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Abstract: We improve the traditional simple moving average strategy by incorporating an investor-
specific risk tolerance into the method. We then propose a multiasset generalized moving average
crossover (MGMA) strategy. The MGMA strategies allocate wealth between risky assets and risk-free
assets in an adaptive manner, with the risk tolerance specified by an investor. We derive the expected
log-utility of wealth, which allows us to estimate the optimal allocation parameters. The algorithm
using our MGMA strategy is also presented. As the multiple risky assets can have different variability
levels and could have various degrees of correlations, this trading strategy is evaluated on both
simulated data and global high-frequency exchange-traded fund (ETF) data. It is shown that the
MGMA strategies could significantly increase both the investor’s expected utility of wealth and the
investor’s expected wealth.
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1. Introduction

This paper provides an optimal and adaptive portfolio allocation strategy based on
the technical analysis of a diversified investment portfolio. The investment portfolio often
contains more than one risky asset to avert possible significant loss. Portfolio allocation
is an important strategy for investors and traders, and they are interested in an optimal
allocation when they have enough capital to invest in more than two assets. They might
want to allocate the wealth not only between one risk-free asset and another risky asset
but also among different risky assets. The common approach is to assign equal weights
when allocating the wealth among the risky assets, which, however, is not always optimal.
We believe that an allocation amount should be a function of the investor’s specified risk
tolerance, and this consideration could lead to a more favorable investment outcome. We
focus on finding optimal trading strategies based on technical analysis, such as moving
averages for building a multiple-asset portfolio. We propose a multiasset generalized
moving average crossover (MGMA) strategy. This strategy can allocate wealth not only
between one risky asset and another risk-free asset but also among different risky assets,
with the risk tolerance specified by the investor. It can also increase both the investor’s
expected utility of wealth and the investor’s expected wealth.

Technical analysis is widely adopted by investors in practice. The empirical evidence,
including the predicted performance of a stock return, demonstrates the usefulness of
technical analysis (see [1–4]). Among all the technical analysis methods, the moving
average strategy is the simplest and most popular trading rule. Ref. [1] appeared to be the
first article to provide strong evidence of profitability by using a moving average technique
in analyzing daily Dow Jones Industrial Average (DJIA) data. The moving average strategy
in technical analysis follows an all-or-nothing investment strategy: when a buy signal is
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triggered by the moving average crossover (MA) strategy, the investor should allocate
all of his/her wealth to the stocks of interest; when a sell signal is triggered by MA, the
investor should allocate none of the wealth into the stocks by selling all the current holdings.
Thus, this simple moving average strategy suffers from a well-known drawback, since
its allocation is always either 100% or 0%. Ref. [2] provided further evidence based on
different time series data obtained from financial markets. These studies have generated
further research interest on moving average strategies. However, most of the studies have
been focused on validating the strategy using different data sets. The conclusions are mixed
and inconclusive (see [5–9]). An increasing number of studies are focused on the predictive
power of a moving average technique (see [10–15]). Ref. [16] provided the first theoretical
analysis for this simple moving average crossover strategy. Their study focuses on how
technical analysis such as this moving average strategy can add value to commonly used
allocation rules that invest fixed proportions of wealth in stocks. Ref. [17] provided a
general equilibrium model for the MA strategy and argued MA signals in their model are
helpful for investors in pricing the asset. In addition, more studies focus on the applications
of MA strategy. Ref. [18] combined MA signals to create a factor to explain various term
momentum. Ref. [19] combined MA signals to estimate equity returns. Ref. [20] suggested
that the effectiveness of technical analysis depends on the level of PIN (probability of
informed trading).

Most asset allocation studies focus on finding an optimal portfolio choice under
different modeling processes (see [21–25]). Refs. [26,27] incorporated technical indicators
into the portfolio construction problem. However, they do not study the optimal allocation
in the context of using technical analysis strategies for a multiasset portfolio. In addition,
few studies reconciled the technical indicators with a portfolio selection policy that guides
investment decisions in a multiasset setting. Ref. [28] bridged the gap by devising a
portfolio strategy in which optimal weights are directly parameterized as a function of
multiple trend-following signals. However, there is no extension to a multiple-asset setting
with an optimal allocation as the objective. Recently, an increasing number of studies
are focused on using machine learning for portfolio allocation strategies. Ref. [29] used
machine learning to find the optimal portfolio weights between the market index and the
risk-free asset and found that a portfolio allocation strategy employing machine learning to
reward–risk time in the market gave significant improvements in investor utility and ratios.
They use random forest and update the weights on only a monthly basis or over a relatively
long period of time, while our methods are instantaneous and much less computationally
intensive, since they do not require building a forest or any tree pruning. Ref. [30]
developed optimization algorithms with machine learning techniques and assessed the
risk characteristics of a large commodity portfolio. Their objective is the prediction of risk
measures instead of expected returns. Ref. [31] proposed a novel two-stage method for
well-diversified portfolio construction based on stock return prediction using machine
learning. They use the mean-variance model for portfolio construction. The challenge of
the mean-variance model is its well-known sensitivity to the change in mean return.

We derive the expected log-utilitity of wealth, which provides the mechanism for
the optimal allocation estimates. This provides the theoretical foundations of our strategy.
The algorithm using our MGMA strategy is also developed for the application of our
methods. Furthermore, motivated by recent years’ studies on higher-frequency information
on financial market forecasting (see [32,33]), we tested the proposed MGMA strategy using
the daily second-level exchange-traded fund in the North American market. In general, the
Sharpe index is appropriate for evaluating a trading strategy. We did not feel that this is
the best measure for our method, since the expected return of our strategy is clearly not
normally distributed, with the median much closer to the minimum than that from the
maximum, as suggested in our simulation study. This suggested that there is a long tail on
the right-hand side associated with the case of high profitability. The large variation above
the median level suggested a desirable significant chance of making a great profit. If we
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use the standard deviation as the denominator, it will dilute the advantage of our method,
since it is unduly penalized by the possibility of extreme profitability.

The rest of the paper is organized as follows. We introduce the general model with
the MGMA strategy in Section 2. We present the main theoretical results in Section 3. We
provide an investment algorithm for the multiasset portfolio in Section 4. We carry out
simulation studies in Section 5. We present the results of real data analysis in Section 6. We
conclude the article in Section 7.

2. The Model and the MGMA Strategy

Suppose that there are n + 1 assets in a financial market. For convenience, we assume
that the first one is risk-free, e.g., a cash or money market account with a constant interest
rate of r. The other n assets are risky ones, which, for example, can be stocks or indices
representing the aggregate equity market. A multiasset portfolio contains n risky assets.
The wealth can be allocated not only between the risk-free asset and one risky asset but
also among risky assets.

We follow [34] to define a general model for a multiasset portfolio with multiple pre-
dictive variables. Suppose that the price of the risk-free asset P f

t at any time t satisfies that

dP f
t = rP f

t dt. (1)

Moreover, suppose that there are q predictive variables that can be accurately observed
at continuous times. Then, the vector of n risky asset prices pt at any time t satisfies that

dpt = diag(pt)
{
(α + Uxt)dt + Vpdbt

}
, (2)

and the dynamics of the vector of q predictive variables xt satisfies that

dxt = (β + Θxt)dt + Vxdzt, (3)

where

pt =

p1t
...

pnt

, diag(pt) =


p1t 0 . . . 0
0 p2t . . . 0
...

...
. . .

...
0 0 . . . pnt

, xt =

x1t
...

xqt

,

α =

α1
...

αn

, U =

u11 . . . u1q
...

. . .
...

un1 . . . unq

, Vp =

vp
11 . . . vp

1n
...

. . .
...

vp
n1 . . . vp

nn

, β =

β1
...

βq

,

and

Θ =

θ11 . . . θ1q
...

. . .
...

θq1 . . . θqq

, Vx =


vx

11 . . . vx
1q

...
. . .

...
vx

q1 . . . vx
qq

, bt =

b1t
...

bnt

, zt =

z1t
...

zqt

.

The vectors α and β and matrices U, Θ, Vp, and Vx are all unknown. The vectors bt
and zt are a multidimensional standard Brownian motion, such that

Var(bt) = tIn, Var(zt) = tIq, Corr(bt, zt) =

ρ11 . . . ρ1q
...

. . .
...

ρn1 . . . ρnq

 , Vbz,

where I` denotes an `× ` identity matrix. Each predictive variable xit is assumed to be a
stationary process for t ≥ 0, i = 1, . . . , q. In order to ensure xit is a mean-reverting process,
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Θ is assumed to be symmetric negative definite, i.e., Θ = Θ> and a>Θa < 0 for any
a ∈ Rq.

We first recall the original MA strategy. We define some notations for the kth stock
(k = 1, . . . , n) in the market. Let pkt be the real stock price at time t and ykt be its log-
transformed stock price, i.e.,

ykt = log pkt. (4)

Denote a lag or lookback period by h > 0. In view of [16], a continuous time version
of the moving average of this log-transformed stock price at any time t is defined as

m(h)
kt =

1
h

∫ t

t−h
ykudu, (5)

i.e., the average log-transformed stock price over time period [t− h, t]. Let m(s,l)
kt be the

difference between m(s)
kt and m(l)

kt , where s > 0 is a short-term lookback period and l is a
long-term lookback period (l > s), i.e.,

m(s,l)
kt = m(s)

kt −m(l)
kt . (6)

Define Ω̃i as

Ω̃i =

{
(−∞, 0), if i = 1,
[0, ∞), if i = 2.

(7)

Denote the MA strategy for an n-asset portfolio by τt = (τ1t, . . . , τnt)
>. Then, τt for a

single-asset portfolio, i.e., n = 1, is defined as

τ1t =

{
0, if m(s,l)

1t ∈ Ω̃1,

1, if m(s,l)
1t ∈ Ω̃2,

(8)

and the MA strategy τt for a two-asset portfolio, i.e., n = 2, is defined in Table 1. We follow
the common approach to assign equal weights when there is more than one investment signal.

Table 1. MA strategy Tt = (τ1t, τ2t)
> for a two-asset portfolio.

(τ1t , τ2t) m(s,l)
2t ∈ Ω̃1 m(s,l)

2t ∈ Ω̃2

m(s,l)
1t ∈ Ω̃1 (0, 0) (0, 1)

m(s,l)
1t ∈ Ω̃2 (1, 0) (0.5, 0.5)

We now define the MGMA strategy. The key is to introduce an investor’s specific risk
tolerance ε > 0 into the moving average strategy. Define Ωi as

Ωi =


(−∞,−ε), if i = 1,
[−ε, 0), if i = 2,
[0, ε], if i = 3,
(ε, ∞), if i = 4.

(9)

Let pt be the vector of n stock prices, yt be the vector of n log-transformed stock prices,
and m(s,l)

t be the vector of n differences between the moving averages, i.e.,

pt =

p1t
...

pnt

, yt =

y1t
...

ynt

, m(s,l)
t =


m(s,l)

1t
...

m(s,l)
nt

.
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Let Ξ = {1, 2, 3, 4} and ik ∈ Ξ, k = 1, . . . , n. Define Ω(i1,...,in) as

Ω(i1,...,in) = Ωi1 × . . .×Ωin . (10)

Let ηkt be the MGMA strategy for the kth risky asset in a multiasset portfolio. Let
δk,(i1,...,in) be the asset allocation parameter for the kth risky asset in the multiasset portfolio.
Suppose that ηt is the vector based on the MGMA strategy and δ(i1,...,in) is the vector of the
n asset allocation parameters, i.e.,

ηt =

η1t
...

ηnt

, δ(i1,...,in) =

δ1,(i1,...,in)
...

δn,(i1,...,in)

.

Then, for t ≥ l, we define the MGMA strategy ηt as

ηt = ∑
i1∈d,...,in∈d

δ(i1,...,in) 1Ω(i1,...,in)

(
m(s,l)

t

)
, (11)

where 1Ω(i1,...,in)

(
m(s,l)

t

)
is an indicator function such that

1Ω(i1,...,in)

(
m(s,l)

t

)
=

{
1, if m(s,l)

t ∈ Ω(i1,...,in),
0, otherwise.

