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Abstract: A two-step Lagrange–Galerkin scheme for the shallow water equations with a transmission
boundary condition (TBC) is presented. First, we show the experimental order of convergence to
see the second-order accuracy in time realized by the two-step methods for conservative and non-
conservative material derivatives along the trajectory of fluid particles. Second, we observe the effect
of the TBC in a simple domain, and the artificial reflection is removed significantly when the wave
touches the TBC. Third, we apply the scheme to a practical domain with islands, namely, the Bay of
Bengal region, and observe the effect of the TBC again for the practical domain; the artificial reflections
are removed significantly from the transmission boundaries on open sea boundaries. We also study
the effect of a position of an open sea boundary with the TBC and reveal that it is sufficiently small to
neglect. The numerical results in this study show that the scheme has the following properties: (i) the
same advantages of Lagrange–Galerkin methods (the CFL-free robustness for convection-dominated
problems and the symmetry of the matrices for the system of linear equations); (ii) second-order
accuracy in time by the two-step methods; (iii) mass preservation of the function for the water level
from the reference height (until the contact with the transmission boundaries of the wave); and (iv) no
significant artificial reflection from the transmission boundaries. The numerical results by the scheme
presented in this paper are for the flat bottom topography of the domain. In the next part of this work,
Part II, the scheme will be applied to rapidly varying bottom surfaces and a real bottom topography
of the Bay of Bengal region.

Keywords: shallow water equations; two-step Lagrange–Galerkin scheme; second order in time;
transmission boundary condition; Bay of Bengal; bottom topography

MSC: 65M25; 65M60; 76D05; 76B15

1. Introduction

The system of shallow water equations (SWEs) is one of the most common models
for describing fluid flow in rivers, channels, estuaries, and coastal areas, and is often used
for simulating tsunamis and storm surges in oceanic phenomena. Natural disasters like
tsunamis, cyclones, and storm surges cause a tremendous loss of lives and properties in
the coastal areas in several regions. According to [1], statistics show that about 5% of the
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global tropical cyclones form over the Bay of Bengal, and, on average, five to six storms
form in this region every year, but with 80% of the global casualties. The significant factors
behind the heavy casualties are the shallow coastal water, thickly populated low-lying
islands, highly curved coastal and island boundaries, river discharge, high astronomical
tidal range, and favorable cyclone track, cf. [2] and Figure 1. That is why an effective storm
surge prediction model and method are highly desired for the coastal region of Bangladesh
to minimize the resulting damage from storm surges.

Figure 1. The Bay of Bengal region.

Studies focusing on the Bay of Bengal region are found in [1–8] and references therein.
Almost all the researchers implemented SWEs with a radiation-type boundary condition
for open sea boundaries. Although for real problems, the finite element method is more
suitable than the finite difference method because of the advantages of handling complex
physical domains, geometries, or boundary conditions, as far as we know, there is no study
to solve SWEs employing a transmission boundary condition (TBC) for the Bay of Bengal
region using the finite element method except [9,10].

Since a bounded computational domain is needed to compute the SWEs in a practical
coastal region, e.g., the Bay of Bengal, we set an artificial boundary in the open sea, called
the open boundary, which is a part of the boundary of the domain. Let u = (u1, u2)

> be the
velocity (averaged in x3-direction), φ (= η + ζ) the total wave height, η the water level from
the reference height, and ζ (>0) the depth of the water level from the reference height. On
the coastal boundary, it is natural to have the reflection, which is realized by the Dirichlet
boundary condition, u = 0, and, on the open boundary, an artificial boundary condition
is required so that the wave passes through the boundary without any reflection, as the
boundary is set artificially on the open sea. Most open boundary conditions proposed
in the literature are based on or modifications of the Sommerfeld radiation boundary
condition (RBC) [11] whose typical form is

u =
√

g/ζ ηn (1)
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for the gravity constant g (>0) and the outward unit normal vector n. The condition (1)
is derived by considering the SWEs in one-dimensional space essentially and assuming
that the velocity u on the open boundary is u = Vη/ζ n for the wave propagation speed V
and that V is given by V =

