to 1, Φ(x, t; q) transforms from
the initial approximation to the final solution. Mathematically, at q = 0, Φ(x, t; 0) = u0(x, t),
and at q = 1, Φ(x, t; 1) = u(x, t). Now, the higher-order terms need to be determined. For
that purpose, the following higher-order deformation equation is used [16]:

L[um(x, t)− χmum−1(x, t)] = ћH(x, t)Rm

(→
u m−1

)
, m = 1, 2, 3, . . . (4)

where

χm =

{
0 when m = 1,
1 otherwise

(5)

and

Rm

(→
u m−1

)
=

1
(m− 1)!

∂m−1N [Φ(x, t; q)]
∂qm−1

∣∣∣∣
q=0

(6)

where um for m ≥ 1 are the higher-order terms. The derivation of Equation (4) requires the
successive differentiation of the zeroth-order deformation Equation (2). The final solution
can now be obtained as follows:

u(x, t) = u0(x, t) +
∞

∑
m=1

um(x, t) (7)

For the assessment of the solution, Equation (7) is truncated in order to have an
approximate solution. In the framework of HAM, several operators and functions need
to be chosen to obtain the solution. Liao [16] proposed some fundamental rules, namely
the rule of solution expression, the rule of coefficient ergodicity, and the rule of solution
existence, which will be discussed in the next section.

2.2. Homotopy Perturbation Method

Let us rewrite the differential equation as follows:

N (u(x, t)) = f (x, t) (8)

Now, the homotopy that satisfies [18] is constructed:

(1− q)[L(Φ(x, t; q))−L(u0(x, t))] + q[N [Φ(x, t; q)]− f (x, t)] = 0 (9)
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where the symbols carry the same meaning as mentioned in the previous section. Addition-
ally, similar to HAM, Equation (9) shows that at q = 0, Φ(x, t; 0) = u0(x, t), and at q = 1,
Φ(x, t; 1) = u(x, t). Let us now express Φ(x, t; q) as a series in terms of q, as follows:

Φ(x, t; q) = Φ0 + qΦ1 + q2Φ2 + q3Φ3 + q4Φ4 + . . . (10)

where Φm for m ≥ 1 are the higher-order terms. As q→ 1 , Equation (10) produces the final
solution as:

u(x, t) = lim
q→1

Φ(x, t; q) =
∞

∑
k=0

Φk (11)

First, the series Equation (10) is substituted into Equation (9), and then the like powers
of q are equated to obtain the HPM-based solution, Equation (11). In comparison with
HAM, the HPM does not contain any additional auxiliary function and auxiliary param-
eters, which restricts its applicability and also the rate and region of convergence of the
series [16,17]. Indeed, the HPM is a special case of HAM, subject to the same set of linear
and nonlinear operators and unit auxiliary function when the auxiliary parameter ћ = −1.

2.3. Optimal Homotopy Asymptotic Method

In some cases, HPM and HAM require several terms of the series solution in order
to obtain a good approximation. Therefore, the optimal homotopy asymptotic method
(OHAM) was developed with the aim of obtaining an accurate solution with just two to
three terms of the series. To that end, Marinca and Herisanu [19] proposed OHAM by
using asymptotic expansions of the functions and operators, which is described below. We
consider the differential equation in the following form:

L[u(x, t)] +N [u(x, t)] + h(x, t) = 0 (12)

subject to the boundary conditions:

B
(

u,
∂u
∂x

,
∂u
∂t

)
= 0 (13)

where symbols denote the same variables as discussed in the previous section. Following
HAM, one can construct the homotopy as:

(1− q)
[
L
(
Φ
(

x, t, Cj; q
))

+ h(x, t)
]
= H

(
x, t, Cj; q

)[
L
(
Φ
(
x, t, Cj; q

))
+ h(x, t) +N

(
Φ
(
x, t, Cj; q

))]
(14)

where symbols have their usual meaning, and Cj are the unknown parameters that need to
be determined. The auxiliary function is defined as:

H
(

x, t, Cj; q
)
= 0 for q = 0 6= 0 for q ∈ (0, 1] (15)

It can be verified from Equation (14) that at q = 0, Φ
(
x, t, Cj; q

)
= u0(x, t), and at

q = 1, Φ
(

x, t, Cj; q
)
= u(x, t), which is the same as HAM and HPM, i.e., as q goes from 0 to

1, we have the continuous deformation from the initial approximation to the final solution.
The initial approximation u0(x, t) should be determined by solving the following equation:

L(u0(x, t)) + h(x, t) = 0 (16)

subject to the boundary conditions:

B
(

u0,
∂u0

∂x
,

∂u0

∂t

)
= 0 (17)
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Equation (16) can be constructed after setting q = 0 in Equation (14). In the framework
of OHAM, one of the key steps is to expand the auxiliary function in terms of q, as follows:

H
(

x, t, Cj; q
)
= qH1

(
x, t, Cj

)
+ q2H2

(
x, t, Cj

)
+ q3H3

(
x, t, Cj

)
+ . . . (18)

where Hi
(

x, t, Cj
)

are the auxiliary functions that depend on parameters Cj. Now, the final
solution is expressed in the following form:

Φ
(
x, t, Cj; q

)
= u0(x, t) +

∞

∑
i=1

ui
(
x, t, Cj

)
qi (19)

Substituting Equation (19) into Equation (14), and equating the like powers of q, the
following equations are obtained [where q0 corresponds to Equations (16) and (17)]:

L
(
u1
(
x, t, Cj

) )
= H1

(
x, t, Cj

)
N0(u0(x, t)) (20)

subject to the boundary condition:

B
(

u1,
∂u1

∂x
,

∂u1

∂t

)
= 0 (21)

For k = 2, 3, 4, . . .,

L
[
uk
(

x, t, Cj
)
−uk−1

(
x, t, Cj

)]
= Hk

(
x, t, Cj

)
N0(u0(x, t))

+
k−1
∑

j=1
Hj
(
x, t, Cj

)[
L
[
uk−j

(
x, t, Cj

)]
+Nk−j

[
u0(x, t), u1

(
x, t, Cj

)
, . . . , uk−j

(
x, t, Cj

)]
]

(22)

subject to the boundary conditions:

B
(

uk,
∂uk
∂x

,
∂uk
∂t

)
= 0 (23)

where the term Nk−j

[
u0(x, t), u1

(
x, t, Cj

)
, . . . , uk−j

(
x, t, Cj

)]
is the coefficient of qm, which

is obtained by expanding N
(
Φ
(
x, t, Cj; q

))
as follows:

N
(
Φ
(

x, t, Cj; q
))

= N0(u0(x, t)) + qN1
(
u0(x, t), u1

(
x, t, Cj

))
+q2N2

(
u0(x, t), u1

(
x, t, Cj

)
, u2
(
x, t, Cj

))
+ . . .