(12)

To ensure ηt is well-defined, for t < l, we define ηt as a constant vector λ, i.e.,
λ = (λ1, . . . , λn)

>, where λk is a constant for k = 1, . . . , n and ∑n
k=1 λk ≤ 1.

The MGMA strategy ηt is a market-timing strategy that allocates wealth not only
between one risk-free asset and one risky asset but also among risky assets, with the risk
tolerance specified by the investor. Note that the MA strategy is a special case of the
MGMA strategy. Theoretically speaking, the asset allocation parameter δk,(i1,...,in) can be
any number which is interpreted as a long portion of stocks if δk,(i1,...,in) ≥ 0 and a short
portion of stocks if δk,(i1,...,in) < 0. Therefore, there are n4n parameters for the MGMA
strategy on a multiasset portfolio which contains n risky assets.

We give some examples of the MGMA strategy. The MGMA strategy η>t = (η1t) for a
signal-asset portfolio (n = 1) is defined as

η1t =


δ1,(1), if m(s,l)

1t ∈ Ω1,

δ1,(2), if m(s,l)
1t ∈ Ω2,

δ1,(3), if m(s,l)
1t ∈ Ω3,

δ1,(4), if m(s,l)
1t ∈ Ω4,

(13)

where δ1,(1) = 0 and δ1,(4) = 1. The MGMA strategy η>t = (η1t, η2t) for a two-asset portfolio
(n = 2) consists of 32 parameters, which is defined in Table 2.

Table 2. MGMA strategy ηt = (η1t, η2t)
> for a two-asset portfolio.

(η1t , η2t) m(s,l)
2t ∈ Ω1 m(s,l)

2t ∈ Ω2 m(s,l)
2t ∈ Ω3 m(s,l)

2t ∈ Ω4

m(s,l)
1t ∈ Ω1

(
δ1,(1,1), δ2,(1,1)

) (
δ1,(1,2), δ2,(1,2)

) (
δ1,(1,3), δ2,(1,3)

) (
δ1,(1,4), δ2,(1,4)

)
m(s,l)

1t ∈ Ω2

(
δ1,(2,1), δ2,(2,1)

) (
δ1,(2,2), δ2,(2,2)

) (
δ1,(2,3), δ2,(2,3)

) (
δ1,(2,4), δ2,(2,4)

)
m(s,l)

1t ∈ Ω3

(
δ1,(3,1), δ2,(3,1)

) (
δ1,(3,2), δ2,(3,2)

) (
δ1,(3,3), δ2,(3,3)

) (
δ1,(3,4), δ2,(3,4)

)
m(s,l)

1t ∈ Ω4

(
δ1,(4,1), δ2,(4,1)

) (
δ1,(4,2), δ2,(4,2)

) (
δ1,(4,3), δ2,(4,3)

) (
δ1,(4,4), δ2,(4,4)

)
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It is obvious that the MGMA strategy is very complex, even for a two-asset portfolio.
In light of [6], we consider no-borrowing and no-short-sale constrains, i.e., δk,(i1,...,in) ∈
[0, 1] and ∑n

k=1 δk,(i1,...,in) ≤ 1. We use these constrains to reduce parameters to five, i.e.,
a1, a2, a3, a4, a5 ∈ [0, 1], as in Table 3, for implementation.

Table 3. Simplified MGMA strategy ηt = (η1t, η2t)
> for a two-asset portfolio.

(η1t, η2t) m(s,l)
2t ∈ Ω1 m(s,l)

2t ∈ Ω2 m(s,l)
2t ∈ Ω3 m(s,l)

2t ∈ Ω4

m(s,l)
1t ∈ Ω1 (0, 0) (0, a1) (0, a2) (0, 1)

m(s,l)
1t ∈ Ω2 (a3, 0) (a3[1− a1(1− a5)], a1[1− a3a5]) (a3[1− a2(1− a5)], a2[1− a3a5]) (a3a5, 1− a3a5)

m(s,l)
1t ∈ Ω3 (a4, 0) (a4[1− a1(1− a5)], a1[1− a4a5]) (a4[1− a2(1− a5)], a2[1− a4a5]) (a4a5, 1− a4a5)

m(s,l)
1t ∈ Ω4 (1, 0) (1− a1(1− a5), a1(1− a5)) (1− a2(1− a5), a2(1− a5)) (a5, 1− a5)

The MGMA strategy from an asset allocation perspective now becomes finding the
optimal ηt that maximizes the investor’s expected log-utility of wealth

max
ηt

E(log wT), (14)

subject to a budget constraint

dwt

wt
= rdt + η>t (α + Uxt − r1n)dt + η>t Vpdbt, (15)

given an initial wealth w0 for a multiasset portfolio, a constant rate of interest r, and an
investment horizon T, where 1n = (1, . . . , 1)>.

3. The Analytic Results

To focus on the framework and the MGMA strategy, we only present the main analytic
results in this section. The lemmas used to derive the formulas are presented in Appendix A.

In order to find an optimal ηt, we need to derive the investor’s expected log-utility
of wealth E(log wT). To derive it, we need to find the joint distribution of

(
xt, m(s,l)

t

)
. Let

µx be the expectation of xt, µm be the expectation of m(s,l)
t , Σx be the variance–covariance

matrix of xt, Σm be the variance–covariance of m(s,l)
t , and ∆xm be the covariance matrix

between xt and m(s,l)
t . Based on Lemmas A2, A4, A9 and A12 in Appendix A, it is derived

that
(

xt, m(s,l)
t

)
has a multivariate normal distribution, i.e.,(

xt

m(s,l)
t

)
∼ MN

[(
µx
µm

)
,
(

Σx ∆xm
∆>xm Σm

)]
, (16)

and
µx = −Θ−1β,

µm =
1
2
(l − s)

[
α−UΘ−1β

]
,

Σx = −1
2

VxΘ−1V>x ,

∆xm =

[
1
s

(
Iq − esΘ

)
− 1

l

(
Iq − elΘ

)]
Q>3 ,

Σm = Q4(s, s)−Q4(s, l)−Q>4 (s, l) + Q4(l, l), (17)

where
Q1 = −1

2
VxV>x Θ−3, Q2 = Θ−2VxV>bzV>p , Q3 = UQ1 + Q>2 ,
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and

Q4(s, l) =
1
sl

U
{

Θ−1
[
sIq −Θ−1

(
elΘ − e(l−s)Θ

)]
+

1
6

(
3l2s + s3

)
Θ− 1

2
s2 Iq

}
Q>3

+
1
sl

Q3

{
Θ−1

[
sIq + Θ−1

(
Iq − esΘ

)]
+

1
6

(
3l2s + s3

)
Θ− 1

2

(
2ls− s2

)
Iq

}
U>

− 1
sl

[
1
6

(
3l2s + s3

)]
VpV>p .

Note that the distribution of
(

xt, m(s,l)
t

)
does not depend on t. From the multivariate

normal distribution of
(

xt, m(s,l)
t

)>
, we have

E
(

xt | m(s,l)
t

)
= µx + ∆xmΣ−1

m

(
m(s,l)

t − µm

)
. (18)

Denote Σm, µm and σm as

Σm =


σ2

1 σ12 . . . σ1n
σ12 σ2

2 . . . σ2n
...

...
. . .

...
σ1n σ2n . . . σ2

n

, µm =

µ1
...

µn

, σm =

σ1
...

σn

.

Thus, we have

ZRm =


σ−1

1 0 . . . 0
0 σ−1

2 . . . 0
...

...
. . .

...
0 0 . . . σ−1

n

(m(s,l)
t − µm

)
∼ MN(0n, Rm), (19)

where 0>n = (0, . . . , 0) and Rm is the correlation matrix for the vector m(s,l)
t , i.e.,

Rm =


1 σ12

σ1σ2
. . . σ1n

σ1σn
σ12

σ1σ2
1 . . . σ2n

σ2σn
...

...
. . .

...
σ1n

σ1σn
σ2n

σ2σn
. . . 1

.

Denote the probability density function of ZRm ∼ MN(0n, Rm) by φRm(m1, . . . , mn).
Let H = A1 × . . .×An be any hyper-rectangle. For a simple presentation, let Ai = [ai, bi],
i = 1, . . . , n. We define

ΦRm(H) = Pr(ZRm ∈ H) =
∫ b1

a1

dm1

∫ b2

a2

dm2 . . .
∫ bn

an
φRm(m1, . . . , mn)dmn, (20)

and

ΨRm(H) =
∫ b1

a1

dm1

∫ b2

a2

dm2 . . .
∫ bn

an

m1
...

mn

φRm(m1, . . . , mn)dmn. (21)
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Similar to Equation (9), we define Ωi(µ, σ) as

Ωi(µ, σ) =
Ωi − µ

σ
=



(
−∞,− ε+µ

σ

)
, if i = 1,[

− ε+µ
σ ,− µ

σ

)
, if i = 2,[

− µ
σ , ε−µ

σ

]
, if i = 3,(

ε−µ
σ , ∞

)
, if i = 4.

(22)

We also define

Ω(i1,...,in)(µm, σm) = Ωi1(µ1, σ1)× . . .×Ωin(µn, σn), (23)

where ik ∈ {1, 2, 3, 4}, k = 1, . . . , n.
Given an initial wealth w0, a constant rate of interest r, and an investment horizon T,

let ε > 0 be the investor-specified risk tolerance, δ(i1,...,in) be the vector of n asset allocation
parameters, and ηt be the vector-based multiasset generalized moving average crossover
(MGMA) strategy. For the MGMA strategy, we have the following propositions.

Proposition 1. The expectation of η>t is independent of time t and given by

E
(

η>t

)
= ∑

i1∈d,...,in∈d
δ>(i1,...,in)ΦRm

(
Ω(i1,...,in)(µm, σm)

)
.

Proof. By Equations (11), (19), (22) and (23), we have

E
(

η>t

)
= ∑

i1∈d,...,in∈d
δ>(i1,...,in)P

(
m(s,l)

t ∈ Ω(i1,...,in)

)
= ∑

i1∈d,...,in∈d
δ>(i1,...,in)P

(
ZRm ∈ Ω(i1,...,in)(µm, σm)

)
= ∑

i1∈d,...,in∈d
δ>(i1,...,in)ΦRm

(
Ω(i1,...,in)(µm, σm)

)
,

which concludes the proposition.

Proposition 2. The expectation of η>t VpV>p ηt is independent of time t and given by

E
(

η>t VpV>p ηt

)
= ∑

i1∈d,...,in∈d
δ>(i1,...,in)VpV>p δ(i1,...,in)ΦRm

(
Ω(i1,...,in)(µm, σm)

)
.

Proof. In light of Equations (11), (19), (22) and (23), we have

E
(

η>t VpV>p ηt

)
= ∑

i1∈d,...,in∈d
δ>(i1,...,in)VpV>p δ(i1,...,in)P

(
m(s,l)

t ∈ Ω(i1,...,in)

)
= ∑

i1∈d,...,in∈d
δ>(i1,...,in)VpV>p δ(i1,...,in)P

(
ZRm ∈ Ω(i1,...,in)(µm, σm)

)
= ∑

i1∈d,...,in∈d
δ>(i1,...,in)VpV>p δ(i1,...,in)ΦRm

(
Ω(i1,...,in)(µm, σm)

)
,

which concludes the proposition.
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Proposition 3. The expectation of η>t Uxt is independent of time t and given by

E
(

η>t Uxt

)
= ∑

i1∈d,...,in∈d
δ>(i1,...,in)UµxΦRm

(
Ω(i1,...,in)(µm, σm)

)

+ ∑
i1∈d,...,in∈d

δ>(i1,...,in)U∆xmΣ−1
m


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σn

ΨRm

(
Ω(i1,...,in)(µm, σm)

)
.

