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Abstract: The spatio-temporal pattern recognition of time series data is critical to developing intelli-
gent transportation systems. Traffic flow data are time series that exhibit patterns of periodicity and
volatility. A novel robust Fourier Graph Convolution Network model is proposed to learn these pat-
terns effectively. The model includes a Fourier Embedding module and a stackable Spatial-Temporal
ChebyNet layer. The development of the Fourier Embedding module is based on the analysis of
Fourier series theory and can capture periodicity features. The Spatial-Temporal ChebyNet layer is
designed to model traffic flow’s volatility features for improving the system’s robustness. The Fourier
Embedding module represents a periodic function with a Fourier series that can find the optimal
coefficient and optimal frequency parameters. The Spatial-Temporal ChebyNet layer consists of a
Fine-grained Volatility Module and a Temporal Volatility Module. Experiments in terms of predic-
tion accuracy using two open datasets show the proposed model outperforms the state-of-the-art
methods significantly.

Keywords: traffic flow prediction; periodicity; volatility; Fourier embedding; spatial-temporal
ChebyNet; graph convolutional neural network

MSC: 68T07

1. Introduction

Intelligent Transportation Systems (ITS) aim to establish a complete traffic manage-
ment system and provide innovative services for traffic management departments through
the research of basic traffic theory and the integration of advanced science and technol-
ogy [1,2]. In Intelligent Transportation Systems (ITS), one of the critical issues is traffic
flow prediction. Accurate traffic flow prediction is vital in many scenarios, such as road
resource management, traffic network optimization, and traffic congestion alleviation [3,4].
However, actual traffic flow presents a complex mixture of periodicity and uncertainty.
For example, traffic flow data are collected from sensors on the road, so the data shows
periodic changes due to the regular activities of individuals, such as daily traffic peak
periods. Meanwhile, abundant factors contribute to uncertainty in traffic flow data [5], such
as weather conditions, unexpected accidents, and road maintenance. In addition, traffic
flow data cannot be fully collected due to the burdensome cost, which further increases
the complexity of the traffic flow prediction problem. Therefore, there remains a series of
crucial challenges to extract patterns from complicated traffic flow and then make reliable
predictions based on them.

Many emerging methods are dedicated to traffic flow prediction. As classical statisti-
cal methods, Autoregressive Integrated Moving Average (ARIMA) models are applied in
stationary time series where the traffic flow prediction could also be regarded as a seasonal
ARIMA process [6]. Further, Autoregressive Conditional Heteroskedasticity (ARCH) [7]
has been proposed to analyze heteroskedasticity in time series. Nevertheless, these clas-
sical methods have significant drawbacks in dynamically processing various complex
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requirements for traffic flow prediction. Advanced artificial intelligence technology [8,9]
improves the prediction accuracy of traffic flow. The Graph Convolution Network (GCN)
has recently drawn attention due to its powerful ability to capture spatiotemporal informa-
tion. Its typical variations include Temporal Graph Convolutional Network (T-GCN) [10],
Attention-based Spatial-Temporal Graph Convolution Network (ASTGCN) [11], Spatial-
Temporal Synchronous Graph Convolutional Networks (STSGCN) [12], and Dynamic
Graph Convolution Network (DGCN) [3]. These models regard the actual traffic flow
as an entity for prediction. As the preliminary work, an improved Dynamic Chebyshev
Graph Convolution Network (iGCGCN) has been proposed [13] to enhance the attention
mechanism and the data construction.

Based on the decomposition of time series data, traffic flow data can consist of several
components. For example, modules, including the Time-Series Analysis and Supervised-
Learning (TSA-SL) [14] and the hybrid model [15], try to decompose the traffic flow into two
main parts, periodicity and volatility, and further learn the two parts separately to improve
the prediction accuracy. Figure 1a illustrates the original traffic flow of three detectors,
and each detector has a specific periodicity fluctuation associated with the dynamic traffic
network. Figure 1b–d show the corresponding decomposition results of detector1 data,
including trend, periodicity, and volatility. Trends may be stable, uptrend, or downtrend,
and the red circle in Figure 1b indicates a downtrend. In Figure 1c, the red box shows the
change in one period of traffic flow data. In Figure 1d, the complicated dynamic volatility
of detector1 is influenced by many factors, such as traffic patterns, the noise of traffic data,
incomplete traffic flow, etc. Therefore, traffic flow forecasting models need the ability to
automatically feature the components of various periodicities, trends, and volatility from
the traffic flow data.

Although much effort has been devoted to the issue of traffic flow prediction, there
are still some crucial challenges remaining in capturing the various periodicities and
dynamic volatility.

• The existing methods learn the periodicity based on frequency-domain methods, such
as spectral analysis and traditional Fourier Transform [14–17]. These models generally
require manual parameters and comply with rigorous assumptions, making these
methods incapable of capturing various periodicities.

• There is still a lack of an efficient way to learn dynamic volatility for improving
robusticity, which is crucial to the dynamic spatial-temporal pattern recognition of the
traffic network.

• Some models capture periodicity and volatility, but these methods capture them
independently and ignore their inherent relationship.