(24)

It may be noted that the choice of auxiliary functions Hj
(

x, t, Cj
)

strongly influences
the convergence of the series Equation (19). According to [20], Hj

(
x, t, Cj

)
should be chosen

in such a way that the product Hj
(
x, t, Cj

)
[L[uk−j

(
x, t, Cj

)
] +Nk−j[u0(x, t), u1

(
x, t, Cj

)
, . . . ,

uk−j
(

x, t, Cj
)
]] and Hj

(
x, t, Cj

)
are of the same form. Now, if the series Equation (19)

converges at q = 1, then we have:

u
(
x, t, Cj

)
= u0(x, t) +

∞

∑
j=1

uj
(
x, t, Cj

)
(25)

Finally, the approximate solution can be obtained by considering a finite number of
terms of the series Equation (25). The choices for parameters Cj and auxiliary function will
be discussed in the next section.



Mathematics 2023, 11, 1652 6 of 23

3. Governing Equation and Solution Methodologies

Let us consider a horizontal confined aquifer having a constant thickness, which is
infinitely extended horizontally and is homogeneous and isotropic. Some of the further
assumptions are that the aquifer has a single pumping well with a constant rate with respect
to time and a negligibly small diameter. Further, it is assumed that the well penetrates
the entire aquifer, and the hydraulic head in the aquifer, before pumping, is uniform
throughout the aquifer. The continuity equation and Darcy’s law are combined together to
obtain the following governing partial differential equation, representing saturated flow in
a horizontal confined aquifer [21]:

∂2s
∂x2 +

∂2s
∂y2 =

S
T

∂s
∂t

(26)

where x and y are the spatial variables; t is the temporal variable; s is the hydraulic head;
and T and S are the transmittivity and storativity, respectively. It is convenient to convert
Equation (26) into radial coordinates because of the radial symmetry of the hydraulic-head
drawdown around a well. Therefore, using r =

√
x2 + y2, where r is the radial coordinate,

the governing equation becomes:

∂2s
∂r2 +

1
r

∂s
∂r

=
S
T

∂s
∂t

(27)

The radial coordinate allows us to convert two space dimensions into a single coordi-
nate, specifically a one-dimensional line starting from the well center at r = 0 to the infinite
extremity at r = ∞. The flow configuration is schematically provided in Figure 1.
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The initial condition is given as:

s(r, 0) = s0 for all r (28)

where s0 is the constant initial hydraulic head. For the boundary conditions, no hydraulic-
head drawdown is assumed at the infinite extremity, i.e.,

s(∞, t) = s0 for all t (29)

Again, a constant pumping rate is assumed at the well:

lim
r→0

(
r

∂s
∂r

)
=

Q
2πT

for all t (30)
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The second boundary condition Equation (30) is invoked by the application of Darcy’s
law at the well face. The solution of Equation (27), together with the initial and boundary
conditions Equations (28)–(30), provides the hydraulic head at any radial distance r and
time t after the start of pumping. In practice, the solutions are often presented in terms of
the drawdown expressed in the head s0 − s(r, t).

3.1. Theis Solution

An analytical solution for the governing Equation (27), together with the given condi-
tions Equations (28)–(30), was first provided by Theis [1], who followed an analogy with
heat conduction in solids to arrive at the desired solution. The derived solution can be
expressed as:

s0 − s(r, t) =
Q

4πT

∞∫
v

exp(−v)
v

dv (31)

where v = r2S
4Tt . The solution Equation (31) is popularly known as the Theis solution. It may

be noted that the governing PDE can be solved using different techniques, such as the
Laplace transform, Fourier transform, similarity transformation, etc. In the mathematics
literature, the integral on the right side of Equation (31) is known as the exponential integral.
However, in relation to the problem considered here, it is generally called the well function
and is denoted by W(v). Accordingly, Equation (31) becomes:

s0 − s(r, t) =
Q

4πT
W(v) (32)

The function W(u) follows several interesting properties, e.g.,

W(−∞) = −∞, W(0) = +∞, W(+∞) = 0, W(v) = Γ(0, v) (33)

where Γ(x, v) is the upper incomplete gamma function, defined as:

Γ(x, v) =
∞∫

v

tx−1 exp(−t)dt (34)

There are two convergent series for the integral W(v). One of them can be expressed
as follows ([4,8]):

W(v) = −γ− ln v +
∞

∑
i=1

(−1)i+1vi

i i!
|Arg(v)| < π (35)

where γ is the Euler–Mascheroni constant, and its value (up to four decimal places) is
0.5772. For calculating the well function using Equation (35), there are some drawbacks.
For example, this series produces inaccurate results for v > 2.5 if one considers a few terms.
This occurs due to the cancellation. Further, the convergence rate of the series is slow, hence,
the approximation may not be desirable in practical situations. A more rapidly convergent
series, attributed to S. Ramanujan, is given by [22]:

Ei(v) = γ + ln v + exp(v/2)
∞

∑
k=1

(−1)k−1vk

k!2k−1

b(k−1)/2c

∑
n=0

1
2n + 1

(36)

where b(k− 1)/2c denotes the floor function. The integral W(v) is related to Equation (36)
as follows:

W(v) = −Ei(−v) (37)
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Equation (37) provides an accurate estimate for the integral for small values of v.
However, both Equations (35) and (36) are not useful for larger values of v. For large values
of v, there is an asymptotic series approximation as follows [5]:

W(v) =
exp(−v)

v

(
n−1

∑
k=0

k!

(−v)k +O
(
|v|−n

))
(38)

where O denotes the ‘Big-O’ notation. Equation (38) can be obtained by expanding the
integral of W(v) by parts.