Proof. By (18) and Proposition 1, we have

E
(

η>t Uxt

)
= E

(
η>t

)
U
(

µx − ∆xmΣ−1
m µm

)
+ E

(
η>t U∆xmΣ−1

m m(s,l)
t

)
,

where
E
(

η>t

)
U
(

µx − ∆xmΣ−1
m µm

)
= ∑

i1∈d,...,in∈d
δ>(i1,...,in)U

(
µx − ∆xmΣ−1

m µm

)
ΦRm

(
Ω(i1,...,in)(µm, σm)

)
= ∑

i1∈d,...,in∈d
δ>(i1,...,in)UµxΦRm

(
Ω(i1,...,in)(µm, σm)

)
− ∑

i1∈d,...,in∈d
δ>(i1,...,in)U∆xmΣ−1

m µmΦRm

(
Ω(i1,...,in)(µm, σm)

)
,

and based on Equations (11) and (19),

E
(

η>t U∆xmΣ−1
m m(s,l)

t

)
= ∑

i1∈d,...,in∈d
δ>(i1,...,in)U∆xmΣ−1

m E
(

1Ω(i1,...,in)

(
m(s,l)

t

)
m(s,l)

t

)
,

where

E
(

1Ω(i1,...,in)

(
m(s,l)

t

)
m(s,l)

t

)

= E

1Ω(i1,...,in)(µm ,σm)(ZRm)(


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σn

ZRm + µm)



=


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σn

ΨRm

(
Ω(i1,...,in)(µm, σm)

)
+ µmΦRm

(
Ω(i1,...,in)(µm, σm)

)
,

which implies that

E
(

η>t U∆xmΣ−1
m m(s,l)

t

)

= ∑
i1∈d,...,in∈d

δ>(i1,...,in)U∆xmΣ−1
m


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σn

ΨRm

(
Ω(i1,...,in)(µm, σm)

)

+ ∑
i1∈d,...,in∈d

δ>(i1,...,in)U∆xmΣ−1
m µmΦRm

(
Ω(i1,...,in)(µm, σm)

)
.
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Proposition 4. Let λ be a constant vector for MGMA strategy ηt when t < l, i.e.,
λ> = (λ1, . . . , λn), where λk is a constant for k = 1, . . . , n and ∑n

k=1 λk ≤ 1. Let ε > 0
be the investor-specified risk tolerance, then the investor’s expected log-utility of wealth at the end of
investment period T is

E(log wT) = a6 + (T − l)
[

E
(

η>t

)
(α− r1n)−

1
2

E
(

η>t VpV>p ηt

)
+ E

(
η>t Uxt

)]
, (24)

where 1>n = (1, . . . , 1) and a6 is a constant depending on l, i.e.,

a6 = log w0 + rT + l
[

λ>(α− r1n)−
1
2

(
λ>VpV>p λ

)
− λ>UΘ−1β

]
.

By Propositions 1–3, Equation (24) can be rewritten as

E(log wT)

= a6 + ∑
i1∈d,...,in∈d

(T − l)δ>(i1,...,in)ΦRm

(
Ω(i1,...,in)(µm, σm)

)
(α− r1n)

− ∑
i1∈d,...,in∈d

1
2
(T − l)δ>(i1,...,in)VpV>p δ(i1,...,in)ΦRm

(
Ω(i1,...,in)(µm, σm)

)
+ ∑

i1∈d,...,in∈d
(T − l)δ>(i1,...,in)UµxΦRm

(
Ω(i1,...,in)(µm, σm)

)

+ ∑
i1∈d,...,in∈d

(T − l)δ>(i1,...,in)U∆xmΣ−1
m


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σn

ΨRm

(
Ω(i1,...,in)(µm, σm)

)
. (25)

Proof. Based on Equations (1) and (2), the budget constraint for the multi-asset portfolio follows

dwt

wt
= η>t (diag(pt))

−1dpt +
(

1− η>t 1n

)
rdt = rdt + η>t (α + Uxt − r1n)dt + η>t Vpdbt,

Since (dt)2 = o(dt), dtdbt = o(dt) and dbtdb>t = dtIn, where 0>n = (0, . . . , 0) and In is
the identity matrix,(

dwt

wt

)2
=
(

η>t Vpdbt

)2
= η>t Vpdbtdb>t V>p ηt = η>t Vp IndtV>p ηt = η>t VpV>p ηtdt,

which implies that

d(log wt) =
dwt

wt
− 1

2

(
dwt

wt

)2
=

(
r + η>t (α + Uxt − r1n)−

1
2

η>t VpV>p ηt

)
dt + η>t Vpdbt,

By Equation (11) with T ≥ l,

log wT = log w0 + rT + λ>(α− r1n)l +
∫ T

l
η>t (α− r1n)dt +

∫ l

0
λ>Uxtdt

+
∫ T

l
η>t Uxtdt− 1

2

(
λTVpV>p λ

)
l − 1

2

∫ T

l
η>t VpV>p ηtdt +

∫ T

0
η>t Vpdbt,
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which implies that

E(log wT) = log w0 + rT

+ λ>(α− r1n)l −
1
2

(
λ>VpV>p λ

)
l +

∫ l

0
λ>UE(xt)dt +

∫ T

l
E
(

η>t

)
dt(α− r1n)

− 1
2

∫ T

l
E
(

η>t VpV>p ηt

)
dt +

∫ T

l
E
(

η>t Uxt

)
dt +

∫ T

0
E
(

η>t

)
VpE(dbt).

By Propositions 1–3, we note that E
(
η>t
)
, E
(

η>t VpV>p ηt

)
and E

(
η>t Uxt

)
are all independent

of time t. Since E(dbt) = 0n and E(xt) = −Θ−1β by Lemma A2 in Appendix A, we derive

E(log wT) = a6 + (T − l)
[

E
(

η>t

)
(α− r1n)−

1
2

E
(

η>t VpV>p ηt

)
+ E

(
η>t Uxt

)]
,

where 1>n = (1, . . . , 1), and a6 is a constant depending on l, i.e.,

a6 = log w0 + rT + l
[

λ>(α− r1n)−
1
2

(
λ>VpV>p λ

)
− λ>UΘ−1β

]
,

then Equation (24) is proved.

Now, we can calculate optimal estimates of the asset allocation parameters for the
MGMA strategy by maximizing E(log wT) with respect to asset allocation parameters
δ(i1,...,in). Suppose that the investor-specific risk tolerance ε = ε0, then for kth stock, we
solve following equation for optimal estimates δ∗k,(i1,...,in)

, i.e.,

∂E(log wT)

∂δk,(i1,...,in)

∣∣∣∣
ε=ε0,δk,(i1,...,in)=δ∗k,(i1,...,in)

= 0. (26)

We also restrict δk,(i1,...,in) ∈ [0, 1], which means there are no-borrowing and no-short-
sale constrains; then, the optimal estimates of δ(i1,...,in) are

δ∗(i1,...,in) =


δ∗1,(i1,...,in)

...
δ∗n,(i1,...,in)

. (27)

Note that the optimal estimates δ∗(i1,...,in)
are functions of the investor-specified risk

tolerance ε. The results illustrate that the MGMA is a better investment strategy compared
with the MA strategy for the multiasset portfolio, because it has a higher expected utility of
wealth for the investor.

4. An Investment Algorithm for Multiasset Portfolio

We propose an investment algorithm using the MGMA strategy for a multiasset port-
folio. The algorithm is tested on simulation data and real data to evaluate the performance
of the MGMA strategy. The algorithm contains the following steps:

Step 1. Set investment parameters w0, r and T, ε, λ, s and l.
Step 2. Compute model parameters µx, µm, Σx, ∆xm, Σm, σm and Rm.
Step 3. Compute δ∗(i1,...,in)

and E(log wT).

Step 4. Calculate yt, m(s)
t , m(l)

t and m(s,l)
t .

Step 5. Allocate the wealth among n risky assets and one risk-free asset according to δ∗(i1,...,in)
.

Step 6. The holding risky assets are sold at the end of the investment horizon T.
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5. Simulation Studies

We present several numerical examples based on a simulated two-asset portfolio
and a simulated three-asset portfolio. Motivated by recent research on higher-frequency
information on financial market forecasting, we simulated a daily second-level two-asset
portfolio and a daily second-level three-asset portfolio. The investment algorithm is tested
and compared with the MA strategy as the benchmark.

5.1. Simulation Results for Two-Asset Portfolio

The simulated two-asset portfolio data are generated using the parameters below.

β =

(
0.0100
0.6542

)
, Θ =

(
−0.253 0

0 0.1438

)
, Vx =

(
0.012 0

0 0.3356

)
,

and

α =

(
0.0310
−0.0742

)
, λ =

(
0
0

)
, U =

(
2.0720 0.0150
0.0235 0.0181

)
,

and

Vp =

(
0.195 0.100
0.100 0.495

)
, Vbz =

(
−0.073 0.0050
0.001 −0.9083

)
,

The simulation runs 1000 times. Each time series contains 97,500 observed points.
The simulation studies are performed under two scenarios (s = 5 and l = 30 vs.

s = 5 and l = 10). We set initial wealth w0 = 1, 000, 000 and interest rate r = 0. Under each
scenario, we test the MGMA strategy based on ε = 0.005, 0.01 and 0.05 and compare it
with the MA strategy. The MGMA strategy performance results are provided in Tables 4
and 5. We first report the theoretical expected log-utility of wealth E(log WT)

∗ based on
Equation (25) with the percentage increase in the expected log-utility of wealth compared
with the MA strategy. We then report numerical summaries to calculate from the simulation
results, including the expected log-utility of wealth E(log WT), the expected wealth E(WT),
the expected return on asset ratio E(ROA %), etc.

In the rest of this paper, â∗1 , â∗2 , â∗3 , â∗4 , and â∗5 respectively stand for the estimates of a1,
a2, a3, a4, and a5, and E(TRANS #) denotes the expected number of transactions.

Table 4. MGMA strategy performance summary for scenario 1 on the simulated two-asset portfolio
(1000 run; s = 5; l = 30).

MA MGMA
(ε = 0.005)

MGMA
(ε = 0.01)

MGMA
(ε = 0.05)

â1 na 0.03322929 0.03320624 0.033097262
â2 na 0.03281636 0.03236742 0.028855955
â3 na 1 1 1
â4 na 1 1 1
â5 na 1 1 1

E(log WT)
∗ 13.847667 13.896920 13.905998 13.945960

∆% E(log WT)
∗ na 0.36% 0.42% 0.71%

E(log WT) 13.794745 13.837687 13.845006 13.866623
log E(WT) 13.829619 13.861375 13.866273 13.886932

E(WT) 1,014,208 1,046,932 1,052,073 1,074,033
E(ROA %) 1.42% 4.69% 5.21% 7.40%

SD(WT) 283,524 233,340 223,184 221,949
MAX(WT) 3,058,106 2,273,877 2,186,479 2,176,345
MIN(WT) 541,872 510,691 539,512 629,311

MEDIAN(WT) 959,840 1,010,483 1,017,564 1,050,674
E(TRANS #) 25 68 67 52
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Table 5. MGMA strategy performance summary for scenario 2 on simulated two-asset portfolio
(1000 run; s = 5; l = 10).