To address these issues, a robust Fourier Graph Convolution Network (F-GCN) ar-
chitecture is proposed, which consists of two adaptive modules, including a Fourier Em-
bedding (FE) and a stackable Spatial-Temporal ChebyNet (STCN) layer. The FE module
is proposed to capture various periodicities without artificial intervention, and the STCN
module with periodic embedding is developed to extract dynamic temporal volatility. The
STCN is comprised of two sub-modules: a Fine-grained Volatility Module and a Tem-
poral Volatility Module. In detail, the Fine-grained Volatility Module first captures the
fine-grained volatility to decrease the difficulty of complex volatility learning. Then, the
Temporal Volatility Module further captures the dynamic temporal volatility. Unlike inde-
pendent learning periodicity and volatility, the F-GCN model can consider the correlation
between the two parts.
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Figure 1. The sample detector’s traffic flow data [11] in one week. (a) Original data of three detectors.
(b–d) Three components (trend, periodicity, volatility) that are decomposed from the data of a sample.
Trend and periodicity are marked with red dotted lines respectively.
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The main contributions of this work are summarized as follows.

• A novel Fourier Embedding module is proposed to capture periodicity patterns, which
is proven to learn diversified periodicity patterns.

• A stackable Spatial-Temporal ChebyNet layer, including a Fine-grained Volatility
Module and a Temporal Volatility Module, is proposed to handle the complex volatility
and learn dynamic temporal volatility for improving the system’s robusticity.

• A dynamic Fourier Graph Convolution Network framework is proposed to integrate
the periodicity and volatility analysis, which could be easily trained in an end-to-end
method. Extensive experiments are conducted on several real-world traffic flow data,
and the results significantly outperform state-of-the-art methods.

The remainder of this paper is constructed as follows. In Section 2, related studies are
summarized in terms of traffic flow data decomposition and graph convolution network.
Methods including preliminaries and the proposed model are given in detail in Section 3.
Results and the Discussion are provided in Section 4. Finally, a summary is given in
Section 5.

2. Literature Review

This section includes two subsections: traffic flow data decomposition and graph
convolution network.

2.1. Traffic Flow Data Decomposition

Data decomposition has inspired many methods for improving the precision of traffic
flow prediction. The procedure of these methods generally includes two independent
phases. The traffic flow data are firstly decomposed into several parts, and then various
algorithms are employed to learn traffic patterns from these decomposed parts. For exam-
ple, a hybrid approach [15] for short-term traffic flow forecasting decomposes traffic flow
data into periodic trends, deterministic parts, and volatility, then this method utilizes three
different modules to learn patterns from their three components: the spectrum method,
ARIMA, and an autoregressive model.

Remarkably, TSA-SL [14] regards traffic flow patterns as a combination of periodicity
and volatility. Then, the traditional Fourier transform learns periodicity with manual
parameters setting, and the conventional machine learning methods are employed to
capture volatility. Further, a combination model [17] has been proposed to utilize Empirical
Mode Decomposition (EMD) to disassemble the traffic flow into multiple components with
different frequencies. After that, the ARIMA and the improved Extreme Learning Machine
(ELM) are applied to learn these components. The method [16] utilizes an Ensemble
Empirical Mode Decomposition (EEMD) and the artificial neural network layer for multi-
scales traffic flow forecasting. These methods learn the decomposed parts using empirical
methods, and the relationship among these parts is difficult to consider fully.

2.2. Graph Convolution Network

Traffic flow prediction is among the essential tasks in ITS, and many methods are
applied to spatial-temporal prediction. Historical Average (HA) and ARIMA [6] are the
conventional statistical approach to time series analysis for predicting traffic flow, and can
only learn the linear relationship of the traffic network. With the advancement of machine
learning, conventional machine learning algorithms have been developed to represent
more complex and nonlinear data relationships. For example, some works introduced
the Support Vector Regression (SVR) [18] and the Bayesian model [19] to capture high-
dimensional nonlinear characteristics. Especially in recent years, deep learning has proven
to be effective in various areas. Many deep learning models have been developed to predict
traffic flow and improve performance. Convolution Neural Networks (CNN) and Gated
Recurrent Unit networks (GRU) are commonly used to deal with spatial and temporal
characteristics. For example, [20] employed 1D-CNN to learn the spatial features of traffic
flow; [21] used bidirectional GRU for short-term traffic flow prediction, and ST-3DNet [22]
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constructed a 3D-CNN to capture traffic characteristics simultaneously in temporal and
spatial dimensions. However, CNN-based methods require traffic flow to be structured
data, which generally ignore the topology information of the road network.

With the extraordinary performance of deep learning in image and natural language
processing, many researchers are devoted to dealing with graph structure with these
methods. The Graph Neural Network has been proposed to model a graph structure,
which could be summarized as follows. (1) Spectral Methods: Bruna et al. [23] initially
introduced a graph convolutional network by generalizing the convolution kernel with the
Laplacian matrix. Defferrard et al. [24] adopted Chebyshev polynomials to approximate
eigenvalue decomposition with fewer parameters and significantly decrease computation
complexity. Kipf et al. [25] proposed a first-order linear approximation of the graph
convolutional model and further improved its computational efficiency. (2) Spatial ethods:
Steven et al. [26] proposed an algorithm for undirected spatial graphs to update graphs
with different distances. Unfortunately, the model parameters increase sharply for large-
scale graphs. Niepert et al. [27] proposed converting graph structure data into traditional
Euclidean data to overcome this drawback. William L et al. [28] proposed a general
inductive reasoning framework to generate node representation through sampling and
adjacent node characteristics.