√
gζ. Due to some limitations of the RBC for oblique flows,

many researchers suggested and implemented modified boundary conditions for open
boundaries similar to the RBC, cf., e.g., [12–14]. Kanayama and Dan [15] also employed an
open boundary condition of the form,

u = c0
√

gζ η/φ n (2)

for a constant c0 (>0), which removes the artificial reflection from the open boundary
significantly. The condition (2) is comparable to the RBC as Equation (2) is obtained
by replacing ζ with φ2/ζ in Equation (1), where the relation ζ ≈ φ2/ζ ≈ φ holds if
|η| � ζ is satisfied. In fact, the numerical results by the TBC and the RBC are similar, cf.
Appendix B. On the other hand, the TBC is more reasonable than the RBC for the theoretical
stability study of the system of the SWEs from the viewpoint of energy as presented in
Murshed et al. [9] and Murshed [10], while it is still a partial study (but practically useful),
cf. Remark 6 for a brief review of the theoretical results. Based on the stability study, we
employ the TBC in this paper and observe the effect of the TBC (or the RBC) for the passing
wave in addition to the effect of the Dirichlet boundary condition for the reflection wave.
These observations are basic but necessary for the development of a scheme for SWEs.

The system of the SWEs consists of two equations, a pure convection equation for
the total wave height and a modified Navier–Stokes momentum equation for the velocity
derived by taking the average of function values in x3-direction, cf. [9,16], which include
the material derivatives in conservative and non-conservative forms, respectively. For
a time step size ∆t > 0, let tn := n∆t. The so-called Lagrange–Galerkin method is the
finite element method combined with the idea of the method of characteristics; the non-
conservative and conservative material derivatives are discretized as, for a scalar-valued
function φ and a velocity u, cf., e.g., [17–20],

[∂φ

∂t
+ u · ∇φ

]
(x, tn) =

φn(x)− φn−1(x− un(x)∆t)
∆t

+ O(∆t),[∂φ

∂t
+∇ · (uφ)

]
(x, tn) =

φn(x)− φn−1(x− un(x)∆t)γn(x)
∆t

+ O(∆t),

respectively, which are first-order approximations in time, where x − un(x)∆t is an up-
wind point of x with respect to un(x) and γn is the Jacobian determinant of the map-
ping x− un(x)∆t. In general, the Lagrange–Galerkin method has two advantages; (i) the
CFL-free robustness for convection-dominated problems and (ii) the symmetry of the result-
ing coefficient matrices for the system of linear equations. In addition to the four pioneering
works above, many authors have proposed the ideas of this type of approximation in the
context of the finite element method, cf. [21–48] and references therein. When we focus on
the SWEs, to the best of our knowledge, Murshed et al. [9] and Murshed [10] firstly solved
the SWEs with a TBC by a (single-step) Lagrange–Galerkin scheme of first-order in time for
a flat bottom topography. Recently, a two-step mass-preserving Lagrange–Galerkin scheme
of second order in time for conservative convection-diffusion problems has been proposed
and analyzed with error estimates in [49].

In this paper, we present a new two-step Lagrange–Galerkin scheme to solve the SWEs
together with a TBC, which is of second order in time and maintains the two advantages
of the Lagrange–Galerkin methods, i.e., the CFL-free robustness and the symmetry of
the resulting matrices. The two material derivatives are discretized based on the ideas
of two-step methods proposed for the non-conservative form in [17,21,24,40] and the
conservative form in [49]. Firstly, preparing an artificial exact solution, we observe our
scheme’s experimental order of convergence (EOC) to see the second-order accuracy in time
on a simple (square) domain. Since long (real-)time computations on a mesh refined locally
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are needed in practical problems, the CFL-free second-order accuracy in time of our scheme
is a significant advantage, enabling us to employ a more extensive time increment compared
with first-order numerical methods. Secondly, we observe the effect of the TBC on a simple
(square) domain, and the artificial reflections are kept from the Dirichlet boundaries and
removed significantly from the transmission boundaries. Thirdly, our scheme is applied to
the Bay of Bengal region, which is non-convex, includes islands, and is, therefore, a complex
domain. We again observe the effect of the TBC for this realistic domain. The artificial
reflections are removed significantly from the transmission boundaries, which are set on
open sea boundaries. We also study the effect of a position of an open sea boundary with
the TBC and reveal that it is sufficiently small to neglect. In [9], energy estimates for the
SWEs were given, where the L2-norm of the water level from the reference height was an
important value related to the potential energy. Focusing on the energy and the mass of
the water level function, we observe the L2-norm and the mass of the water level function,
which show the effectiveness of the TBC.