MA MGMA
(ε = 0.005)

MGMA
(ε = 0.01)

MGMA
(ε = 0.05)

â1 na 0.034401876 0.034369298 0.072961411
â2 na 0.033698847 0.032947417 0.113863840
â3 na 1 1 1
â4 na 1 1 1
â5 na 1 1 1

E(log WT)
∗ 13.843826 13.916324 13.938047 13.966346

∆% E(log WT)
∗ na 0.52% 0.68% 0.89%

E(log WT) 13.786813 13.847683 13.863594 13.876244
log E(WT) 13.825506 13.870658 13.885702 13.901359

E(WT) 1,010,045 1,056,696 1,072,714 1,089,641
E(ROA %) 1.00% 5.67% 7.27% 8.96%

SD(WT) 298,598 231,436 231,640 250,256
MAX(WT) 3,633,894 2,354,587 2,202,291 2,467,362
MIN(WT) 387,856 535,477 543,935 513,012

MEDIAN(WT) 965,330 1,029,843 1,043,520 1,058,534
E(TRANS #) 56 157 144 68

Note that the MGMA strategy for a two-asset portfolio can increase the investor’s
expected log-utility of wealth and also increase the investor’s expected wealth and the
expected return on asset ratio from the simulation results. Under scenario 1, the expected
log-utility of wealth increases in the range of 0.36% to 0.71%. The expected return ratio
increases from benchmark return 1.42% to 4.69%, 5.21% and 7.40%, respectively. Under
scenario 2, the expected log-utility of wealth increases in the range 0.52% to 0.89%. The
expected return ratio increases from benchmark return 1.00% to 5.67%, 7.27% and 8.96%,
respectively.

5.2. Simulation Results for Three-Asset Portfolio

The simulated three-asset portfolio time series data are generated using the
parameters below.

β =

0.010
0.065
0.185

, Θ =

−0.253 0 0
0 −1.1438 0
0 0 −1.89

, Vx =

0.012 0 0
0 0.3356 0
0 0 0.134

,

and

α =

 0.0310
−0.0742
−0.0945

, λ =

0
0
0

, U =

1.2720 0.0150 1.500
1.0235 1.0181 0.512
0.5000 0.0200 0.145

,

and

Vp =

0.195 0.100 0.200
0.100 0.495 0.345
0.200 0.345 0.271

, Vbz =

−0.073 0.001 −0.10
0.001 −0.108 0.09
−0.050 0.040 0.10

,

The simulation runs 1000 times. Each time series contains 97,500 observed points.
The simulation studies are performed under two scenarios (s = 5 and l = 30 vs. s = 5

and l = 10). We set initial wealth w0 = 1, 000, 000 and interest rate r = 0. Under each
scenario, we test the MGMA strategy based on ε = 0.001 and 0.0005 and compare it with the
MA strategy. The MGMA strategy performance results are provided in Tables 6 and 7. We
first report the theoretical expected log-utility of wealth E(log WT)

∗ based on Equation (25)
and the percentage increase in the expected log-utility of wealth compared with the MA
strategy. We then report numerical summaries to calculate from the simulation results,
including the expected log-utility of wealth E(log WT), the expected wealth E(WT), the
expected return on asset ratio E(ROA %), the standard deviation of wealth SD(WT), the
maximum of wealth MAX(WT), the minimum of wealth MIN(WT), the median of wealth
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MEDIAN(WT) and the expected number of transactions E(TRANS #). By using no-
borrowing and no-short-sale constraints, we can reduce the parameters of MGMA strategy
for a three-asset portfolio from 192 to 37 for implementation. For easy illustration, we do
not report the optimal asset allocation parameters in the simulation summary tables.

Table 6. MGMA strategy performance summary for scenario 1 on the simulated three-asset portfolio
(1000 run; s = 5; l = 30).

MA MGMA(ε = 0.001) MGMA(ε = 0.005)

E(log WT)
∗ 13.832331 13.911899 13.918328

∆% E(log WT)
∗ na 0.58% 0.62%

E(log WT) 13.785474 13.863884 13.868901
log E(WT) 13.834971 13.900779 13.904022

E(WT) 1,019,651 1,089,009 1,092,547
E(ROA %) 1.97% 8.90% 9.25%

SD(WT) 339,954 308,718 303,463
MAX(WT) 2,926,612 2,764,480 2,696,956
MIN(WT) 366,703 421,502 458,013

MEDIAN(WT) 946,339 1,038,858 1,043,233
E(TRANS #) 36 101 101

Table 7. MGMA strategy performance summary for scenario 2 on simulated three-asset portfolio
(1000 run; s = 5; l = 10).

MA MGMA(ε = 0.001) MGMA(ε = 0.005)

E(log WT)
∗ 13.823737 13.914620 13.934576

∆% E(log WT)
∗ na 0.66% 0.80%

E(log WT) 13.771318 13.857019 13.875335
log E(WT) 13.827102 13.894495 13.909474

E(WT) 1,011,659 1,082,187 1,098,520
E(ROA %) 1.17% 8.22% 9.85%

SD(WT) 356,262 307,575 297,192
MAX(WT) 3,360,435 2,643,002 2,794,930
MIN(WT) 419,986 479,525 504,198

MEDIAN(WT) 937,137 1,025,448 1,053,388
E(TRANS #) 82 240 237

Note that the MGMA strategy for a three-asset portfolio can increase the investor’s
expected log-utility of wealth and also increase the investor’s expected wealth and the
expected return on asset ratio from the simulation results. Under scenario 1, the expected
log-utility of wealth increases in the range 0.58% to 0.62%. The expected return ratio
increases from a benchmark return of 1.97% to 8.90% and 9.25%, respectively. Under
scenario 2, the expected log-utility of wealth increases in the range of 0.66% to 0.80%. The
expected return ratio increases from a benchmark return of 1.17% to 8.22% and 9.85%,
respectively.

6. Real Data Applications

We present several real data analyses based on high-frequency exchange-traded fund
(ETF) data. The investment algorithm is tested and compared with the benchmark. The
simplified MGMA strategy for a two-asset portfolio in Table 3 is used. The MA strategy for
a two-asset portfolio in Table 1 is used as the benchmark strategy.

6.1. An Algorithm to Estimate Model Parameters

In order to use the investment algorithm for a multiasset portfolio on real data, we
need to estimate model parameters α, β, U, Θ, Vp, Vx, and Vbz. There is no such algorithm
in the literature due to complex model settings. We propose an algorithm to fill the gap.
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Without loss generality, we describe the algorithm by using a general model for a two-asset
portfolio. Based on Equation (2),

dp1t
p1t

= (α1 + u11x1t + u12x2t)dt + ep
1t,

dp2t

p2t
= (α2 + u21x1t + u22x2t)dt + ep

2t,

and Equation (3),
dx1t = (β1 + θ11x1t + θ12x2t)dt + ex

1t,

dx2t = (β2 + θ21x1t + θ22x2t)dt + ex
2t,

where

ep
t =

(
ep

1t
ep

2t

)
=

(
vp

11db1t + vp
12db2t

vp
21db1t + vp

22db2t

)
= Vpdbt ∼ MN

[(
0
0

)
, dtVpV>p

]
,

and

ex
t =

(
ex

1t
ex

2t

)
=

(
vx

11dz1t + vx
12dz2t

vx
21dz1t + vx

22dz2t

)
= Vxdzt ∼ MN

[(
0
0

)
, dtVxV>x

]
.

Let dtVpV>p , Σep ; then, it is easy to check the log-likelihood function for ep
t is

l
(

Σep | ep
t

)
= −T

2
log |Σep | − 1

2

T

∑
t=1

{(
ep

t

)>
Σ−1

ep ep
t

}
− T log(2π),

and let dtVxV>x , Σex =

(
v1 0
0 v2

)
, then the log-likelihood function for ex

t is

l(Σex | ex
t ) = −

T
2

log |Σex | − 1
2

T

∑
t=1

{
(ex

t )
>Σ−1

ex ex
t

}
− T log(2π)

= −T
2

log(v1v2)−
1
2

T

∑
t=1

{(
ex

1t
)2

v1
+

(
ex

2t
)2

v2

}
− T log(2π).

Let Cov(dbt, dzt) , Σbz; it is also easy to verify that

Σbz = dtVbz.

Then, the algorithm contains the following steps:

Step 1. Given a dt, calculate dp1t, dp2t, dx1t and dx2t (for t > 1) based on the historical
time series.
Step 2. Use least square estimation method to estimate parameters α̂1, α̂2, û11, û12, û21,
and û22 by minimizing

2

∑
i=1

T

∑
t=2

[
dpit
pit
− (αi + ui1x1t + ui2x2t)dt

]2
.

Step 3. Let Θ = diag(θ11, θ22), and use least square estimation method to estimate
parameters β̂1, β̂2, θ̂11, and θ̂22 by minimizing

2

∑
i=1

T

∑
t=2

[dxit − (βi + θi1x1t + θi2x2t)dt]2.

Step 4. Calculate êp
t and êx

t from p1t, p2t, x1t and x2t, α̂1, α̂2, û11, û12, û21, û22, β̂1, β̂2,
θ̂11, θ̂12, θ̂21, and θ̂22.
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Step 5. Use maximum likelihood estimation method and set

∂l
(

Σep | êp
t

)
∂Σep

= 0,

to estimate Σ̂ep from êp
t . Since V̂p =

(
1
dt Σ̂ep

) 1
2 , we can estimate parameters v̂p

11, v̂p
12,

v̂p
21, and v̂p

22.
Step 6. Use maximum likelihood estimation method and set

∂l(Σex | êx
t )

∂Σex
= 0,

to estimate Σ̂ex , v̂x
11, v̂x

12, v̂x
21 and v̂x

22 from êx
t .

Step 7. Calculate db̂t and dẑt from V̂p, V̂x, êp
t , and êx

t .
Step 8. Calculate Σ̂bz from db̂t and dẑt. Then, the estimated parameter is V̂bz = 1

dt Σ̂bz.

6.2. Case 1: MGMA Strategy on High-Frequency Exchange-Traded Fund in North American Market

We use PowerShares QQQ Trust Series 1 (QQQ) and SPDR S&P 500 ETF Trust (SPY).
These are exchange-traded funds incorporated in the USA. QQQ ETF tracks the perfor-
mance of the Nasdaq 100 Index. It holds large-cap U.S. stocks and tends to focus on the
technology and consumer sector. The holdings are weighted by market capitalization. As
of 6 October 2017, there were 107 holding companies. The top three holding companies are
Apple Inc., Austin, TX, USA (AAPL, 11.57%), Microsoft Corp., Redmond, WA, USA (MSFT,
8.44%), and Amazon.com, Inc., Seattle, WA, USA (AMZN, 6.86%). SPY ETF tracks the S&P
500 Index. The trust consists of a portfolio representing all 500 stocks in the S&P 500 Index.
It holds predominantly large-cap U.S. stocks. It is structured as a unit investment trust and
pays dividends on a quarterly basis. The holdings are weighted by market capitalization.
As of 6 October 2017, the top three holding companies were Apple Inc., Austin, TX, USA
(AAPL, 3.67%), Microsoft Corp., Redmond, WA, USA (MSFT, 2.68%), and Facebook Inc.,
Menlo Park, CA, USA) Class A (FB, 1.87%).

We collected daily second-level QQQ ETF, SPY ETF, MSFT, and AAPL price time series
for this study. The QQQ ETF price time series and SPY ETF price time series are used as
the vector-based ETF price pt. The MSFT and AAPL stock price time series are used as the
vector-based predictive variable xt. The collection period is the daily trading time from
9:30 a.m. to 4:00 p.m. (Eastern Time) to ensure a high liquid market. We divided QQQ
ETF and SPY ETF time series into two data sets: vector-based ETF price pt training data
(9:30 a.m. to 3:00 p.m., which contains 19,800 s) and vector-based ETF price pt test data
(3:00 p.m. to 4:00 p.m., which contains 3601 s). We use the MSFT and AAPL price time
series as the vector-based predictive variables’ xt training data (9:30 a.m. to 3:00 p.m., which
contains 19,800 s). We set initial wealth w0 = 10, 000 and interest rate r = 0. Suppose that
the investor’s risk tolerance is 0.000001. We restrict a1, a2, a3, a4, and a5 in [0, 1], s in 5, 10,
and l in 30, 60, 90, 120, 180, and 240. We use training data to choose model parameters with
the highest return. We first report the MGMA strategy performance summary for QQQ ETF
and SPY ETF on training data; then, we report the MGMA strategy evaluation summary
for QQQ ETF and SPY ETF on test data. Our study spans five days from 10 February 2017
to 10 June 2017. We plot second-level QQQ ETF and SPY ETF price time series on day 1
(10 February 2017) in Figure 1 as an example.
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Figure 1. Case 1—Second-level QQQ ETF and SPY ETF prices time series on day 1 (10 February 2017).