With much effort from industry and academia, the graph neural network has gradually
appeared in many variants to learn potential spatial-temporal patterns. MRes-RGNN [29]
used residual recurrent graph neural networks to capture spatial-temporal information.
ASTGCN [11] explores temporal and spatial relationships using an attention mechanism
and a graph neural network. STSGCN [12] is used to build a module to capture local
spatial and temporal characteristics and then stack this module along the time to learn
long-term characteristics. Further, AGCRN [30] can automatically learn node features
without pre-defined graphs using two adaptive modules. These methods have significantly
improved the capacity to consider the relationship between nodes with the graph structure.
Nevertheless, there is still a lack of an efficient way to automatically learn periodicity and
volatility from traffic flow data.

3. Methods
3.1. Preliminaries

This section reviews the mathematical concepts used throughout the paper and serves
as a reference for studying subsequent chapters.

3.1.1. The Complex Fourier Series

Signal Processing (SP) and communication engineering often apply Fourier theory.
The Complex Fourier Series (CFS) representation of a periodic signal x(t) with period T
can be written as Equation (1).

x(t) =
∞

∑
k=–∞

Xc(kFs)ej2πkFst (1)

where Fs denotes the fundamental frequency and it equals 1/T. The coefficients Xc(kFs)
are given by Equation (2).

Xc(kFs) =
1
T

T/2∫
–T/2

x(t)e–j2πkFstdt (2)

where Xc(kFs) will be written as Xc(k), and is referred to as the complex Fourier series
coefficient of x(t).
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The original Dirichlet Condition (DC) requires the signal to be Boundedly Varied (BV)
over a period for CFS to converge. The CFS exists if x(t) satisfies the Dirichlet conditions
that includes the condition in Equation (3).∫

T
|x(t)|dt < ∞ (3)

or to the weaker condition in Equation (4).∫
T
|x(t)|2dt < ∞ (4)

This condition is expressed as a signal with finite energy in one cycle. The sudden
truncation of the Fourier series results in oscillations near the discontinuity. As the number
of terms increases, the oscillation frequency increases while the amplitude decreases.
However, the magnitude of the first ripple on either side of the discontinuity remains almost
constant. This phenomenon was first discovered by A. Michelson and later explained
mathematically by Gibbs. It occurs in all signal representations by a truncated number
of orthogonal basis functions. An example is shown in Figure 2 in terms of the truncated
Fourier series for the sawtooth wave function.
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3.1.2. Real Fourier Series

Real Fourier series (RFS) coefficients are the real part of Xc(k), and can be written as in
Equations (5)–(7).

X(K) =
2
T

w(k)
T/2∫

–T/2

x(t) cos(2πkFst + θ(k))dt (5)

w(k) =
{

1/2,
1,

k = 0
otherwise

(6)

θ(k) =
{

0,
π/2,

k > 0
k < 0

(7)

where X(±k) is sometimes referred to as the kth harmonic. The inverse real Fourier series
is given by Equation (8).

x(t) =
∞

∑
k=–∞

X(k) cos(2πkFst + θ(k)) (8)
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Equations (5) and (8) can also be written for k ≥ 0 as Equations (9)–(11).

X1(k) = w(k)
2
T

T/2∫
–T/2

x(t) cos(2πkFst)dt (9)

X0(k) =
2
T

T/2∫
–T/2

x(t) sin(2πkFst)dt (10)

and

x(t) =
∞

∑
k=–∞

[X1(k) cos(2πkFst) + X0(k) sin(2πkFst)] (11)

Thus, X(k) equals X1(k) for k ≥ 0, and X0(|k|) for k < 0. The Fourier series for the
triangular wave has only the coefficients X1(k). As shown in Figure 1b, the traffic flow is
similar to the triangular wave.

Traffic Graph G: The traffic network is defined as an undirect graph G = (V, E, A),
where V is a set of nodes, |V| = N, and N is the number of nodes, E is a set of edges ei,j and
ei,j represent the edge between node i and node j, A ∈ RN×N denotes an original adjacent
matrix of the network, and its calculation is given in Equation (12).

Ai,j =

{
1, i f ei,j 6= 0
0, i f ei,j = 0

(12)

Time2Vec [31,32]: This model proposes a way of time embedding, and the learned
embedding can be used for different architectures, as in Equation (13).

t2v(τ)[i] =
{

ωiτ + ϕi, i f i = 0
cos(ωiτ + ϕi), i f 1 ≤ i ≤ k

(13)

where t2v(τ)[i] is the ith element of t2v(τ), τ represents the time scalar for different period-
icity, ωi and ϕi are the frequency and the phase-shift of the sine function, respectively, and
are learnable parameters.

Spatial-Temporal Signal: The spatial graph signal is denoted as XG ∈ RF×N , where F is
the number of characteristics for the traffic graph, XG is extended along the time dimension,
and the spatial-temporal graph signal is X G ∈ RF×N×T , where T is the total number of
time slices. The modeling in this work aims to discover the spatial and temporal patterns
from massive traffic flow data.