From the computations, we show that our new scheme has the following properties;
(i) the same advantages of Lagrange–Galerkin methods; (ii) second-order accuracy in
time; (iii) mass preservation of the function of the water level from the reference height
(until the contact with the transmission boundaries of the wave); and (iv) no significant
artificial reflection from the transmission boundaries. We mention again that the TBC is
employed in this paper based on the theoretical stability study in [9,10], while the numerical
results by the TBC and the RBC are similar.

All of the numerical results in this paper, Part I, are for the flat bottom topography, and the
non-homogeneous bottom topography will be studied in our forthcoming paper, Part II.

The outline of this paper is as follows. Section 2 presents a two-step Lagrange–Galerkin
scheme for the SWEs together with a TBC, which is of second order in time. In Section 3,
numerical results for simple square domains are shown to observe the second-order accu-
racy in time and the effect of TBC. In Section 4, our scheme is applied to the Bay of Bengal
region, where the domain is non-convex and complex. In Section 5, conclusions are given.
The data for choosing the constant c0 required in the TBC and a comparison of the TBC
with the RBC are given in Appendixes A and B, respectively.

2. A Two-Step Lagrange–Galerkin Scheme

We introduce some notations to be used in this paper. Ω is a bounded spatial domain inR2,
Γ := ∂Ω is the boundary of Ω, and (0, T) is a temporal domain in R+ (:= {x ∈ R; x > 0})
for a positive constant T. We use the Lebesgue space Lp(Ω) (p ∈ [1, ∞]) and the Sobolev
space H1(Ω). For any normed space X with its norm ‖ · ‖X, we define function spaces
C0([0, T]; X) and L∞(0, T; X) consisting of X-valued functions in C0([0, T]) and L∞(0, T),
respectively. Let (·, ·) be the inner product in L2(Ω), i.e., ( f , g) :=

∫
Ω f (x)g(x)dx for

f , g ∈ L2(Ω). We employ the same notation (·, ·) to represent the L2(Ω) inner product
for scalar-, vector-, and matrix-valued functions. Let A : B be the tensor product defined
by A : B := ∑2

i,j=1 AijBij = tr(AB>) for A, B ∈ R2×2.

2.1. Statement of the Problem

Our problem is to find (φ, u) : Ω× (0, T)→ R×R2 such that

∂φ

∂t
+∇ · (uφ) = f in Ω× (0, T), (3a)

ρφ
[∂u

∂t
+ (u · ∇)u

]
− 2µ∇ · (φD(u)) + ρgφ∇η = F in Ω× (0, T), (3b)

φ = η + ζ in Ω× (0, T), (3c)

u = 0 on ΓD × (0, T), (3d)

u = c0
√

gζ
η

φ
n on ΓT × (0, T), (3e)

(φ, u) = (φ0, u0) in Ω, at t = 0, (3f)
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where the total wave height and the velocity are denoted by φ and u = (u1, u2)
>, re-

spectively, the water level from the reference height and the depth of water level from
the reference height, i.e., bottom topography, are represented by η : Ω× (0, T) → R and
ζ : Ω→ R+, respectively, a pair of external forces is given by ( f , F) : Ω× (0, T)→ R×R2,
a pair of initial values is given by (φ0, u0) : Ω→ R×R2, density and viscosity constants of
water are denoted by ρ > 0 and µ > 0, the gravity constant is given by g > 0, the strain-rate
tensor D(u) is defined by

D(u) :=
1
2

[
∇u + (∇u)>

]
,

and the outward unit normal vector is denoted by n : Γ → R2, cf. Figure 2. We suppose
that the boundary Γ is divided into two non-overlapping parts, ΓD and ΓT, i.e., Γ = ΓD ∪ ΓT
and ΓD ∩ ΓT = ∅, where the subscripts “D” and “T” imply Dirichlet and transmission
boundaries, respectively. A positive constant c0 is chosen suitably to remove the artificial
reflection, and, throughout this paper, we employ c0 = 0.9, which is determined based on
numerical experiments given in Appendix A. We consider homogeneous flat bottom topog-
raphy in this paper, Part I, and non-homogeneous bottom topography in our forthcoming
paper, Part II.

x1

x2x3

Ω

ζ
φ (= η + ζ)

η

u1

u2

Figure 2. Diagrams for the problem; left: the domain Ω and the velocity u = (u1, u2)
>; right: the

total wave height φ = η + ζ.