The previous discussions are based on the series approximation for the integral and
found to be accurate for either small or large values of v. However, for practical applications,
one needs to have an accurate expression for W(v) for a wide range of v. To that end, several
approximations have been proposed in the literature. Here, we mention some of them.
Swamee and Ojha [12] proposed the following approximation:

W(v) =
[

f1(v)
−7.7 + f2(v)

]−0.13
(39)

where

f1(v) = ln
[(

0.65 +
0.56146

v

)
(1 + v)

]
(40)

f2(v) = v4 exp(7.7v)(2 + v)3.7 (41)

Barry et al. [13] offered the following full-range solution:

W(v) =
exp(−v)

a1 + (1− a1) exp
(
− v

1−a1

) ln

[
1 +

a1

v
− 1− a1

( f3(v) + a2v)2

]
(42)

where

a1 = exp(−γ), a2 =

√
2(1− a1)

a1(2− a1)
, γ is the Euler–Mascheroni constant (43)

f3(v) =
1

1 + v
√

v
+

â2 ã2

1 + ã2
, â2 =

(1− a1)
(
a1

2 − 6a1 + 12
)

3a1(2− a1)
2a2

, ã2 =
20
47

v
√

31
26 (44)

In a recent study, Vatankhah [14] proposed the following approximation:

W(v) =

{[(
1 + b1vb2

)
ln
(

b3

v
+ b4

)]−p
+

[
1

v exp(v)

(
v + b5

v + b6

)]−p
}− 1

p

(45)

where p = 2, b1 = −0.19, b2 = 0.7, b3 = 0.565, b4 = 4, b5 = 0.444, and b6 = 1.384.

3.2. Homotopy-Based Solutions

It may be noted that the homotopy-based methods are easier to apply to ODEs than the
PDEs. This is the case because the PDE involves more than one independent variable, which
makes it difficult to choose the operators and initial approximations for these methods.
Therefore, first, we convert the governing PDE Equation (27) into an ODE, using the
following similarity transformation:

v =
r2S
4tT

(46)

Then
∂s
∂r

=
ds
dv

∂v
∂r

=
2rS
4tT

ds
dv
⇒ 1

r
∂s
∂r

=
2S
4tT

ds
dv

(47)
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∂2s
∂r2 =

∂

∂r

[
2rS
4tT

ds
dv

]
=

2S
4tT

ds
dv

+
4r2S2

16t2T2
d2s
dv2 (48)

∂s
∂t

=
ds
dv

∂v
∂t

= − r2S
4t2T

ds
dv

(49)

Using Equations (29)–(47), the governing Equation (27) becomes:

v
d2s
dv2 + (1 + v)

ds
dv

= 0 (50)

Following Equation (46), the conditions Equations (28) and (29) become:

s(v→ ∞) = s0 (51)

and Equation (30) changes to:

lim
r→0

(
r

∂s
∂r

)
=

Q
2πT

⇒ lim
v→0

(
v

ds
dv

)
=

Q
4πT

(52)

To be in line with Theis’s method, we intend to obtain the solution as s0 − s(v). For
that, we use the transformation:

s(v) = s0 + s(v) (53)

Accordingly, Equation (50) becomes:

v
d2s
dv2 + (1 + v)

ds
dv

= 0 (54)

The boundary conditions (51) and (52) become:

s(v→ ∞) = 0 (55)

lim
v→0

(
v

ds
dv

)
= − Q

4πT
(56)

3.2.1. HAM-Based Solution

Here, we apply HAM to Equation (54) together with the conditions Equations (55) and (56).
Following the discussion in Section 2.1, we consider the nonlinear operator for the problem
as follows:

N [Φ(v; q)] = v
∂2Φ(v; q)

∂v2 + (1 + v)
∂Φ(v; q)

∂v
(57)

It may be noted that Equation (57) is the original governing equation. Using Equation (57),
terms Rm are obtained as follows:

Rm

(→
s m−1

)
= v

d2sm−1

dv2 + (1 + v)
dsm−1

dv
(58)

Now, we define the base functions to represent the solution of the governing equation.
To that end, the following set of base functions is chosen for the considered problem:

{exp(−v) ln(v) + [W(v) + exp(−v)]vm | m = 0, 1, 2, . . .} (59)

so that

s(v) = a0 exp(−v) ln(v) + [W(v) + exp(−v)]
∞

∑
n=0

bn(v)
n (60)
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where a0 and bm are the coefficients of the series. Equation (60) provides the so-called rule
of solution expression. Following the rule of solution expression, the linear operator and the
initial approximation are chosen, respectively, as follows:

L[Φ(v; q)] =
∂2Φ(v; q)

∂v2 with the property L[C2v + C3] = 0 (61)

s0(v) = −
Q

4πT
exp(−v) ln(v) (62)

where C2 and C3 are integral constants. It may be noted that the initial approximation Equation (62)
is chosen in accordance with the given boundary conditions Equations (55) and (56).
Using Equation (61), the higher-order terms can be obtained from Equation (62) as follows:

sm(v) = χmsm−1(v) + ћ
∫ v

0

∫ v

0
H(x)Rm

(→
s m−1

)
dxdy + C2v + C3, m = 1, 2, 3, . . . (63)

where Rm is given by Equation (68), and constants C2 and C3 can be determined from the
boundary conditions for the higher-order deformation equations given by Equation (63).

Now, the rule of coefficient ergodicity determines the auxiliary function H(v). It may
be noted that the function H(v) can be of many forms, based on the rule of solution
expression Equation (60). However, for simplicity, one can select H(v) = 1 in order to
avoid unnecessary difficulty in computation. Further, this is consistent with the theory
given in [23]. Finally, the approximate solution can be obtained as follows:

s(v) = s0 − s(v) ≈ s0(v) +
M

∑
n=1

sn(v) (64)

3.2.2. HPM-Based Solution

Following the discussion in Section 2.2, we select the linear and nonlinear operators
as follows:

L(Φ(v; q)) =
∂2Φ(v; q)

∂v2 (65)

N (Φ(v; q)) = v
∂2Φ(v; q)

∂v2 + (1 + v)
∂Φ(v; q)

∂v
(66)

Using these operators, Equation (9) takes on the form:

(1− q)
[

∂2Φ(v; q)
∂v2 − d2s0

dv2

]
+ q
[

v
∂2Φ(v; q)

∂v2 + (1 + v)
∂Φ(v; q)

∂v

]
= 0 (67)

Substituting the series expression Equation (10) into Equation (67), we have:

(1− q)
⌈

∂2Φ(v;q)
∂v2 − d2s0

dv2

⌉
=
(

d2Φ0
dv2 − d2s0

dv2

)
+ q
(

d2Φ1
dv2 −

(
d2Φ0
dv2 − d2s0

dv2

))
+ q2

(
d2Φ2
dv2 − d2Φ1

dv2

)
+ q3

(
d2Φ3
dv2 − d2Φ2

dv2

)
+q4

(
d2Φ4
dv2 − d2Φ3

dv2

)
+ . . .