3.1.3. Problem Statement

The traffic flow prediction problem can be described as follows. A mapping function is
learned to map the historical spatial-temporal signal X Th

G =
{

X(t−Th+1)
G , . . . , X(t−1)

G , X(t)
G

}
to a future spatial-temporal signal X Tf

G =

{
X(t)
G , X(t+1)

G , . . . , X
(t+Tf−1)
G

}
, where Th is the

length of historical data and Tf is the length of target data.

3.2. Fourier Graph Convolution Network

The robust Fourier Graph Convolution Network (F-GCN) is described in this section.
As shown in Figure 3, the architecture of F-GCN includes three primary modules: a data
construction module, a Fourier Embedding (FE) module, and a stackable Spatial-Temporal
ChebyNet (STCN) layer. First, the data construction module is employed to construct the
graph containing three periodic data types and Laplacian. Then, the FE module learns
various periodicity embedding for the graph. The stackable STCN is further utilized to
explore the dynamic temporal volatility, and the loss values between the prediction and
ground truth are calculated for backpropagation learning.
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Fourier Embedding module, a STCN (stackable Spatial-Temporal ChebyNet) layer including an
FVM (Fine-grained Volatility Module) and a TVM (Temporal Volatility Module), and a loss function
calculation module.

3.2.1. Data Construction

A flowchart of the data construction module is shown in Figure 4. As the system’s
input, the traffic flow data are utilized to generate the Laplacian matrix and output a feature
vector. Specifically, the actual traffic flow data produce a graph G, in which nodes represent
sensors on the road network and edges are connections among sensors. According to
the G, Laplacian matrix L = D− A ∈ RN×N is calculated, where D = ∑N

j=0 Ai,j ∈ RN×N

represents the degree matrix, and A is the adjacent matrix. In this work, three periods of
traffic network are considered, including week-period X Tw

G =
(

XTwn
G , . . . , XTw2

G , XTw1
G

)
∈

RF×N×Tw , day-period X Td
G =

(
XTdn
G , . . . , XTd2

G , XTd1
G

)
∈ RF×N×Td , and recent-period

X Tr
G =

(
XTrn
G , . . . , XTr2

G , XTr1
G

)
∈ RF×N×Tr . Finally, the three periods are concatenated

into X G =
[
X Tw

G , X Td
G , X Tr

G

]
∈ RF×N×T , where [ ] denotes a concatenation operator, and

|Tw|+|Td|+|Tr| = T.
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and the Laplacian matrix is calculated for the graph. Instead of considering all the graphs in the
time dimension, predicting a target graph is based on three types of periodic data: week-period,
day-period, and recent-period.
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3.2.2. Fourier Embedding

The traffic flow pattern generally presents various periodicities, making it highly
complex to predict the traffic flow. To address this issue, traffic flow patterns are decom-
posed into two key elements: periodicity and volatility. A vector-based time representation
method such as Time2Vec [31,32] is employed in other frameworks. Further, an operator
Emb(.), named Fourier Embedding (FE), is developed to capture various periodicities,
which is shown in Equation (14). Known from the Fourier series theory [33], any periodic
function can be obtained in this operator by superimposing multiple sine and cosine func-
tions with different frequencies. Unlike traditionally decomposing methods, the proposed
FE module is based on the embedding method, and could effectively represent various
periodicities of traffic flow. The calculation is in Equation (14).

X ′G = Emb(X G) = X GWe ∈ RF×N×T×d (14)

where the Emb(.) operator is used to represent nodes of the graph, We ∈ RT×d is a learnable
parameter, and d is the length of the vector embedding. X G comprises three periods of
traffic flow, which help increase the adaptability for different periodicities. Meanwhile,
it also provides more complex volatility possibilities, enabling downstream modules to
explore volatility better.

As shown in Equation (11), the Fourier truncated series polynomials of order M can
be presented in Equations (15) and(16).

F
(
X ′G

)
≈ a0 +

M

∑
m=1

(
ancos

(
X ′GW1

m

)
+ bnsin

(
X ′GW2

m

))
(15)

X ′′G = F
(
X ′G

)
Wf (16)

where a0 ∈ R, an ∈ RT×T , bn ∈ RT×T , W1
m ∈ Rd×h, and W2

m ∈ Rd×h are learnable
parameters, cos(.) and sin(.) are trigonometric functions, F

(
X ′G

)
∈ RF×N×T×h is the result

of periodicity embedding, Wf ∈ Rh×1 is a learnable parameter, and X ′′
G ∈ RF×N×T is the

output of the FE module.
The residual structure [34] is employed to learn the dynamic temporal volatility. The

advantage of this structure is that the volatility in the original graph can be introduced into
the downstream learning module in Equation (17).

X res
G = X ′′

G +X G (17)

where Xres
G ∈ RF×N×T .

3.2.3. Spatial-Temporal ChebyNet Layer

A stackable Spatial-Temporal ChebyNet (STCN) layer is proposed to capture the
dynamic temporal volatility. This layer includes two main components: a Fine-grained
Volatility Module and Temporal Volatility Module.