2.2. Presentation of the Scheme

Let Ψ := L2(Ω), Y := H1(Ω)2,

V(G) :=
{

v ∈ Y; v = 0 on ΓD and v = G on ΓT
}

for a function G : ΓT → R2, and V := V(0). We introduce a φ-dependent function,
G(φ) = G(φ; η) : ΓT → R2, defined by

G(φ) = G(φ; η) := c0
√

gζ
η

φ
n.

Assume φ0 ∈ Ψ, η0 := φ0 − ζ ∈ Ψ and u0 ∈ V(G(φ0)) = V(G(φ0; η0)). A weak
formulation to problem (3) is to find {(φ, u)(t) ∈ Ψ× V(G(φ(t); η(t))); t ∈ (0, T)} such
that, for t ∈ (0, T), (∂φ

∂t
+∇ · (uφ), ψ

)
= ( f , ψ) ∀ψ ∈ Ψ, (4a)

ρ

(
φ
[∂u

∂t
+ (u · ∇)u

]
, v
)
+ a(u, v; φ) + b(η, v; φ) = (F, v) ∀v ∈ V, (4b)

φ = η + ζ, (4c)

with the initial condition (φ, u)(0) = (φ0, u0) ∈ Ψ × V(G(φ0; η0)), where the bilinear
forms a(·, · ; φ) : Y×Y → R and b(·, · ; φ) : Ψ×Y → R are defined by

a(u, v; φ) := 2µ
(
φD(u), D(v)

)
, b(η, v; φ) := ρg

(
φ∇η, v

)
.
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Now, we present our scheme for solving problem (3). Let Th = {K} be a partition of Ω
by triangular elements, h be the maximum diameter of K ∈ Th, and Ωh := int(∪K∈Th K) be
an approximated domain. Although it holds that Ω 6= Ωh in general, we assume Ω = Ωh
throughout the paper to avoid the complexity of introducing many symbols. We define
finite element spaces, Ψh, Yh and Vh(G), corresponding to Ψ, Y and V(G) by

Ψh := {ψh ∈ C0(Ω); ψh|K ∈ Pk(K) ∀K ∈ Th},
Yh := {vh ∈ C0(Ω)2; vh|K ∈ P`(K)2 ∀K ∈ Th},

Vh(G) := {vh ∈ Yh; vh = 0 on ΓD and vh = G on ΓT},

for k, ` ∈ N, and set Vh := Vh(0), where Pk(K) is the space of polynomial functions of
degree k ∈ N on K ∈ Th. In this paper, we employ k = ` = 1, and the function G : ΓT → R2

is assumed to be a piecewise linear function.
Let ∆t be a time increment, NT := bT/∆tc a total number of time steps, and tn := n∆t

a time at n-th time step. For v : Ω → R2, we define mappings X1[v], X̃1[v] : Ω → R2 and
γ1[v], γ̃1[v] : Ω→ R by

X1[v](x) := x− ∆t v(x), X̃1[v](x) := x− 2∆t v(x),

γ1[v](x) := det
(

∂X1[v]
∂x

(x)
)

, γ̃1[v](x) := det
(

∂X̃1[v]
∂x

(x)
)

.

For
{

φn}NT
n=0 and

{
un}NT

n=0, we define an operator A∆t[u]φn by, for n = 1, . . . , NT ,

A∆t[u]φn :=

A
(1)
∆t [u]φ

n (n = 1),

A(2)
∆t [u]φ

n (n ≥ 2),

where

A(1)
∆t [u]φ

n :=
φn − φn−1 ◦ X1[un−1]γ1[un−1]

∆t
,

A(2)
∆t [u]φ

n :=
3φn − 4φn−1 ◦ X1[un∗]γ1[un∗] + φn−2 ◦ X̃1[un∗]γ̃1[un∗]

2∆t
.