The MGMA strategy performance summary for QQQ ETF and SPY ETF on day 1
(10 February 2017) to day 5 (10 June 2017); training data are provided in Table 8. The MGMA
strategy evaluation summary for QQQ ETF and SPY ETF on day 1 (10 February 2017) to
day 5 (10 June 2017) test data is provided in Table 9.

Note that the MGMA strategy in general can outperform the MA strategy for both
backward investments in training data and forward investments in test data. For example,
for day 1 (10 February 2017), the MGMA strategy can increase the daily return ratio from
0.09498% to 0.24542% on training data, which equals an increase in annual return ratio of
46.1%; the MGMA strategy can increase the daily return ratio from 0.06668% to 0.08534%
on test data, which equals an increase in annual return ratio of 4.8%.
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Table 8. Case 1—MGMA strategy performance summary for QQQ ETF and SPY ETF on day 1
(10 February 2017) to day 5 (10 June 2017) training data.

Training Data Day 10 February 2017 10 March 2017 10 April 2017 10 May 2017 10 June 2017
time 9:30 a.m.–3:00 p.m. 9:30 a.m.–3:00 p.m. 9:30 a.m.–3:00 p.m. 9:30 a.m.–3:00 p.m. 9:30 a.m.–3:00 p.m.

T 19, 800 s 19, 800 s 19, 800 s 19, 800 s 19, 800 s
dt 1 s 1 s 1 s 1 s 1 s

tuned parameters s 10 10 10 10 10
l 180 60 240 180 120

â1 0.3287 0.1250 0.0742 0.0737 0.8537
â2 0.9611 0.2346 0.7111 0 0.2780
â3 0.0352 0 0 1 0
â4 0.7160 0 0 1 0
â5 1 1 1 1 1

backward MA E(WT) 10,009.49768 9,955.07379 10,001.35849 10,002.15772 9,997.54490
return ratio (%) 0.09498% −0.44926% 0.01358% 0.02158% −0.02455%

trans num 504 1,117 421 535 589

backward MGMA E(WT) 10,024.54175 9,974.19921 10,010.97889 10,015.65524 10,016.17125
return ratio (%) 0.24542% −0.25801% 0.10979% 0.15655% 0.16171%

trans num 655 1,557 534 708 794

Table 9. Case 1—MGMA strategy evaluation summary for QQQ ETF and SPY ETF on day 1
(10 February 2017) to day 5 (10 June 2017) test data.

test data day 10 February 2017 10 March 2017 10 April 2017 10 May 2017 10 June 2017
time 3:00 p.m.–4:00 p.m. 3:00 p.m.–4:00 p.m. 3:00 p.m.–4:00 p.m. 3:00 p.m.–4:00 p.m. 3:00 p.m.–4:00 p.m.

T 3601 s 3601 s 3601 s 3601 s 3601 s
dt 1 s 1 s 1 s 1 s 1 s

tuned parameters s 10 10 10 10 10
l 180 60 240 180 120

â1 0.3287 0.1250 0.0742 0.0737 0.8537
â2 0.9611 0.2346 0.7111 0 0.2780
â3 0.0352 0 0 1 0
â4 0.7160 0 0 1 0
â5 1 1 1 1 1

f orward MA E(WT) 10,006.66819 9990.21402 9998.84086 10,003.58666 10,001.47801
return ratio (%) 0.06668% −0.09786% −0.01159% 0.03587% 0.01478%

trans num 67 210 85 92 111

f orward MGMA E(WT) 10,008.53428 9991.06108 10,000.43623 10,008.31762 9999.77159
return ratio (%) 0.08534% −0.08939% 0.00436% 0.08318% −0.00228%

trans num 82 318 127 120 141

The MGMA strategy performance summary for QQQ ETF and SPY ETF on day 1
(10 February 2017) to day 5 (10 June 2017); training data are provided in Figure 2. The
MGMA strategy evaluation summary for QQQ ETF and SPY ETF on day 1 (10 February 2017)
to day 5 (10 June 2017) test data is provided in Figure 3.
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Figure 2. Case 1—MGMA strategy performance summary plot for QQQ ETF and SPY ETF on day 1
(10 February 2017) to day 5 (10 June 2017) training data.
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Figure 3. Case 1—MGMA strategy evaluation summary plot for QQQ ETF and SPY ETF on day 1
(10 February 2017) to day 5 (10 June 2017) test data.

6.3. Case 2: MGMA Strategy on High-Frequency Exchange-Traded Fund in Asian Market

We use the China 50 ETF (HuaXia) and Huatai-Pinebridge CSI 300 ETF (HuaTai).
These are exchange-traded funds incorporated in China. The China 50 ETF (HuaXia) tracks
the performance of the Shanghai Stock Exchange 50 Index (the SSE 50 Index). The holdings
are weighted by market capitalization. As of 22 March 2018, the top five holding companies
are PingAn Insurance Group, Shenzhen, China (PingAn, 12.30%), China Merchants Bank
Co., Ltd., Shenzhen, China (CMB, 5.65%), Kweichow Moutai Co Ltd., Zunyi China (600519,
5.41%), Industrial Bank Co Ltd., Fuzhou, China (IndBank, 4.81%), and China Minsheng
Banking Corp Ltd., Beijing, China (CMAKY, 4.45%). The Huatai-Pinebridge CSI 300
ETF (HuaTai) is a capitalization-weighted stock market index designed to replicate the
performance of the top 300 stocks traded in the Shanghai and Shenzhen stock exchange. As
of 22 March 2018, the top three holding companies are PingAn Insurance Group, Shenzhen,
China (PingAn, 4.17%), China Merchants Bank Co Ltd., Shenzhen, China (CMB, 2.34%),
and Industrial Bank Co Ltd., Fuzhou, China (IndBank, 2.34%).

We collected daily second-level HuaXia ETF, HuaTai ETF, PingAn and IndBank price
time series for this study. The HuaXia ETF price time series and HuaTai ETF price time series
are used as the vector-based ETF price pt. The PingAn and IndBank stock price time series
are used as the vector-based predictive variable xt. The collection period is the daily trading
time from 8:30 p.m. to 2:00 a.m. (Eastern Time) to ensure a highly liquid market. Note that
there is a break time from 10:30 p.m. to 0:00 a.m. (Eastern Time) for the Asian Market. We di-
vide the HuaXia ETF and HuaTai ETF time series into two data sets: vector-based ETF price
pt training data (8:30 p.m. to 10:30 p.m. and 0:00 a.m. to 1:00 a.m., which contains 10,800 s)
and vector-based ETF price pt test data (1:00 a.m. to 2:00 a.m., which contains 3601 s). We
use the PingAn and IndBank price time series as vector-based predictive variable xt training
data (8:30 p.m. to 10:30 p.m. and 0:00 a.m. to 1:00 a.m., which contains 10,800 s). We set
initial wealth w0 = 10, 000 and interest rate r = 0. Suppose that the investor’s risk tolerance
is 0.0005. We restrict a1, a2, a3, a4, and a5 in [0, 1], s in 5, 10, and l in 30, 60, 90, 120, 180, and
240. We use training data to choose model parameters with the highest return. We first
report the MGMA strategy performance summary for HuaXia ETF and HuaTai ETF on
training data; then, we report the MGMA strategy evaluation summary for HuaXia ETF
and HuaTai ETF on test data. Our study spans five days from 18 March 2018 to 22 March
2018. We plot the second-level HuaTai ETF and HuaXia ETF price time series on day 1
(18 March 2018) in Figure 4 as an example.
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Figure 4. Case 2—Second-level HuaXia ETF and HuaTai ETF prices time series on day 1 (18 March 2018).

The MGMA strategy performance summary for HuaXia ETF and HuaTai ETF on day 1
(18 March 2018) to day 5 (22 March 2018) training data is provided in Table 10. The MGMA
strategy evaluation summary for HuaXia ETF and Huatai ETF on day 1 (18 March 2018) to
day 5 (22 March 2018) test data is provided in Table 11.

Table 10. Case 2—MGMA strategy performance summary for HuaXia ETF and HuaTai ETF on day 1
(18 March 2018) to day 5 (22 March 2018) training data.

training data day 18 March 2018 19 March 2018 20 March 2018 21 March 2018 22 March 2018
time 8:30 p.m.–1:00 a.m. 8:30 p.m.–1:00 a.m. 8:30 p.m.–1:00 a.m. 8:30 p.m.–1:00 a.m. 8:30 p.m.–1:00 a.m.

T 10, 800 s 10, 800 s 10, 800 s 10, 800 s 10, 800 s
dt 1 s 1 s 1 s 1 s 1 s

tuned parameters s 10 10 10 10 10
l 30 30 30 30 30

â1 1 1 1 1 1
â2 1 1 1 1 1
â3 1 1 1 1 1
â4 1 1 1 1 1
â5 1 1 1 1 1

backward MA E(WT) 9697.42479 9742.02916 9483.70570 9654.20256 9645.70242
return ratio (%) −3.02575% −2.57971% −5.16294% −3.45797% −3.54298%

trans num 837 833 1043 861 917

backward MGMA E(WT) 10,015.85838 10,053.51711 9945.74085 9873.99072 9961.93758
return ratio (%) 0.15858% 0.53517% −0.54259% −1.26009% −0.38062%

trans num 869 852 1056 914 1013
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Table 11. Case 2—MGMA strategy evaluation summary for HuaXia ETF and HuaTai ETF on day 1
(18 March 2018) to day 5 (22 March 2018) test data.

test data day 18 March 2018 19 March 2018 20 March 2018 21 March 2018 22 March 2018
time 1:00 a.m.–2:00 a.m. 1:00 a.m.–2:00 a.m. 1:00 a.m.–2:00 a.m. 1:00 a.m.–2:00 a.m. 1:00 a.m.–2:00 a.m.

T 3601 s 3601 s 3601 s 3601 s 3601 s
dt 1 s 1 s 1 s 1 s 1 s

tuned parameters s 10 10 10 10 10
l 30 30 30 30 30

â1 1 1 1 1 1
â2 1 1 1 1 1
â3 1 1 1 1 1
â4 1 1 1 1 1
â5 1 1 1 1 1

f orward MA E(WT) 9958.09171 9873.56029 9825.82477 9832.73198 10,049.94455
return ratio (%) −0.41908% −1.26440% −1.74175% −1.67268% 0.49945%

trans num 270 317 325 311 252

f orward MGMA E(WT) 10,075.23280 10,001.72750 9913.81940 9988.70100 10,049.94455
return ratio (%) 0.75233% 0.01728% −0.86181% −0.11299% 0.47835%

trans num 274 321 350 317 289

Note that the MGMA strategy in general can outperform the MA strategy for both
backward investments on training data and forward investment on test data. Note that
the optimal short-lag s, long-lag l, and allocation parameters a∗1 to a∗5 are all the same for
5 days, which might suggest that it is possible to use fixed parameters for MGMA strategy
in reality.

The MGMA strategy performance summary for HuaXia ETF and HuaTai ETF on day 1
(18 March 2018) to day 5 (22 March 2018) training data is provided in Figure 5. The MGMA
strategy evaluation summary for HuaXia ETF and HuaTai ETF on day 1 (18 March 2018) to
day 5 (22 March 2018) test data is provided in Figure 6.