(68)

v ∂2Φ(v;q)
∂v2 + (1 + v) ∂Φ(v;q)

∂v

=
[
v d2Φ0

dv2 + (1 + v) dΦ0
dv

]
+ q
[
v d2Φ1

dv2 + (1 + v) dΦ1
dv

]
+q2

[
v d2Φ2

dv2 + (1 + v) dΦ2
dv

]
+ q3

[
v d2Φ3

dv2 + (1 + v) dΦ3
dv

]
+ . . .

(69)
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Using the boundary conditions s(v→ ∞) = 0 and lim
v→0

(
v ds

dv

)
= − Q

4πT , we have:

Φ0(v→ ∞) = 0, Φ1(v→ ∞) = 0, Φ2(v→ ∞) = 0, . . . . (70)

lim
v→0

(
v

dΦ0

dv

)
= − Q

4πT
, lim

v→0

(
v

dΦ1

dv

)
= 0, lim

v→0

(
v

dΦ2

dv

)
= 0, . . . (71)

Using Equations (70) and (71) and equating the like powers of q in Equation (67), the
following system of differential equations is obtained:

d2Φ0

dv2 −
d2s0

dv2 = 0 subject to Φ0(v→ ∞) = 0, lim
v→0

(
v

dΦ0

dv

)
= − Q

4πT
(72)

d2Φ1

dv2 −
(

d2Φ0

dv2 −
d2s0

dv2

)
+ v

d2Φ0

dv2 + (1 + v)
dΦ0

dv
= 0 subject to Φ1(v→ ∞) = 0, lim

v→0

(
v

dΦ1

dv

)
= 0 (73)

d2Φ2

dv2 −
d2Φ1

dv2 + v
d2Φ1

dv2 + (1 + v)
dΦ1

dv
= 0 subject to Φ2(v→ ∞) = 0, lim

v→0

(
v

dΦ2

dv

)
= 0 (74)

d2Φ3

dv2 −
d2Φ2

dv2 + v
d2Φ2

dv2 + (1 + v)
dΦ2

dv
= 0 subject to Φ3(v→ ∞) = 0, lim

v→0

(
v

dΦ3

dv

)
= 0 (75)

d2Φ4

dv2 −
d2Φ3

dv2 + v
d2Φ3

dv2 + (1 + v)
dΦ3

dv
= 0 subject to Φ4(v→ ∞) = 0, lim

v→0

(
v

dΦ4

dv

)
= 0 (76)

Proceeding in a like manner, one can arrive at the following recurrence relation:

d2Φm

dv2 = (1− v)
d2Φm−1

dv2 − (1 + v)
dΦm−1

dv
subject to Φm(v→ ∞) = 0, lim

v→0

(
v

dΦm

dv

)
= 0 for m ≥ 2 (77)

The initial approximation can be chosen as Φ0 = − Q
4πT exp(−v) ln v. Using this initial

approximation, we can solve the equations iteratively using symbolic software. Finally, the
HPM-based solution can be approximated as follows:

s(v) ≈
M

∑
i=0

Φi (78)

3.2.3. OHAM-Based Solution

When dealing with the problem using OHAM, it is observed that due to boundary
conditions, it may not be possible to solve the governing Equation (54) using OHAM.
To that end, first, we convert the boundary value problem Equation (54) into an ODE,
as follows:

v
d2s
dv2 + (1 + v)

ds
dv

= 0⇒ d
dv

(
v

ds
dv

)
+ v

ds
dv

= 0⇒ du
dv

+ u = 0 (79)

subject to

lim
v→0

(u) = − Q
4πT

(80)

Solving Equation (79) together with Equation (80), one obtains:

v
ds
dv

+
Q

4πT
exp(−v) = 0 subject to s(∞) = 0 (81)

For applying OHAM, Equation (81) can be written in the following form:

L[s(v)] +N [s(v)] + h(v) = 0 (82)
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We select L[s(v)] = ds
dv , N [s(v)] = (v− 1) ds

dv , and h(v) = Q
4πT exp(−v). Using these

expressions, solution of the zeroth-order representation Equation (16) becomes:

s0(v) =
Q

4πT
exp(−v) (83)

The following relation is obtained for the expressions of N0, N1, N2, etc.:

(v− 1)
ds
dv

=

[
(v− 1)

ds0

dv

]
+ q
[
(v− 1)

ds1

dv

]
+ q2

[
(v− 1)

ds2

dv

]
+ q3

[
(v− 1)

ds3

dv

]
+ . . . (84)

Using Equation (84), the first-order representation Equation (20) reduces to:

ds1

dv
= H1(v, Ci)

{
(v− 1)

ds0

dv

}
subject to s1(v→ ∞) = 0 (85)

The auxiliary function is chosen as H1(v, Ci) = C1 + C2 exp(−v). Putting k = 2 and
H2(v, Ci) = C3 + C4 exp(−v), the second-order representation Equation (22) becomes:

ds2

dv
=

ds1

dv
+ (C3 + C4 exp(−v))

[
(v− 1)

ds0

dv

]
+ (C1 + C2 exp(−v))

[
ds1

dv
+ (v− 1)

ds1

dv

]
subject to s2(v→ ∞) = 0 (86)

The first three terms of the OHAM-based solution can be obtained by solving the
above equations using symbolic computation software, such as MATLAB. Further, we
restrict our analysis up to k = 2, as the objective is to obtain an accurate solution with just a
few terms of the OHAM-based series. Finally, the approximate solution can be found as:

s(v) ≈ s0(v) + s1(v, C1, C2) + s2(v, C1, C2, C3, C4) (87)

where the terms are given by Equations (83), (85), and (86).