A. Fine-grained Volatility Module

As shown in Figure 1d, the volatility of the traffic flow is generally irregular and
complicated. A Fine-grained Volatility Module is proposed in this work to represent the
fine-grained volatility features for capturing complex volatility. Specifically, convolution
operations with various kernel sizes are employed to capture the fine-grained volatilities,
shown in Equation (18). A gate mechanism is also introduced to automatically control the
impact of high volatility on the downstream networks, as shown in Equation (19). Finally,
the results of multiple gates are concatenated as shown in Equation (20).

X Ci = bi + Wi ?X res
G (18)
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X gi
= σ

(
X Ci

)
� X Ci (19)

X g =
[
X g1

,X g2
, . . . ,X gi

, . . . ,X gn−1
,X gn

]
(20)

where ? denotes convolution operator, Wi represents multiple convolution kernels,
bi ∈ RCi×N×T are learnable parameters, ci is the number of channels, and the output
is X Ci ∈ RCi×N×T . The sigmoid function σ(.) is utilized as a gate, and � represents the
Hadamard product; X g ∈ RC×N×T , and C = ∑i ci.

B. Temporal Volatility Module

Another difficulty in analyzing traffic flow is capturing the dynamic temporal volatility
from massive traffic data. Inspired by Transformer [35,36], which introduces the potential
semantics of context for natural language translation, a Slice Attention mechanism is
proposed to capture the dynamic temporal volatility. As shown in Figure 3. The ChebyNet
is employed to merge the interrelation between several time slices of a traffic flow graph
and learn the dynamic temporal volatility. In this work, self-attention is employed to
capture the influence of the time slice itself. Si

att is used to represent the attention to the
time slice i, and the average value Satt is applied to dynamically adjust the Laplacian matrix
L̃. The matrix is generated in Equations (21)–(24).

Qi, Ki, Vi = X Ti
g WQ, X Ti

g WK, X Ti
g WV (21)

Si
att = so f tmax

Qi
(

Ki
)T

√
dk

Vi (22)

Satt =
1
n

n

∑
i=0

Si
att (23)

L̃
′
= Satt � L̃ (24)

where X Ti
g ∈ RC×N×Ti represents time slices, WQ ∈ RTi×N , WK ∈ RTi×N , and WV ∈ RTi×N

are learnable parameters, Qi ∈ RC×N×N , Ki ∈ RC×N×N , and Vi ∈ RC×N×N represent Query,
Key, and Value, respectively, dk represents the Key of dimension, and Si

att ∈ RC×N×N .
L̃ = (2/λmax)L− IN ∈ RN×N , λmax represents the maximum eigenvalue of L; IN ∈ RN×N

is an identity matrix, and L̃
′ ∈ RC×N×N .

Further, the ChebyNet with the dynamic Laplacian matrix L̃
′

is employed to learn the
dynamic volatility. A K-order ChebyNet operator is calculated in Equation (25).

X ′g = gθ

(
L̃
′) ∗X g =

K

∑
i=0

θiTi

(
L̃
′)X g (25)

where ∗ represents the graph convolution operation, θi is a set of learnable parameters,
Ti

(
L̃
′)

is calculated recursively, Ti

(
L̃
′)

= 2L̃
′
Ti−1

(
L̃
′) − Ti−2

(
L̃
′)

, T0

(
L̃
′)

= IN , and

T1

(
L̃
′)

= L̃
′
; X ′g ∈ RC×N×T .

Finally, a Temporal-convolution module with temporal-attention is proposed in this
work to learn dynamic temporal volatility, which is processed in Equations (26)–(28).

H = σ

(((
X ′g
)T

Wh1

)
Wh2

(
Wh3X

′
g

)
+ bh

)
(26)

X ′′
g = So f tmax(H)X ′g (27)
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where σ(.) is sigmoid function, Wh1 ∈ RC, Wh2 ∈ RN×C, Wh3 ∈ RN , and bh ∈ RC×N×N

are learnable parameters; H ∈ RC×N×N , and X ′′
g ∈ RC×N×T .

X temp = bt + Wt ?X ′′
g (28)

where ? denotes convolution operator, Wt is the temporal convolution kernel, bt are
learnable parameters, and X temp ∈ RC×N×T .

3.3. Fusion & Loss Function

To enhance the model flexibility, the Xtemp is further aggregated with Equation (29),
and MSE (Mean Square Error) is employed to evaluate as a loss function in Equation (30).

Ŷ = linear
(
X temp

)
(29)

min
1
m

m

∑
i=1

(
Y− Ŷ

)2
(30)

where
^
Y ∈ RC×N×T , Equation (30) is the objective formulation for optimization, and

m is the number of testing datasets. In summary, the proposed F-GCN is shown as a
pseudo-code in Algorithm 1.