●

●

●

●
●

●

●

●

●

●

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

318 319 320 321 322

day

Hu
aX

ia
 &

 H
ua

Ta
i t

ra
in

in
g 

da
ta

: d
ai

ly 
re

tu
rn

 ra
tio

 (%
)

strategy
●

●

ma

mgma

Figure 5. Case 2—MGMA strategy performance summary plot for HuaXia ETF and HuaTai ETF on
day 1 (18 March 2018) to day 5 (22 March 2018) training data.
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Figure 6. Case 2—MGMA strategy evaluation summary plot for HuaXia ETF and HuaTai ETF on
day 1 (18 March 2018) to day 5 (22 March 2018) test data.
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7. Conclusions

In this paper, we propose a multiasset generalized moving average crossover (MGMA)
strategy. Our study demonstrates that the MGMA strategy can provide more investment
options with the investor’s risk tolerance. The MGMA strategy can solve the well-known
problem for the MA strategy for a multiasset portfolio. Simulation studies demonstrate
that the MGMA strategy can increase both the investor’s expected utility of wealth and the
investor’s expected wealth. Two high-frequency ETF real-time examples from the North
American market and Asian market demonstrate that the MGMA strategy can outperform
the MA strategy for both backward investment on training data and forward investment on
test data. The MGMA strategy has built the foundation for reconciling the moving average
technique with the portfolio allocation strategy for multiple assets. In the future, we would
like to extend the algorithm for adaptive or online prediction in order to go beyond the
current reactionary nature. While this approach is proposed for optimizing asset allocation,
it can also be used to create a general framework for analyzing the relative importance or
impact of a particular repeated measured index in a multiple time series setting. It could
have broad applications in climate change or healthcare.
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Appendix A

We provide the preliminary lemmas, which are used to derive the analytical results.

Lemma A1. Let Θ be symmetric negative definite. If Θ and Vx are exchangeable, i.e., ΘVx = VxΘ,
then Θ and etΘ, etΘ and Vx, V>x and etΘ are also exchangeable.

Proof. Since Θ is symmetric negative definite, by the definition of matrix exponential, it
follows that

ΘetΘ = Θ
∞

∑
k=0

1
k!
(tΘ)k =

∞

∑
k=0

1
k!
(tΘ)kΘ = etΘΘ.

By the assumptions that ΘVx = VxΘ and Θ is symmetric negative definite, we obtain
that ΘkVx = VxΘk, which implies that

etΘVx =
∞

∑
k=0

1
k!
(tΘ)kVx = Vx

∞

∑
k=0

1
k!
(tΘ)k = VxetΘ.

Therefore, we have

V>x etΘ = V>x
(

etΘ
)>

=
(

etΘVx

)>
=
(

VxetΘ
)>

=
(

etΘ
)>

V>x = etΘ>V>x = etΘV>x .

Lemma A2. Let xt be the vector of the predictive variables in the market satisfying (3), µx be the
vector of expectation of xt, and Σx be the variance–covariance matrix of xt. Then, xt is multivariate
normal distributed and has the following expression

xt = etΘx0 −
(

Iq − etΘ
)

Θ−1β +
∫ t

0
e(t−u)ΘVxdzu,
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and
µx = −Θ−1β,

Σx = −1
2

VxΘ−1V>x ,

Cov(xt, xs) = −
1
2

VxΘ−1e|t−s|ΘV>x .

Proof. Let Iq be an identity matrix and 0>n = (0, . . . , 0). We have

d
(

e−uΘxu

)
= −Θe−uΘxudu + e−uΘdxu

= −Θe−uΘxudu + e−uΘ((β + Θxu)du + Vxdzu) = e−uΘβdu + e−uΘVxdzu.

which, jointly with Lemma A1, yields that

e−uΘxu |>0 = e−TΘxT − x0 =
∫ t

0
d
(

e−uΘxu

)
=
∫ t

0
e−uΘβdu +

∫ t

0
e−uΘVxdzu

= −Θ−1e−uΘ |>0 β +
∫ t

0
e−uΘVxdzu =

(
−Θ−1e−tΘ + Θ−1

)
β +

∫ t

0
e−uΘVxdzu

= −
(

e−tΘ − Iq

)
Θ−1β +

∫ t

0
e−uΘVxdzu.

Therefore, we have

e−tΘxt = x0 −
(

e−tΘ − Iq

)
Θ−1β +

∫ t

0
e−uΘVxdzu,

and

xt = etΘx0 −
(

Iq − etΘ
)

Θ−1β +
∫ t

0
e(t−u)ΘVxdzu, (A1)

Since zt is a multidimensional standard Brownian motion, we obtain that xt is multi-
variate normal distributed. By the fact that E(dzu) = 0n, it follows that

µx = E(xt) = etΘE(x0)−
(

Iq − etΘ
)

Θ−1β +
∫ t

0
e(t−u)ΘVxE(dzu)

= etΘE(x0)−
(

Iq − etΘ
)

Θ−1β.

As xt is a stationary process, we have E(xt) = E(x0), and hence obtain that
µx = −Θ−1β. In view that E

(
dzudz>u

)
= duIq, Vx and etΘ are exchangeable, and Θ is

symmetric, by Lemma A1, the variance–covariance matrix Σx is

Σx = Var(xt) = Var
(

etΘx0 −
(

Iq − etΘ
)

Θ−1β +
∫ t

0
e(t−u)ΘVxdzu

)
= etΘVar(x0)etΘ> + Var

(∫ t

0
e(t−u)ΘVxdzu

)
,
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where

Var
(∫ t

0
e(t−u)ΘVxdzu

)
= E

[∫ t

0
e(t−u)ΘVxdzu

∫ t

0
dz>u V>x e(t−u)Θ>

]
− E

[∫ t

0
e(t−u)ΘVxdzu

]
E
[∫ t

0
dz>u V>x e(t−u)Θ>

]
=
∫ t

0
e(t−u)ΘVxV>x e(t−u)Θ>du =

∫ t

0
Vxe(t−u)Θe(t−u)Θ>duV>x = Vx

∫ t

0
e2(t−u)ΘduV>x

= Vx

[
−1

2
Θ−1e2(t−u)Θ |>0

]
V>x = −1

2
VxΘ−1V>x +

1
2

VxΘ−1etΘetΘ>V>x

= −1
2

VxΘ−1V>x +
1
2

etΘVxΘ−1V>x etΘ> ,

which implies that

Σx = Var(xt) = etΘVar(x0)etΘ> − 1
2

VxΘ−1V>x +
1
2

etΘVxΘ−1V>x etΘ> . (A2)

Since xt is a stationary process, it follows that Var(xt) = Var(x0), which, jointly with
(A2), yields that Σx = − 1

2 VxΘ−1V>x . Moreover,

Cov(xt, xs) = Cov
(

etΘx0 −
(

Iq − etΘ
)

Θ−1β +
∫ t

0
e(t−u)ΘVxdzu,

esΘx0 −
(

Iq − esΘ
)

Θ−1β +
∫ s

0
e(s−u)ΘVxdzu

)
= Cov

(
etΘx0, esΘx0

)
+ Cov

(∫ t

0
e(t−u)ΘVxdzu,

∫ s

0
e(s−u)ΘVxdzu

)
. (A3)

Note that

Cov
(

etΘx0, esΘx0

)
= etΘVar(x0)esΘ = −1

2
etΘVxΘ−1V>x esΘ. (A4)

Since E
(
dzadz>b

)
= 0 if a 6= b, we have

Cov
(∫ t

0
e(t−u)ΘVxdzu,

∫ s

0
e(s−u)ΘVxdzu

)
=
∫ min(t,s)

0
e(t−u)ΘVxV>x e(s−u)Θ>du = Vx

∫ min(t,s)

0
e(t+s−2u)ΘduV>x

= Vx

[
−1

2
Θ−1

(
e(t+s−2min(t,s))Θ − e(t+s)Θ

)]
V>x

= −1
2

VxΘ−1e|t−s|ΘV>x +
1
2

VxΘ−1e(t+s)ΘV>x . (A5)

By (A3)–(A5), it follows that

Cov(xt, xs) = −
1
2

etΘVxΘ−1V>x esΘ − 1
2

VxΘ−1e|t−s|ΘV>x +
1
2

VxΘ−1e(t+s)ΘV>x

= −1
2

VxΘ−1e(t+s)ΘV>x −
1
2

VxΘ−1e|t−s|ΘV>x +
1
2

VxΘ−1e(t+s)ΘV>x

= −1
2

VxΘ−1e|t−s|ΘV>x .
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Lemma A3. Let yt be the vector of the log-transformed stock prices and µy be its expectation. Then,
yt follows a multivariate normal distribution and has the following expression

yt = y0 +
∫ t

0
(α + Uxu)du + Vpbt,

whose mean vector is given by

µy = y0 +
(

α−UΘ−1β
)

t.

Proof. By (2) and (4), we have

d(yt) = d(log pt) = (α + Uxt)dt + Vpdbt.

Note that bt is multidimensional standard Brownian motion. Thus, we obtain that

yt − y0 =
∫ t

0
d(yu) =

∫ t

0
(α + Uxu)du +

∫ t

0
Vpdbu,

and hence

yt = y0 +
∫ t

0
(α + Uxu)du + Vpbt,

which, jointly with Lemma A2, yields that yt follows a multivariate normal distribution
with the mean vector

µy = E(yt) = E(y0) +
∫ t

0
(α + UE(xu))du + VpE(bt)

= y0 +
(

α−UΘ−1β
)

t.

Lemma A4. Let m(h)
t be the vector of the moving average based on lookback period h and m(s,l)

t be
the vector of the difference between the moving averages based on lookback period s and l. Then, m(h)

t

follows a multivariate normal distribution with mean E
(

m(h)
t

)
, and m(s,l)

t follows a multivariate

normal distribution with mean E
(

m(s,l)
t

)
, where

E
(

m(h)
t

)
= y0 +

(
α−UΘ−1β

)(
t− h

2

)
,

and
E
(

m(s,l)
t

)
=

1
2
(l − s)

(
α−UΘ−1β

)
,

Proof. By the definition of m(h)
t given in (5) and Lemma A3, we have

E
(

m(h)
t

)
= E

(
1
h

∫ t

t−h
yudu

)
=

1
h

∫ t

t−h
E(yu)du

=
1
h

∫ t

t−h
y0du +

1
h

∫ t

t−h

(
α−UΘ−1β

)
udu

= y0 +
(

α−UΘ−1β
)(

t− h
2

)
,

and
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E
(

m(s,l)
t

)
= E

(
m(s)

t −m(l)
t

)
= E

(
m(s)

t

)
− E

(
m(l)

t

)
=

1
2
(l − s)

(
α−UΘ−1β

)
.

Lemma A5. Let zu and bv be a multidimensional standard Brownian motion. If Corr(bv, zu) = Vbz,
then

Cov(zu, bv) = min(u, v)V>bz,

and

Cov(dzu, bv) =

{
V>bzdu, if u < v,

0, if u ≥ v.

Proof. Given that ziu and bjv are two-dimensional standard Brownian motions with cor-

relation coefficient ρji, we can express ziu by ρjibju +
√

1− ρ2
jib
′
ju, where bju and b′ju are

independent. It follows that

Cov
(
ziu, bjv

)
= Cov

(
ρjibju +

√
1− ρ2

jib
′
ju, bjv

)
= ρjiCov

(
bju, bjv

)
+
√

1− ρ2
jiCov

(
b′ju, bjv

)
= ρjimin(u, v),

which implies that
Cov(zu, bv) = min(u, v)V>bz.

We also have

Cov(dzu, bv) = Cov(zu+du − zu, bv) = Cov(zu+du, bv)−Cov(zu, bv)

= min(u + du, v)V>bz −min(u, v)V>bz

=

{
V>bzdu, if u < v,
0, if u ≥ v.

Lemma A6. Let xt be the vector of predictive variables in the market and bv be multidimensional
standard Brownian motion. Then, we have

Cov(xt, bv) =

{
−Θ−1

(
e(t−v)Θ − etΘ

)
VxV>bz, if t ≥ v,

−Θ−1(Iq − etΘ)VxV>bz, if t < v.