4. Results and Discussion

Here, first, we discuss the validity of the approximations for the well function. Then,
the HAM-, HPM-, and OHAM-based approximations are verified with the numerical
solution to the problem. Finally, the proposed solutions are compared with the existing
approximations in order to have a numerical assessment.

4.1. Validation of the Well Function’s Approximations

In Figure 2, we validate the series approximation given by Equation (35) by comparing
it with the numerical solution of the corresponding exponential integral. The numerical
values of W(v) were calculated using the MATLAB script ‘integral’, which uses the global
adaptive quadrature rule [24]. We compared 10, 20, and 40 terms of the series Equation (35)
and observe that one needs more than 40 terms of the series to obtain an accurate approxi-
mation for v up to 6.5. Further, the convergence rate is too slow as we increase the order
of approximation.

Figure 3 compares the numerical solution and the series approximation (38) of W(v),
considering some terms of the series. The series is an asymptotic expansion that is valid
for large values of v. As expected, it is observed from the figure that the series performs
well only for large values of v. However, it produces inaccurate results for small values
of v. For a comparative assessment, we plot together the numerical solution and both the
series Equations (35) and (38) in Figure 4. It is observed from the figure that one of them
performs well for smaller values, and the other is accurate only for large values of v.



Mathematics 2023, 11, 1652 13 of 23
Mathematics 2023, 11, x FOR PEER REVIEW 13 of 24 
 

 

 
Figure 2. Comparison between numerical solution and 10, 20, and 40 terms of the series Equation 
(35) for 𝑊(𝑣). 

Figure 3 compares the numerical solution and the series approximation (38) of 𝑊(𝑣), 
considering some terms of the series. The series is an asymptotic expansion that is valid 
for large values of 𝑣. As expected, it is observed from the figure that the series performs 
well only for large values of 𝑣. However, it produces inaccurate results for small values 
of 𝑣. For a comparative assessment, we plot together the numerical solution and both the 
series Equations (35) and (38) in Figure 4. It is observed from the figure that one of them 
performs well for smaller values, and the other is accurate only for large values of 𝑣. 

 
Figure 3. Comparison between numerical solution and 2, 5, and 100 terms of the series Equation (38) 
for 𝑊(𝑣). 

Figure 2. Comparison between numerical solution and 10, 20, and 40 terms of the series Equation (35)
for W(v).

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 24 
 

 

 
Figure 2. Comparison between numerical solution and 10, 20, and 40 terms of the series Equation 
(35) for 𝑊(𝑣). 

Figure 3 compares the numerical solution and the series approximation (38) of 𝑊(𝑣), 
considering some terms of the series. The series is an asymptotic expansion that is valid 
for large values of 𝑣. As expected, it is observed from the figure that the series performs 
well only for large values of 𝑣. However, it produces inaccurate results for small values 
of 𝑣. For a comparative assessment, we plot together the numerical solution and both the 
series Equations (35) and (38) in Figure 4. It is observed from the figure that one of them 
performs well for smaller values, and the other is accurate only for large values of 𝑣. 

 
Figure 3. Comparison between numerical solution and 2, 5, and 100 terms of the series Equation (38) 
for 𝑊(𝑣). 

Figure 3. Comparison between numerical solution and 2, 5, and 100 terms of the series Equation (38)
for W(v).

Mathematics 2023, 11, x FOR PEER REVIEW 14 of 24 
 

 

 
Figure 4. Comparison between numerical solution, 40 terms of the series Equation (35), and 10 terms 
of the series Equation (38) for 𝑊(𝑣). 

4.2. Numerical Convergence and Validation of the HAM-Based Solution 
In the framework of HAM, the auxiliary parameter ℏ plays the key role in determin-

ing the convergence of the series solution. An optimal value for the parameter can be ob-
tained by minimizing the following squared residual error of Equation (54), which can be 
calculated as follows: ∆௠= න(𝒩[𝑠̅(𝑣)])ଶ𝑑𝑣௩∈ఆ  (88)

where 𝛺 is the domain of the equation. The HAM-based series solution converges 
when the corresponding residual error Equation (88) becomes zero. A test case is consid-
ered here, where the parameters were chosen as 𝑄 = 4 × 10ିଷ m3s−1, 𝑇 = 0.0023 m2s−1, 
and 𝑆 = 7.5 × 10ିସ. Using these parameter values, we assessed the HAM-based solution 
by calculating the squared residual errors for different orders of approximations. The 
squared residual errors for different orders of approximation are plotted in Figure 5, 
where it is seen that the error decreases with the increasing order of approximation. Thus, 
the numerical convergence was established, and the choice of operators and parameters 
was validated. For a quantitative assessment, the numerical results are also reported in 
Table 1, along with the computational time taken by the computer to produce the corre-
sponding order of approximations. It can be seen from the table that even though HAM 
is an analytical series approximation technique, it still does not involve time complexity. 
On the other hand, for the selected case, we compared the Theis solution (with the integral 
computed using the MATLAB script ‘integral’, which uses the global adaptive quadrature 
rule [24]) and the 10th-order HAM-based approximate solution in Figure 6. It may be 
noted that the same method was used for the numerical solution related to HPM and 
OHAM. An excellent agreement is found between the computed and observed values. 
Additionally, for a comparative idea, 4th-, 7th-, and 10th-order approximations were con-
sidered and compared with the Theis solution, as shown in Table 2. It can be observed 
from the table that the higher the order of approximation, the better the accuracy. All com-
putations were performed using the BVPh 2.0 package developed by [25]. A flowchart 
containing the steps of HAM for the present problem is provided in Figure 7. The theoret-
ical convergence analysis is provided in Appendix A.  

Figure 4. Comparison between numerical solution, 40 terms of the series Equation (35), and 10 terms
of the series Equation (38) for W(v).