Algorithm 1 Pseudocode for the F-GCN model

Input:
1© The F-GCN input feature X G ∈ RF×N×T , including the week period X Tw

G ∈ RF×N×Tw , day

period X Td
G ∈ RF×N×Td , and recent-period X Tr

G ∈ RF×N×Tr ;
2© Laplacian matrix L ∈ RN×N ;

Output:
^
Y ∈ RC×N×T

1: forith STCN block, i = 1, 2, . . . , n do

Feature periodicities:

2: Get vector embedding X ′G ∈ RF×N×T×d by (3);
3: Get periodicities vector embedding X ′′

G ∈ RF×N×T by (4) (5);
4: Get residual X res

G ∈ RF×N×T by (6);

Feature temporal volatility:

5: Get the output of fine-grained volatility X g ∈ RC×N×T by (7) (8) (9);
6: Get the coefficient matrix of temporal volatility Satt ∈ RC×N×N by (10) (11) (12);
7: Update Graph Convolution Network X ′g ∈ RC×N×T by (13) (14);
8: Get dynamic temporal volatility X ′′

g ∈ RC×N×T and X temp by (15) (16) (17);
9: end for
10: Fusion layer: Ŷ = linear

(
X temp

)
by (18);

4. Results and the Discussion

This section evaluates the proposed method with baselines and state-of-the-art meth-
ods on two real-world traffic datasets.

4.1. Data Description

This work employs two real traffic flow datasets, PeMSD4 and PeMSD8, to evaluate
the performance of the proposed F-GCN model. The two datasets are a subset of the original
data collected by PeMS, which are used by works such as ASTGCN [11] and DGCN [3].
The original data were collected by the California Highway Performance Measurement
System (PeMS) [37], containing 39,000 road sensors, and the data collection interval is 30 s.
The data are reaggregated into 5-min intervals for traffic prediction.
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The PeMSD4 dataset is the traffic flow data collected by 307 detection stations deployed
on 29 roads in San Francisco Bay area, with a period between January and February, 2018.
Similarly, the PeMSD8 dataset was collected by 170 detection stations on eight highways in
the San Bernardino area from July to August 2016.

4.2. Evaluation Metrics

The performance of the proposed method is evaluated with three indicators: Mean
Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage
Error (MAPE). The three metrics are listed in Equations (31)–(33).

RMSE =

√√√√ 1
NT

N

∑
i=1

T

∑
j=1

(
Ŷj

i − Yj
i

)2
(31)

MAE =
1

NT

N

∑
i=1

T

∑
j=1

∣∣∣Ŷj
i − Yj

i

∣∣∣ (32)

MAPE =
1

NT

N

∑
i=1

T

∑
j=1

∣∣∣∣∣ Ŷ
j
i − Yj

i

Yj
i

∣∣∣∣∣× 100% (33)

4.3. Experimental Settings

The primary processing components of the test platform are the Intel (R) Core (TM)
i7-10700 CPU @ 2.90 GHz processor and the NVIDIA GeForce GTX 3080. The deep learning
framework adopted in this study is Pytorch 1.9.0. The grid search methodology is used to
make the proposed model more efficient. The time slices are generated with week-period,
day-period, and recent-period. As super-parameters in the method, these periods are set
as 2 weeks, 1 day, and 2 h. The three kinds of slices shown in Figure 4 are 36, 24, and 24,
respectively. In the training phase, the Adam optimizer with a decay rate of 0.95 is utilized
to optimize the Mean Square Error loss function (MSE). In this work, all experiments were
conducted for 40 epochs with a batch size of 16, and the learning rate was 0.0005. The order
of the polynomial Chebyshev was set to 3.

4.4. Baselines and State-of-the-Art Methods

The following different models are introduced for the purpose of performance com-
parison, including baseline and state-of-the-art methods.

HA: The average value of the historical traffic flow is used as a baseline for estimating
traffic flow in the future time range.

ARIMA: Autoregressive Integrated Moving Average Model is utilized as a baseline of
the typical statistical method in this work. This model is generally used to capture linear
characteristics.

GRU: The Gated Recurrent Unit network is generally employed to learn time charac-
teristics for traffic flow prediction for its long-term memory.

STGCN: Spatio-Temporal Graph Convolutional Network employs a first-order approx-
imate Chebyshev graph convolution network and a 2D convolution operator to capture
spatial and temporal information.

ASTGCN: Attention-Based Spatial-Temporal Graph Convolutional Network integrates
a spatial-temporal attention module and the graph convolution neural network module to
capture the traffic flow patterns.

STSGCN: Space-Time-Separable Graph Convolutional Network builds a local spatial-
temporal mapping module to capture localized information. Then, it captures more global
temporal information along the time dimension.

AGCRN: Adaptive Graph Convolutional Recurrent Network involveds two adap-
tive modules to learn the pattern of nodes and the inter-dependencies between different
traffic sequences.
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4.5. Experiment Results

Two real-world datasets were used to evaluate the performance of F-GCN. Table 1
shows that the proposed F-GCN outperforms baselines and state-of-the-art methods. The
typical time-series analytical methods, including HA and ARIMA, offer poor prediction
performance because these can only learn linear characteristics. GRU performs better than
traditional time-series analysis methods because it can capture complicated nonlinear fea-
tures as a primary deep learning method. Still, it only considers the temporal characteristics
of the road network.

Table 1. Performance of the proposed model and baselines of three indicators (the best performance
is highlighted in bold).