Proof. If t ≥ v, by Lemmas A2 and A5, we have

Cov(xt, bv) = Cov
(

etΘx0 −
(

Iq − etΘ
)

Θ−1β +
∫ t

0
e(t−u)ΘVxdzu, bv

)
= Cov

(∫ t

0
e(t−u)ΘVxdzu, bv

)
=
∫ t

0
e(t−u)ΘVxCov(dzu, bv)

=
∫ v

0
e(t−u)ΘVxCov(dzu, bv) +

∫ t

v
e(t−u)ΘVxCov(dzu, bv)

= −Θ−1
(

e(t−v)Θ − etΘ
)

VxV>bz ,

where zu is a multidimensional standard Brownian motion satisfying that Corr(bv, zu) = Vbz.
If t < v, by Lemmas A2 and A5, it follows that
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Cov(xt, bv) = Cov
(

etΘx0 −
(

Iq − etΘ
)

Θ−1β +
∫ t

0
e(t−u)ΘVxdzu, bv

)
=
∫ t

0
e(t−u)ΘVxCov(dzu, bv) = −Θ−1

(
Iq − etΘ

)
VxV>bz .

Lemma A7. Let xt be the vector of predictive variables in the market and yu be the vector of
log-transformed stock prices. Then, for t ≥ u, we have

Cov(xt, yu) = Θ−1etΘ
(

e−uΘ − Iq

)
Vx

(
1
2

Θ−1V>x U> −V>bzV>p

)
.

Proof. If t ≥ u, by Lemmas A2, A3 and A6, we have

Cov(xt, yu) = Cov
(

xt, y0 +
∫ u

0
(α + Uxv)dv + Vpbu

)
=
∫ u

0
Cov(xt, xv)U>dv + Cov(xt, bu)V>p

=
∫ u

0
−1

2
VxΘ−1e|t−v|ΘV>x U>dv−Θ−1

(
e(t−u)Θ − etΘ

)
VxV>bzV>p

=
∫ u

0
−1

2
VxΘ−1e(t−v)ΘV>x U>dv−Θ−1

(
e(t−u)Θ − etΘ

)
VxV>bzV>p

= −1
2

VxΘ−1
(
−Θ−1

[
e(t−u)Θ − etΘ

])
V>x U> −Θ−1

(
e(t−u)Θ − etΘ

)
VxV>bzV>p

= Θ−1etΘ
(

e−uΘ − Iq

)
Vx

(
1
2

Θ−1V>x U> −V>bzV>p

)
.

Lemma A8. Let xt be the vector of predictive variables in the market and m(h)
t be the vector of

moving averages based on lookback period h. Then, we have

Cov
(

xt, m(h)
t

)
=

(
ΘetΘ +

1
h

(
Iq − ehΘ

))
Q>3 ,

where
Q3 = UQ1 + Q>2 , Q2 = Θ−2VxV>bzV>p , Q1 = −1

2
VxV>x Θ−3.

Proof. By the definition of m(h)
t and Lemma A7, we have

Cov
(

xt, m(h)
t

)
= Cov

(
xt,

1
h

∫ t

t−h
yudu

)
=

1
h

∫ t

t−h
Cov(xt, yu)du

=
1
h

∫ t

t−h
Θ−1etΘ

(
e−uΘ − Iq

)
Vx

(
1
2

Θ−1V>x U> −V>bzV>p

)
du

=
1
h

Θ−1etΘ
(
−Θ−1

(
e−tΘ − e−(t−h)Θ

)
− hIq

)
Vx

(
1
2

Θ−1V>x U> −V>bzV>p

)
=

(
−1

h
Θ−2

(
Iq − ehΘ

)
−Θ−1etΘ

)
Vx

(
1
2

Θ−1V>x U> −V>bzV>p

)
=

(
ΘetΘ +

1
h

(
Iq − ehΘ

))(
Θ−2Vx

(
V>bzV>p −

1
2

Θ−1V>x U>
))

=

(
ΘetΘ +

1
h

(
Iq − ehΘ

))
Q>3 ,
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where
Q3 = UQ1 + Q>2 , Q2 = Θ−2VxV>bzV>p , Q1 = −1

2
VxV>x Θ−3.

Lemma A9. Let xt be the vector of the predictive variables in the market and m(s,l)
t be the vector of

the moving average difference based on lookback periods s and l (l > s). Then, we have

Cov
(

xt, m(s,l)
t

)
=

(
1
s

(
Iq − esΘ

)
− 1

l

(
Iq − elΘ

))
Q>3 ,

where
Q3 = UQ1 + Q>2 , Q2 = Θ−2VxV>bzV>p , Q1 = −1

2
VxV>x Θ−3.

Proof. By the definition of m(s,l)
t and Lemma A8, we have

Cov
(

xt, m(s,l)
t

)
= Cov

(
xt, m(s)

t −m(l)
t

)
= Cov

(
xt, m(s)

t

)
−Cov

(
xt, m(l)

t

)
=

(
ΘetΘ +

1
s

(
Iq − esΘ

))
Q>3 −

(
ΘetΘ +

1
l

(
Iq − elΘ

))
Q>3

=

(
1
s

(
Iq − esΘ

)
− 1

l

(
Iq − elΘ

))
Q>3 ,

where
Q3 = UQ1 + Q>2 , Q2 = Θ−2VxV>bzV>p , Q1 = −1

2
VxV>x Θ−3.

By Lemma A9, Cov
(

xt, m(s,l)
t

)
is independent of time t.

Lemma A10. Let yt be the vector of the log-transformed stock prices. Then, we have

Cov(yu, yv) =

{
UK1(u, v)Q>3 + Q3K2(v)U> + vVpV>p , if u ≥ v,
Q3K1(v, u)U> + UK2(u)Q>3 + uVpV>p , if u < v.

where
K1(u, v) = −e(u−v)Θ + euΘ − vΘ, K2(v) = evΘ − vΘ− Iq,

Q3 = UQ1 + Q>2 , Q2 = Θ−2VxV>bzV>p , Q1 = −1
2

VxV>x Θ−3.

Proof. By Lemmas A2, A3 and A6, for u ≥ v, we have

Cov(yu, yv)

= Cov
(

y0 +
∫ u

0
(α + Uxa)da + Vpbu, y0 +

∫ v

0

(
α + Uxj

)
dj + Vpbv

)
= Cov

(
U
∫ u

0
xada + Vpbu, U

∫ v

0
xjdj + Vpbv

)
= U

∫ u

0
da
∫ v

0
Cov

(
xa, xj

)
djU> + U

∫ u

0
Cov(xa, bv)daV>p

+ Vp

∫ v

0
Cov

(
bu, xj

)
djU> + VpCov(bu, bv)V>p .
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Since ∫ u

0
da
∫ v

0
Cov

(
xa, xj

)
dj

=
∫ u

0
da
∫ v

0
−1

2
VxΘ−1e|a−j|ΘV>x dj

= −1
2

VxΘ−1
[∫ v

0
dj
∫ u

0
e|a−j|Θda

]
V>x

= −1
2

VxΘ−1
[∫ v

0
dj
(∫ j

0
e|a−j|Θda +

∫ u

j
e|a−j|Θda

)]
V>x

= −1
2

VxΘ−1
{∫ v

0

[∫ j

0
e(j−a)Θda +

∫ u

j
e(a−j)Θda

]
dj
}

V>x

= −1
2

VxΘ−1
{∫ v

0

[
−Θ−1

(
Iq − ejΘ

)
+ Θ−1

(
e(u−j)Θ − Iq

)]
dj
}

V>x

= −1
2

VxΘ−1Θ−1
[∫ v

0
ejΘdj− 2

∫ v

0
Iqdj +

∫ v

0
e(u−j)Θdj

]
V>x

= −1
2

VxΘ−1Θ−1
[
Θ−1

(
evΘ − Iq

)
− 2vIq −Θ−1

(
e(u−v)Θ − euΘ

)]
V>x

= −1
2

VxΘ−3
(

euΘ + evΘ − e(u−v)Θ − 2vΘ− Iq

)
V>x

= −1
2

VxV>x Θ−3
(

euΘ + evΘ − e(u−v)Θ − 2vΘ− Iq

)
,

∫ u

0
Cov(xa, bv)da

=
∫ v

0
Cov(xa, bv)da +

∫ u

v
Cov(xa, bv)da

=
∫ v

0
−Θ−1

(
Iq − eaΘ

)
VxV>bzda +

∫ u

v
−Θ−1

(
e(a−v)Θ − eaΘ

)
VxV>bzda

= −Θ−1
(∫ v

0

(
Iq − eaΘ

)
da
)

VxV>bz −Θ−1
(∫ u

v

(
e(a−v)Θ − eaΘ

)
da
)

VxV>bz

= −Θ−1
(

vIq −Θ−1
(

evΘ − Iq

))
VxV>bz −Θ−2

(
e(u−v)Θ − Iq − euΘ + evΘ

)
VxV>bz

=
(
−vΘ + evΘ − Iq − e(u−v)Θ + Iq + euΘ − evΘ

)
Θ−2VxV>bz

=
(

euΘ − e(u−v)Θ − vΘ
)

Θ−2VxV>bz,∫ v

0
Cov

(
bu, xj

)
dj =

∫ v

0
Cov

(
xj, bu

)>dj =
∫ v

0
−VbzV>x

(
Iq − ejΘ

)
Θ−1dj

= −VbzV>x

(∫ v

0

(
Iq − ejΘ

)
dj
)

Θ−1 = −VbzV>x
(

vIq −Θ−1
(

evΘ − Iq

))
Θ−1

= VbzV>x Θ−2
(

evΘ − Iq − vΘ
)
=
(

Θ−2VxV>bz

)>(
evΘ − vΘ− Iq

)
,

and
Cov(bu, bv) = min(u, v)Iq,

for u ≥ v, we obtain that

Cov(yu, yv) = U
[
−1

2
VxV>x Θ−3

(
euΘ + evΘ − e(u−v)Θ − 2vΘ− Iq

)]
U>

+ U
(

euΘ − e(u−v)Θ − vΘ
)

Θ−2VxV>bzV>p

+ Vp

(
Θ−2VxV>bz

)>(
evΘ − vΘ− Iq

)
U> + Vpmin(u, v)V>p .
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Let
K1(u, v) = −e(u−v)Θ + euΘ − vΘ, K2(v) = evΘ − vΘ− Iq,

Q3 = UQ1 + Q>2 , Q2 = Θ−2VxV>bzV>p , Q1 = −1
2

VxV>x Θ−3.

Then, K1(u, v), K2(v) and Q1 are symmetric, Q1K1(u, v) = K1(u, v)Q1, and Q1, Q2,
and Q3 are all independent of time t. Therefore, for u ≥ v,

Cov(yu, yv) = UQ1(K1(u, v) + K2(v))U> + UK1(u, v)Q2 + Q>2 K2(v)U> + vVpV>p

= UK1(u, v)Q1U> + UQ1K2(v)U> + UK1(u, v)Q2 + Q>2 K2(v)U> + vVpV>p

= UK1(u, v)
(

Q1U> + Q2

)
+
(

UQ1 + Q>2
)

K2(v)U> + vVpV>p

= UK1(u, v)Q>3 + Q3K2(v)U> + vVpV>p .

Similarly, for u < v, we can derive that

Cov(yu, yv) = (Cov(yv, yu))
> =

(
UK1(v, u)Q>3 + Q3K2(u)U> + uVpV>p

)>
= Q3K1(v, u)U> + UK2(u)Q>3 + uVpV>p .