Mathematics 2023, 11, 1652 14 of 23

4.2. Numerical Convergence and Validation of the HAM-Based Solution

In the framework of HAM, the auxiliary parameter ћ plays the key role in determin-
ing the convergence of the series solution. An optimal value for the parameter can be
obtained by minimizing the following squared residual error of Equation (54), which can
be calculated as follows:

∆m =
∫

v∈Ω

(N [s(v)])2dv (88)

where Ω is the domain of the equation. The HAM-based series solution converges when
the corresponding residual error Equation (88) becomes zero. A test case is considered
here, where the parameters were chosen as Q = 4× 10−3 m3s−1, T = 0.0023 m2s−1, and
S = 7.5× 10−4. Using these parameter values, we assessed the HAM-based solution by
calculating the squared residual errors for different orders of approximations. The squared
residual errors for different orders of approximation are plotted in Figure 5, where it is seen
that the error decreases with the increasing order of approximation. Thus, the numerical
convergence was established, and the choice of operators and parameters was validated.
For a quantitative assessment, the numerical results are also reported in Table 1, along
with the computational time taken by the computer to produce the corresponding order
of approximations. It can be seen from the table that even though HAM is an analytical
series approximation technique, it still does not involve time complexity. On the other
hand, for the selected case, we compared the Theis solution (with the integral computed
using the MATLAB script ‘integral’, which uses the global adaptive quadrature rule [24])
and the 10th-order HAM-based approximate solution in Figure 6. It may be noted that
the same method was used for the numerical solution related to HPM and OHAM. An
excellent agreement is found between the computed and observed values. Additionally,
for a comparative idea, 4th-, 7th-, and 10th-order approximations were considered and
compared with the Theis solution, as shown in Table 2. It can be observed from the table
that the higher the order of approximation, the better the accuracy. All computations were
performed using the BVPh 2.0 package developed by [25]. A flowchart containing the
steps of HAM for the present problem is provided in Figure 7. The theoretical convergence
analysis is provided in Appendix A.
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Table 1. Squared residual error (∆m) and computational time versus different orders of approximation
(m) for the selected case.

Order of Approximation (m) Squared Residual Error (∆m) Computational Time (s)

2 7.15 × 10−4 0.212
4 5.23 × 10−5 1.135
6 1.98 × 10−5 2.481
8 1.01 × 10−5 5.074
10 8.86 × 10−6 6.843
12 6.23 × 10−6 10.149
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Table 2. Comparison between HAM-based approximation and numerical solution for the se-
lected case.

u Numerical Solution
HAM-Based Approximation

4th Order 7th Order 10th Order

0.1 2.523 × 10−1 3.009 × 10−1 2.821 × 10−1 2.726 × 10−1

1 3.036 × 10−2 3.995 × 10−2 3.548 × 10−2 3.305 × 10−2

2 6.768 × 10−3 9.302 × 10−3 8.011 × 10−3 7.228 × 10−3

3 1.806 × 10−3 2.560 × 10−3 2.146 × 10−3 1.886 × 10−3

4 5.230 × 10−4 7.603 × 10−4 6.213 × 10−4 5.377 × 10−4

5 1.589 × 10−4 2.359 × 10−4 1.881 × 10−4 1.627 × 10−4

6 4.983 × 10−5 7.530 × 10−5 5.870 × 10−5 5.150 × 10−5

7 1.598 × 10−5 2.453 × 10−5 1.871 × 10−5 1.689 × 10−5

8 5.213 × 10−6 8.111 × 10−6 6.066 × 10−6 5.688 × 10−6

9 1.723 × 10−6 2.713 × 10−6 1.993 × 10−6 1.955 × 10−6

10 5.753 × 10−7 9.160 × 10−7 6.617 × 10−7 6.814 × 10−7

4.3. Validation of HPM-Based Solution

For the selected case, the HPM-based analytical solution was validated over the
solution given by [1], where the integral is performed numerically. It may be noted that,
unlike HAM, HPM solutions are often valid only within a small domain [16]. Therefore, for
our case here, we considered the domain v ∈ [0.1, 2]. After assessing the solution within
this domain, we observe that the series with four terms is more accurate than the other
lower-order terms. The comparison between the Theis solution and the four terms of HPM
approximation is given in Figure 8, where it can be seen that as the domain increases, the
accuracy of the solution decreases. This is a default problem with HPM, as the methodology
does not contain any convergence-control parameter like HAM. Indeed, one may try with
different combinations of initial approximations and operators, which might then work in
producing a more accurate solution to the problem. Table 3 shows a numerical comparison
between the HPM-based values and the Theis solution. For the convenience of the readers,
a flowchart containing the steps of HPM is provided in Figure 9.
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Table 3. Comparison between four terms of the HPM-based approximation and Theis solution for
the selected case.

u Numerical Solution Four Terms of the HPM-Based Approximation

0.1 2.523 × 10−1 3.135 × 10−1

0.3 1.253 × 10−1 1.533 × 10−1

0.5 7.747 × 10−2 9.362 × 10−2

0.7 5.173 × 10−2 6.246 × 10−2

0.9 3.601 × 10−2 4.346 × 10−2

1.1 2.574 × 10−2 3.097 × 10−2

1.3 1.875 × 10−2 2.237 × 10−2

1.5 1.384 × 10−2 1.563 × 10−2

1.7 1.033 × 10−2 8.139 × 10−3

2.0 6.768 × 10−3 1.298 × 10−2
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4.4. Validation of OHAM-Based Solution

It can be seen from Equation (87) that the OHAM-based solution contains parameters
Ci, which need to be calculated. For that purpose, one can construct the residual as follows:

R(v, Ci) = L[sOHAM(v, Ci)] +N [sOHAM(v, Ci)] + h(v), i = 1, 2, . . . , s (89)

where sOHAM(v, Ci) is the approximate solution. When R(v, Ci) = 0, sOHAM(v, Ci) be-
comes the exact solution to the equation. One of the ways to obtain the optimal Ci is the
minimization of squared residual error, i.e.,

J(Ci) =
∫

vεD
R2(v, Ci)du, i = 1, 2, . . . , s (90)

where D = [0.1, 10] is the domain of the problem. The minimization of Equation (90) leads
to a system of algebraic equations as follows:

∂J
∂C1

=
∂J

∂C2
= . . . =

∂J
∂Cs

= 0 (91)