Models
HA ARIMA GRU STGCN ASTGCN STSGCN AGCRN F-GCN

Datasets Time Metrics

PeMSD4

15 min
MAE 30.505 28.366 24.240 21.191 20.448 20.019 18.850 18.358
RMSE 41.873 36.443 36.458 33.235 32.072 31.927 30.970 29.429
MAPE 27.043 47.375 19.561 18.921 15.210 13.530 12.536 12.956

30 min
MAE 37.245 34.455 25.732 23.909 20.735 21.543 19.520 18.844
RMSE 50.054 45.595 38.671 35.743 32.780 34.180 32.130 30.292
MAPE 36.648 50.316 20.879 20.465 15.146 14.320 12.962 13.166

45 min
MAE 43.930 42.042 27.433 25.727 21.048 23.053 20.040 19.244
RMSE 58.101 59.311 41.149 38.362 33.453 36.390 33.100 30.975
MAPE(%) 53.502 51.071 22.553 22.193 15.216 15.260 13.310 13.390

60 min
MAE 50.539 52.997 29.408 27.617 21.494 24.627 20.960 19.603
RMSE 65.982 77.380 44.017 41.077 34.247 38.563 34.420 31.555
MAPE(%) 72.040 54.230 24.701 24.054 15.500 16.410 13.889 13.569

PeMSD8

15 min
MAE 25.157 32.571 19.206 17.542 16.779 16.599 15.080 13.646
RMSE 34.234 34.120 29.764 25.871 24.941 25.371 23.730 21.384
MAPE(%) 16.053 22.634 13.629 13.080 11.888 10.989 9.650 9.424

30 min
MAE 30.945 38.310 20.452 18.774 17.069 17.849 16.090 14.013
RMSE 41.130 43.402 31.687 28.038 25.600 27.280 25.570 22.171
MAPE(%) 20.438 30.260 15.048 13.917 11.842 11.566 10.183 9.634

45 min
MAE 36.689 42.830 21.928 20.040 17.387 18.903 16.960 14.269
RMSE 47.836 47.158 33.818 30.150 26.257 28.933 26.950 22.742
MAPE(%) 25.163 35.444 16.799 14.867 11.933 12.200 10.736 9.792

60 min
MAE 42.364 42.860 23.675 21.362 17.874 20.116 18.170 14.516
RMSE 54.379 45.810 36.333 32.223 27.088 30.642 28.710 23.230
MAPE(%) 30.236 35.495 18.986 15.923 12.210 13.040 11.514 9.924

Compared with state-of-the-art methods, including STGCN, ASTGCN, STSGCN, and
AGCRN, the proposed F-GCN significantly improves performance because it learns various
periodicities and dynamic temporal volatility from the traffic flow. The experimental results
show that the MAPEs of F-GCN were 13.390 and 13.166 on the PeMSD4 datasets for 30 min
and 45 min traffic flow prediction, respectively. Although these two indicators were slightly
better than AGCRN, the other indicators were all significantly improved. Therefore, the
results indicate that the F-GCN outperforms state-of-the-art methods on two datasets for
15, 30, 45, and 60 min traffic flow prediction.

4.6. Performance of FE and STCN Modules

We conducted a comparative analysis to evaluate the effectiveness of the FE and STCN
modules. As shown in Figure 5a–c, the black curve is the proposed F-GCN testing on
the PeMSD8 datasets without the FE module (M = 0). Then, the experiment increases
the order of the FE module and evaluates the performance for short-term and long-term
predictions. The results indicate that the FE module model had a significantly improved
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effect on prediction accuracy. Specifically, when M = 3, the performance in terms of RMSE
and MAPE was the best.
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and (d–f) testing on the PeMSD4 datasets.

As shown in Figure 5d–f, the experiments on the PeMSD4 show the best performance
in terms of MSE and MAPE while M = 1. Specifically, in term of RMSE, the setting with
M = 3 tends to have the best performance when the forecast time Tf is less than 20 min, and
the setting with M = 1 has the best performance when the prediction time is greater than
20 min. Generally, M is set as one for different requirements in various application scenes.
In this work, the parameter was set with M = 1 on the FE module for this dataset.

To further illustrate periodicity learning, the learning capacity of the PE module in
F-GCN was evaluated on these two datasets. As shown in Figure 1, the original traffic flow
fluctuates with erratic volatility, which makes it hard to extract the periodicity from them.
The PE module in this work is proposed to learn this periodicity from massive traffic flow
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data. After the original traffic flow data were inputted into the FE module, the results were
visualized as heatmaps, as shown in Figure 6, in which time ranges of 84 prediction data
are displayed on PeMSD8 and PeMSD4.
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Figure 6. Heatmap of the output from FE module on two datasets (a,b) from the PeMSD8 datasets,
and (c,d) from the PeMSD4. 1© and 2© represent different patterns for different roads, and 3© shows
different patterns for all roads at different periods.

As shown in Figure 6a,b from the PeMSD8 and Figure 6c,d from the PeMSD4, the
output of the FE module in F-GCN presents regular periodicity. According to the color
of the heat map, the traffic flow of several roads in red box 1 in Figure 6a has the same
pattern because the colors are similar, but there is a significant difference between red box 1
and the red box 2, indicating that the FE module can capture differential characteristics
of different roads. In black box 3, the periodicity of different roads is different in periods
36–48 and 48–60, indicating that the FE module can capture the various periodicities of
the roads. The periodic fluctuation proves the effectiveness of the FE module. Then, these
periodicity embeddings are transmitted to the downstream network for volatility learning.