Lemma A11. Let m(s)
t and m(l)

t be the vectors of the moving averages based on lookback periods s
and l (l > s). Then, we have

Cov
(

m(s)
t , m(l)

t

)
= J(t; s, l) + Q4(s, l),

where
J(t; s, l) =

1
s

UΘ−1
(

etΘ − e(t−s)Θ
)

Q>3 − tUΘQ>3

+
1
l

Q3Θ−1
(

etΘ − e(t−l)Θ
)

U> − tQ3ΘU> + tVpV>p ,

Q4(s, l) =
1
sl

U
{

Θ−1
[
sIq −Θ−1

(
elΘ − e(l−s)Θ

)]
+

1
6

(
3l2s + s3

)
Θ− 1

2
s2 Iq

}
Q>3

+
1
sl

Q3

{
Θ−1

[
sIq + Θ−1

(
Iq − esΘ

)]
+

1
6

(
3l2s + s3

)
Θ− 1

2

(
2ls− s2

)
Iq

}
U>

− 1
sl

[
1
6

(
3l2s + s3

)]
VpV>p ,

and
Q3 = UQ1 + Q>2 , Q2 = Θ−2VxV>bzV>p , Q1 = −1

2
VxV>x Θ−3.

Proof. By the definitions of m(s)
t and m(l)

t , and Lemma A10, we have
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Cov
(

m(s)
t , m(l)

t

)
= Cov

(
1
s

∫ t

t−s
yudu,

1
l

∫ t

t−l
yvdv

)
=

1
sl

∫ t

t−s
du
∫ t

t−l
Cov(yu, yv)dv

=
1
sl

∫ t

t−s
du
(∫ u

t−l
Cov(yu, yv)dv +

∫ t

u
Cov(yu, yv)dv

)
=

1
sl

∫ t

t−s
du
{ ∫ u

t−l

[
UK1(u, v)Q>3 + Q3K2(v)U> + vVpV>p

]
dv

+
∫ t

u

[
Q3K1(v, u)U> + UK2(u)Q>3 + uVpV>p

]
dv
}

=
1
sl

∫ t

t−s
du
{ ∫ u

t−l
UK1(u, v)Q>3 dv +

∫ u

t−l
Q3K2(v)U>dv +

∫ u

t−l
vVpV>p dv

+
∫ t

u
Q3K1(v, u)U>dv +

∫ t

u
UK2(u)Q>3 dv +

∫ >
u

uVpV>p dv
}

.

Since

(1).
∫ u

t−l UK1(u, v)Q>3 dv =
∫ u

t−l U
(
−e(u−v)Θ + euΘ − vΘ

)
Q>3 dv

= U
{

Θ−1
(

Iq − e(u−t+l)Θ
)
+ euΘ(u− t + l)− 1

2
(
u2 − (t− l)2)Θ}Q>3 ,

(2).
∫ u

t−l Q3K2(v)U>dv =
∫ u

t−l Q3
(
evΘ − vΘ− Iq

)
U>dvQ3

{
Θ−1

(
euΘ − e(t−l)Θ

)
− 1

2
(
u2 − (t− l)2)Θ− (u− t + l)Iq

}
U>,

(3).
∫ u

t−l vVpV>p dv = 1
2
(
u2 − (t− l)2)VpV>p ,

(4).
∫ t

u Q3K1(v, u)U>dv = Q3
∫ t

u

(
−e(v−u)Θ + evΘ − uΘ

)
dvU>

= Q3

(
−Θ−1

(
e(t−u)Θ − Iq

)
+ Θ−1(etΘ − euΘ)− u(t− u)Θ

)
U>,

(5).
∫ t

u UK2(u)Q>3 dv = U
∫ t

u
(
euΘ − uΘ− Iq

)
dvQ>3 = U

[
(t− u)

(
euΘ − uΘ− Iq

)]
Q>3 ,

(6).
∫ t

u uVpV>p dv = u(t− u)VpV>p ,

we have
(1) + (5) = U

{
Θ−1

(
Iq − e(u−t+l)Θ

)
+ euΘl +

(
1
2 (t− u− l)2 − ul

)
Θ− (t− u)Iq

}
Q>3 ,

(2) + (4) = Q3

{
Θ−1

(
etΘ + Iq − e(t−u)Θ − e(t−l)Θ

)
+
(

1
2 (t− u− l)2 − ul

)
Θ

−(u− t + l)Iq
}

U>,

(3) + (6) = −
(

1
2 (t− u− l)2 − ul

)
VpV>p ,

which implies that

∫ t

t−s
[(1) + (5)]du = U

{ ∫ t

t−s
Θ−1

(
Iq − e(u−t+l)Θ

)
du +

∫ t

t−s
euΘldu

+
∫ t

t−s

(
1
2
(t− u− l)2 − ul

)
Θdu−

∫ t

t−s
(t− u)Iqdu

}
Q>3

= U
{

Θ−1
[
sIq −Θ−1

(
elΘ − e(l−s)Θ

)]
+ Θ−1

(
etΘ − e(t−s)Θ

)
l

+

(
1
6

(
l3 − (l − s)3

)
+

1
2

s2l − tsl
)

Θ− 1
2

s2 Iq

}
Q>3 ,
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and ∫ t

t−s
[(2) + (4)]du = Q3

{ ∫ t

t−s
Θ−1

(
etΘ + Iq − e(t−u)Θ − e(t−l)Θ

)
du

+
∫ t

t−s

(
1
2
(t− u− l)2 − ul

)
Θdu−

∫ t

t−s
(u− t + l)Iqdu

}
U>

= Q3

{
Θ−1

(
setΘ + sIq + Θ−1

(
Iq − esΘ

)
− se(t−l)Θ

)
+

(
1
6

(
l3 − (l − s)3

)
+

1
2

s2l − tsl
)

Θ− 1
2

(
l2 − (l − s)2

)
Iq

}
U>,

and ∫ t

t−s
[(3) + (6)]du =

∫ t

t−s
−
(

1
2
(t− u− l)2 − ul

)
VpV>p du

= −
(

1
6

(
l3 − (l − s)3

)
+

1
2

s2l − tsl
)

VpV>p .

Therefore,

Cov
(

m(s)
t , m(l)

t

)
=

1
sl

U
{

Θ−1
[
sIq −Θ−1

(
elΘ − e(l−s)Θ

)]
+ Θ−1

(
etΘ − e(t−s)Θ

)
l

+

(
1
6

(
l3 − (l − s)3

)
+

1
2

s2l − tsl
)

Θ− 1
2

s2 Iq

}
Q>3

+
1
sl

Q3

{
Θ−1

(
setΘ + sIq + Θ−1

(
Iq − esΘ

)
− se(t−l)Θ

)
+

(
1
6

(
l3 − (l − s)3

)
+

1
2

s2l − tsl
)

Θ− 1
2

(
l2 − (l − s)2

)
Iq

}
U>

+
1
sl

(
−1

6

(
l3 − (l − s)3

)
− 1

2
s2l + tsl

)
VpV>p

=
1
s

UΘ−1
(

etΘ − e(t−s)Θ
)

Q>3 − tUΘQ>3 +
1
l

Q3Θ−1
(

etΘ − e(t−l)Θ
)

U> − tQ3ΘU>

+ tVpV>p +
1
sl

U
{

Θ−1
[
sIq −Θ−1

(
elΘ − e(l−s)Θ

)]
+

1
6

(
3l2s + s3

)
Θ− 1

2
s2 Iq

}
Q>3

+
1
sl

Q3

{
Θ−1

[
sIq + Θ−1

(
Iq − esΘ

)]
+

1
6

(
3l2s + s3

)
Θ− 1

2

(
2ls− s2

)
Iq

}
U>

− 1
sl

[
1
6

(
3l2s + s3

)]
VpV>p

= J(t; s, l) + Q4(s, l),

where
J(t; s, l) =

1
s

UΘ−1
(

etΘ − e(t−s)Θ
)

Q>3 − tUΘQ>3

+
1
l

Q3Θ−1
(

etΘ − e(t−l)Θ
)

U> − tQ3ΘU> + tVpV>p ,

and

Q4(s, l) =
1
sl

U
{

Θ−1
[
sIq −Θ−1

(
elΘ − e(l−s)Θ

)]
+

1
6

(
3l2s + s3

)
Θ− 1

2
s2 Iq

}
Q>3

+
1
sl

Q3

{
Θ−1

[
sIq + Θ−1

(
Iq − esΘ

)]
+

1
6

(
3l2s + s3

)
Θ− 1

2

(
2ls− s2

)
Iq

}
U>

− 1
sl

[
1
6

(
3l2s + s3

)]
VpV>p ,
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and
Q3 = UQ1 + Q>2 , Q2 = Θ−2VxV>bzV>p , Q1 = −1

2
VxV>x Θ−3.

It is noted that Q1 is symmetric, Q1, Q2, and Q3 are independent of s, l, and t, Q4 is
independent of t but is dependent on s and l, and J is dependent on s, l, and t.

Lemma A12. Let m(s,l)
t be the vector of the moving average difference based on lookback periods s

and l (l > s). Then, Var
(

m(s,l)
t

)
is independent of time t, i.e.,

Var
(

m(s,l)
t

)
= Q4(s, s)−Q4(s, l)−Q>4 (s, l) + Q4(l, l),

where

Q4(s, l) =
1
sl

U
{

Θ−1
[
sIq −Θ−1

(
elΘ − e(l−s)Θ

)]
+

1
6

(
3l2s + s3

)
Θ− 1

2
s2 Iq

}
Q>3

+
1
sl

Q3

{
Θ−1

[
sIq + Θ−1

(
Iq − esΘ

)]
+

1
6

(
3l2s + s3

)
Θ− 1

2

(
2ls− s2

)
Iq

}
U>

− 1
sl

[
1
6

(
3l2s + s3

)]
VpV>p ,

and
Q3 = UQ1 + Q>2 , Q2 = Θ−2VxV>bzV>p , Q1 = −1

2
VxV>x Θ−3.

Proof. By the definition of m(s,l)
t and Lemma A11, we have

Var
(

m(s,l)
t

)
= Var

(
m(s)

t −m(l)
t

)
= Cov

(
m(s)

t , m(s)
t

)
−Cov

(
m(s)

t , m(l)
t

)
−Cov

(
m(l)

t , m(s)
t

)
+ Cov

(
m(l)

t , m(l)
t

)
=
[

J(t; s, s)− J(t; s, l)− J>(t; s, l) + J(t; l, l)
]

+
[

Q4(s, s)−Q4(s, l)−Q>4 (s, l) + Q4(l, l)
]

= Q4(s, s)−Q4(s, l)−Q>4 (s, l) + Q4(l, l),

in view of the fact that

J(t; s, s)− J(t; s, l)− J>(t; s, l) + J(t; l, l) = 0.

Lemma A13. Let b(0)
t be an n-dimensional standard Brownian motion and z(0)t be a q-dimensional

standard Brownian motion. Assume that b(0)
t and z(0)t are independent. If there is a symmetric

matrix Γ such that ΓΓ> =

(
In Vbz

V>bz Iq

)
, then (bt zt)

> = Γ
(

b(0)
t z(0)t

)>
are multidimensional

standard Brownian motions and Corr(bt, zt) = Vbz.
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Proof. Since b(0)
t and z(0)t are independent standard Brownian motions with dimensions n

and q, respectively, we have Var

(
b(0)

t

z(0)t

)
= tI(n+q). Let

(
bt
zt

)
= Γ

(
b(0)

t

z(0)t

)
. Then, we have

Var
(

bt
zt

)
= ΓVar

(
b(0)

t

z(0)t

)
Γ> = ΓtI(n+q)Γ

> = tΓΓ> = t
(

In Vbz
V>bz Iq

)
,

which implies that

Var(bt) = tIn, Var(zt) = tIq, Cov(bt, zt) = tVbz ,

and hence Corr(bt, zt) = Vbz. In addition, we have

Var
(

bt+dt − bt
zt+dt − zt

)
= Var

[
Γ

(
b(0)

t+dt − b(0)
t

z(0)t+dt − z(0)t

)]
= ΓVar

[(
b(0)

t+dt − b(0)
t

z(0)t+dt − z(0)t

)]
Γ>

= ΓdtI(n+q)Γ
> = dtΓΓ> = dt

(
In Vbz

V>bz Iq

)
,

which implies that

Var(bt+dt − bt) = dtIn, Var(zt+dt − zt) = dtIq,

and hence both bt and zt are standard Brownian motions.
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