One can obtain the optimal values of parameters by solving this system of equations
numerically. Here, we used the MATLAB script fminsearch, which minimizes an uncon-
strained multivariable function. It was found that only a three-term solution produces
accurate values. Therefore, a three-term OHAM solution was computed and compared
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with the Theis solution, as shown in Figure 10. It can be seen that just three terms of the
OHAM-based series agree well with the corresponding analytical solution to the problem.
For a quantitative assessment, we also compare the numerical values of the solutions in
Table 4. A flowchart containing the steps of OHAM is provided in Figure 11.
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Table 4. Comparison between three terms of the OHAM-based approximation and Theis solution for
the selected case.

u Numerical Solution Three Terms of OHAM-Based Approximation

0.1 2.523 × 10−1 2.466 × 10−1

1 3.036 × 10−2 3.143 × 10−2

2 6.768 × 10−3 6.539 × 10−3

3 1.806 × 10−3 2.112 × 10−3

4 5.230 × 10−4 8.502 × 10−4

5 1.589 × 10−4 3.066 × 10−4

6 4.983 × 10−5 1.000 × 10−4

7 1.598 × 10−5 3.013 × 10−5

8 5.213 × 10−6 8.461 × 10−6

9 1.723 × 10−6 2.283 × 10−6

10 5.753 × 10−7 5.978 × 10−7
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4.5. Comparison between Different Approximations

In this section, we compare the approximations given by series approximations
Equations (35), (38), (39), (42), (45), (64), (78) and (87). For that purpose, we considered the
same test parameters, i.e., Q = 4× 10−3 m3s−1, T = 0.0023 m2s−1, and S = 7.5× 10−4.
Moreover, for each of the cases, we computed the well function numerically using ‘in-
tegral’ of MATLAB to obtain the main solution. The series Equation (35) with 40 terms,
Equation (38) with 10 terms, 10th-order HAM-based solution, four-term HPM solution,
and three-term OHAM solution were considered. Importantly, it may be noted that the
numerical values of solutions are very small, which can make the computations ill-posed
or produce numerical instabilities. To that end, logarithmic form for the error was con-
sidered. Specially, we checked the performances of the approximations by calculating

the percentage error as PE (%) = 100 × (ln Wnum−ln Wapprx)
ln Wnum

, where Wnum and Wapprx are the
values of W(v) obtained from the Theis solution and the corresponding approximation,
respectively. The percentage errors were calculated for the approximations and compared,
as shown in Figure 12. It can be seen that among the series approximations, HAM- and
OHAM-based approximations provide accurate approximations for the problem. On the
other hand, the HPM-based solution is shown only within a small domain, as the solu-
tion provides accurate values there. Further, series approximation given by [12–14] are
reasonably accurate within the domain. The different homotopy-based methods provide
solutions that are valid within a certain range of the domain. The HAM- and OHAM-
based approximations are more accurate and valid for larger domains, as they contain
convergence-control parameters, which monitor the rate and radius of convergence of the
series solutions. Further, the OHAM-based solution is more preferable due to its ability
to provide an accurate approximation with just two–three terms of the series. Finally, it is
concluded that while the homotopy-based methods do not produce as accurate solutions
as do the closed-form formulae available in the literature, they are better than the series
expansions and also may be improved further using different sets of base functions, linear
operators, and initial approximations. It may also be noted that the proposed study differs
from the existing empirical formula-based work from the viewpoint of its derivation, which
starts from the governing differential equation. Therefore, the approach is flexible to use
when the flow configuration is different, and the model parameters vary.
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5. Concluding Remarks

Theis first derived the analytical solution for the governing partial differential equation
representing saturated unsteady flow in a horizontal confined aquifer. The solution was
presented in the form of an exponential integral and is popularly known as the Theis solu-
tion. This exponential integral, also called the well function, requires an approximation that
is simple to adapt and reliable for practical applications. Researchers have provided several
approximations for the well function using series expansion, numerical approximation,
etc. However, most of these approximations are valid either within a restricted domain
or for a large number of terms of the series. This work directly solves the governing PDE
analytically after converting it to a BVP using a similarity transformation. The HAM, HPM,
and OHAM are used to obtain the solution analytically in the form of a series. It is found
that both HAM and OHAM provide accurate solutions to the problem for a sufficiently
large domain. Specifically, ten terms of the HAM series and three terms of the OHAM
series provide the approximation well when compared with the original Theis solution. On
the other hand, HPM also produces an accurate solution within a restricted domain—this
is desirable, as the methodology does not contain a convergence-control parameter like
HAM. Several series and numerical approximations are validated using a test case. Further,
the proposed approximations are compared with the existing series and numerical approxi-
mations by calculating the percentage error. It is seen that the proposed approximations
are reliable for predicting the drawdown. Because this study derives the solutions starting
directly from the governing equation, the methodology adopted here can be extended to
other kinds of flow configurations to find efficient solutions.

Author Contributions: Conceptualization, M.K. and V.P.S.; methodology, M.K.; software, M.K.;
validation, M.K.; writing—original draft preparation, M.K.; writing—review and editing, V.P.S.;
visualization, M.K. and V.P.S.; supervision, V.P.S. All authors have read and agreed to the published
version of the manuscript.
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Appendix A. Convergence Theorems

The theoretical convergence theorems of the HAM- and OHAM-based solutions
Equations (64) and (87) are given here.

Appendix A.1. Convergence Theorem of HAM-Based Solution

The convergence theorem for the HAM-based solutions given by Equation (64) can be
proved using the following theorems.

Theorem A1. If the homotopy series
∞
∑

m=0
sm(v),

∞
∑

m=0
sm′(v), and

∞
∑

m=0
s′′m(v) converge, then

Rm(
→
s m−1) given by Equation (58) satisfies the relation

∞
∑

m=1
Rm(

→
s m−1) = 0. [Here ‘′’ and

‘′′’ denote the first and second derivatives with respect to v].