Besides periodicity, F-GCN aims to capture volatility for traffic flow prediction from
massive data. The predicted results were checked against actual traffic flow to analyze the
prediction performance for volatility.

The comparison between actual traffic flow and its prediction shows that the F-GCN
model could effectively capture and predict the volatility of traffic flow data. The experi-
ment selected two typical scenes of traffic flow and visualized the comparison as shown in
Figure 7. The red circles in Figure 7a,b indicate that the volatility of traffic flow is sharp,
and the green circles in Figure 7c,d show a relatively flat fluctuation. The prediction from
F-GCN shows good fitting in these two typical situations, which indicates that the method
efficiently learns and predicts dynamic temporal volatility from the massive traffic flow.
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Finally, the efficiency and accuracy of F-GCN were further evaluated with different
orders of the Chebyshev polynomial. It is noteworthy that the order of the Chebyshev
polynomial is different from the order of Fourier series polynomials. As listed in Table 2,
training time consumption grows as the polynomial order increases. However, the overall
prediction accuracy of the model tended to be the best when the order of the Chebyshev
polynomial equaled 3.

Table 2. Time and efficiency for different orders of Chebyshev polynomial.

Dataset Order MAE RMSE MAPE s/Epoch

PeMSD8

2 14.14 22.29 9.82 52.59
3 14.02 22.20 9.54 56.71
4 14.29 22.42 9.76 59.92
5 14.03 22.26 9.69 66.62

PeMSD4

2 18.98 30.36 14.27 93.06
3 18.86 30.29 13.21 104.17
4 20.42 32.49 14.79 107.97
5 19.60 31.11 13.63 116.93

5. Conclusions

In this work, a Fourier Graph Convolution Network (F-GCN) model is proposed to
improve traffic flow prediction, which consists of a Fourier Embedding (FE) module and
a stackable Spatial-Temporal ChebyNet (STCN) layer. The FE module was developed to
learn periodicities embedding, and the stackable STCN module was integrated to learn
the dynamic temporal volatility from massive traffic flow data. Extensive experiments
for 15, 30, 45, and 60 min traffic flow prediction were conducted on two actual datasets,
and the results indicate that the proposed F-GCN outperformed state-of-the-art methods
significantly. Furthermore, the FE and STCN modules could be integrated with other deep-
learning models to improve time-series analysis and prediction accuracy. In the future, the
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optimal order of the FE module should be explored (e.g., via Bayesian optimization) and
discussed for various application scenarios.
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Nomenclatures

AGCRN Adaptive Graph Convolutional Recurrent Network
ASTGCN Attention-based Spatial-Temporal Graph Convolution Network
ARCH Autoregressive Conditional Heteroskedasticity
ARIMA Autoregressive Integrated Moving Average
BV Boundedly Varied
CFS Complex Fourier Series
CNN Convolution Neural Networks
DC Dirichlet Condition
DGCN Dynamic Graph Convolution Network
EMD Empirical Mode Decomposition
EEMD Ensemble Empirical Mode Decomposition
ELM Extreme Learning Machine
FE Fourier Embedding
F-GCN Fourier Graph Convolution Network
GRU Gated Recurrent Unit networks
GCN Graph Convolution Network
HA Historical Average
iGCGCN improved Dynamic Chebyshev Graph Convolution Network
ITS Intelligent Transportation Systems
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MSE Mean Square Error
PeMS Performance Measurement System
RFS Real Fourier series
RMSE Root Mean Square Error
SP Signal Processing
STCN Spatial-Temporal ChebyNet
STSGCN Spatial-Temporal Synchronous Graph Convolutional Networks
STGCN Spatio-Temporal Graph Convolutional Network
SVR Support Vector Regression
T-GCN Temporal Graph Convolutional Network
TSA-SL Time-Series Analysis and Supervised-Learning
|·| The length of a set.
� Hadamard product.
[4, #] The concatenation of4 and #.
σ(·) The sigmoid function.
sin(·), cos(·) The sine and cosine functions.
? The Causal convolution operator.
∗ The Graph convolution operator.
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G A graph.
V The set of nodes in a graph.
E The set of edges in a graph.
A The adjacency matrix of the graph.
D The degree matrix of A, D = ∑N

j=0 Ai,j.
L The Laplacian matrix L = D− A.
ei,j The edge between node i and node j.
X G ∈ RF×N×T The spatial-temporal graph by Data Construction.
XG ∈ RF×N The spatial-temporal graph in the case of d = 1.
X ′′

G ∈ RF×N×T The output of the FE module.
X res

G ∈ RF×N×T The residual X res
G = X ′′

G +X G .
X g ∈ RC×N×T The output of the Fine-grained Volatility Module.
X temp ∈ RC×N×T The output of the Temporal Volatility Module.
F The number of original characteristics.
N The nodes of the graph.
T The number of time slices of the graph.
d The length of the vector embedding.
Th, Tf The length of historical data and prediction data.
M The order of the Fourier polynomial in the FE module.
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