Proof. The auxiliary linear operator is defined as follows:

L[s] = ∂2s
∂v2 (A1)

According to Equation (4), we obtain:

L[s1] = ћR1(
→
s0) (A2)
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L[s2 − s1] = ћR2(
→
s1) (A3)

L[s3 − s2] = ћR3(
→
s2) (A4)

L[sm − sm−1] = ћRm(
→

sm−1) (A5)

Adding all the above terms, we get:

L[sm] = ћ
m

∑
k=1

Rk(
→

sk−1) (A6)

Since the series
∞
∑

m=0
sm(v),

∞
∑

m=0
sm′(v) , and

∞
∑

m=0
s′′m(v) are convergent, we have

lim
m→∞

sm(v) = 0, lim
m→∞

sm′(v) = 0, and lim
m→∞

s′′m(v) = 0. Now, recalling the above summand

and taking the limit, the required result follows as:

ћ
∞

∑
k=1

Rk(
→

sk−1) = ћ lim
m→∞

m

∑
k=1

Rk(
→

sk−1) = lim
m→∞

L[sm] = lim
m→∞

s′′m(v) = 0 (A7)

�

Theorem A2. If ћ is properly chosen so that the series
∞
∑

m=0
sm(v),

∞
∑

m=0
sm′(v) , and

∞
∑

m=0
s′′m(v)

converge absolutely to s(v), s′(v), and s′′(v), respectively, then the homotopy series
∞
∑

m=0
sm(v)

satisfies the original governing Equation (54).

Proof. Theorem A1 shows that if
∞
∑

m=0
sm(v),

∞
∑

m=0
sm′(v) , and

∞
∑

m=0
s′′m(v) converge, then

∞
∑

m=1
Rm(

→
s m−1) = 0.

Therefore, using the expression in Equation (58), we have:

v
∞

∑
m=0

s′′m + (1 + v)
∞

∑
m=0

sm′ = 0 (A8)

which is basically the original governing Equation (54). Furthermore, subject to the bound-
ary conditions s0(∞) = 0, lim

v→0

(
v ds0

dv

)
= − Q

4πT , and the conditions for the higher-order de-

formation equation sm(∞) = 0, lim
v→0

(
v dsm

dv

)
= 0, for m ≥ 1, we easily obtain

∞
∑

m=0
sm(∞) = 0

and lim
v→0

(v
∞
∑

m=0
sm′) = − Q

4πT . Hence, the convergence result follows. �

Appendix A.2. Convergence Theorem of OHAM-Based Solution

Theorem A3. If the series s0(v) +
∞
∑

j=1
sj(v, Ci), i = 1, 2, . . . , s converges, where sj(v, Ci) are

governed by Equations (83), (85) and (86), then Equation (87) is a solution of the original Equation (81).
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Proof. Based on the choice of the auxiliary function, we suppose that the series Equation (25)
is convergent. Then, we have:

lim
j→∞

sj(v, Ci) = 0, i = 1, 2, . . . , s (A9)

One can write:

sj(v, Ci) = s0(v, Ci) +[s1(v, Ci)− s0(v, Ci)]
+[s2(v, Ci)− s1(v, Ci)] + . . . +

[
sj(v, Ci)− sj−1(v, Ci)

]
= s0(v, Ci) +

j
∑

k=1
[sk(v, Ci)− sk−1(v, Ci)], i = 1, 2, . . . , s

(A10)

Using Equation (A10), one can obtain from Equation (A9):

0 = lim
j→∞

sj(v, Ci) = s0(v, Ci) +
j

∑
k=1

[sk(v, Ci)− sk−1(v, Ci)], i = 1, 2, . . . , s (A11)

Equation (A11) can be rearranged as:

0 = s0(v, Ci) + h(v)− h(v) + [s1(v, Ci)− s0(v, Ci)] +
∞

∑
k=2

[sk(v, Ci)− sk−1(v, Ci)], i = 1, 2, . . . , s (A12)

Using the property of the linear operator, i.e., L[A1(v) + A2(v)] = L[A1(v)] +L[A2(v)]
and L(0) = 0, we have:

0 = L(0) = L[s0(v, Ci)] + h(v) + L[s1(v, Ci)]− (L[s0(v, Ci)] + h(v)) +
∞
∑

k=2
(L[sk(v, Ci)]−L[sk−1(v, Ci)])

= H1(v, Ci)N0[s0(v, Ci)]

+
∞
∑

k=2
(Hk(v, Ci)N0[s0(v, Ci)]

+
k−1
∑

l=1
Hl(v, Ci)[L[sk−l(v, Ci)] +Nk−l [s0(v, Ci), s1(v, Ci), . . . , sk−l(v, Ci)]])

=

[
∞
∑

k=1
Hk(v, Ci)

]
N0[s0(v, Ci)]

+
∞
∑

k=2

k−1
∑

l=1
Hl(v, Ci)[L[sk−l(v, Ci)] +Nk−l [s0(v, Ci), s1(v, Ci), . . . , sk−l(v, Ci)]]

= H(v, Ci)N0[s0(v, Ci)] +
∞
∑

k=2

k−1
∑

l=1
Hl(v, Ci)[L[sk−l(v, Ci)] +Nk−l [s0(v, Ci), s1(v, Ci), . . . , sk−l(v, Ci)]]

= H(v, Ci)N0[s0(v, Ci)] +
∞
∑

k=1
Hk(v, Ci)

∞
∑

p=1

[
L
[
sp(v, Ci)

]
+Np

[
s0(v, Ci), s1(v, Ci), . . . , sp(v, Ci)

]]
= H(v, Ci)N0[s0(v, Ci)] + H(v, Ci)[L(

∞
∑

p=1
sp(v, Ci)) +

∞
∑

p=1
Np
[
s0(v, Ci), s1(v, Ci), . . . , sp(v, Ci)

]
]

= H(v, Ci)N0[s0(v, Ci)] + H(v, Ci)[L(s(v, Ci))−L(s0(v, Ci)) +N (s(v, Ci))−N (s0(v, Ci))]
= H(v, Ci)N0[s0(v, Ci)]
+H(v, Ci)[L(s(v, Ci))− [L(s0(v, Ci)) + h(v)] + h(v) +N (s(v, Ci))−N (s0(v, Ci))]
= H(v, Ci)[L(s(v, Ci)) + h(v) +N (s(v, Ci))], i = 1, 2, . . . , s

(A13)

Now, since H(v, Ci) 6= 0, from Equation (A13), we have

L(s(v, Ci)) + h(v) +N (s(v, Ci)) = 0, i = 1, 2, . . . , s (A14)

which shows that s(v, Ci) is the exact solution of Equation (81). �
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