The composition of functions is represented by the symbol ◦, i.e.,(
ψ ◦ X1[v]

)
(x) = ψ

(
X1[v](x)

)
,

and the function un∗ : Ω→ R2 is defined by

un∗ := 2un−1 − un−2,

which is a second-order temporal approximation of un if u is sufficiently smooth. We also
define, for

{
wn}NT

n=0,

B∆t[w]un :=

{
B(1)∆t [w]un (n = 1),
B(2)∆t [w]un (n ≥ 2),

where

B(1)∆t [w]un :=
un − un−1 ◦ X1[wn−1]

∆t
,

B(2)∆t [w]un :=
3un − 4un−1 ◦ X1[wn∗] + un−2 ◦ X̃1[wn∗]

2∆t
.
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The two-step Lagrange–Galerkin scheme is to find {(φn
h , un

h) ∈ Ψh × Vh(G(φn
h ; ηn

h ));
n = 1, . . . , NT} such that, for n = 1, 2, . . . , NT ,(

A∆t[uh]φ
n
h , ψh

)
=
(

f n, ψh
)

∀ψh ∈ Ψh, (5a)

ρ
(
φn

hB∆t[uh]un
h , vh

)
+ a
(
un

h , vh; φn
h
)
+ b
(
ηn

h , vh; φn
h
)
=
(

Fn, vh
)

∀vh ∈ Vh, (5b)

φn
h = ηn

h + Πhζ, (5c)

with an initial condition (
φ0

h, u0
h
)
=
(
Πhφ0, Πhu0) ∈ Ψh ×Yh, (5d)

where the Lagrange interpolation operator is denoted by Πh : C(Ω)→ Ψh, which is also
used for the vector-valued function u0, i.e., Πhu0 ∈ Yh.

Remark 1. Scheme (5) is equivalent to(
φn

h − φn−1
h ◦ X1[un−1

h ]γ1[un−1
h ]

∆t
, ψh

)
=
(

f n, ψh
)

∀ψh ∈ Ψh,

ρ

(
φn

h
un

h − un−1
h ◦ X1[un−1

h ]

∆t
, vh

)
+ 2µ

(
φn

h D(un
h), D(vh)

)
+ρg

(
φn

h∇ηn
h , vh

)
=
(

Fn, vh
)

∀vh ∈ Vh,

φn
h = ηn

h + Πhζ,

for the first step n = 1, and(
3φn

h − 4φn−1
h ◦ X1[un∗

h ]γ1[un∗
h ] + φn−2

h ◦ X̃1[un∗
h ]γ̃1[un∗

h ]

2∆t
, ψh

)
=
(

f n, ψh
)

∀ψh ∈ Ψh,

ρ

(
φn

h
3un

h − 4un−1
h ◦ X1[un∗

h ] + un−2
h ◦ X̃1[un∗

h ]

2∆t
, vh

)
+2µ

(
φn

h D(un
h), D(vh)

)
+ ρg

(
φn

h∇ηn
h , vh

)
=
(

Fn, vh
)

∀vh ∈ Vh,

φn
h = ηn

h + Πhζ,

for general steps n ≥ 2.

Remark 2. We have the following notes.

(i) At each time step, we obtain φn
h ∈ Ψh from Equation (5a) and un

h ∈ Vh(G(φn
h ; ηn

h ))
from Equation (5b) combined with Equation(5c), where both of the resulting coefficient matri-
ces of the systems of linear equations derived from Equations (5a) and (5b) are symmetric.

(ii) We needA(1)
∆t [u] and B(1)∆t [w] due to the lack of the functions φn−2

h and un−2
h for n = 1, which

are used for A(2)
∆t [uh]φ

n
h and B(2)∆t [uh]un

h for n ≥ 2.

(iii) The two-step methods in conservative and non-conservative forms,A(2)
∆t [uh]φ

n
h andB(2)∆t [uh]un

h ,
are developed and analyzed for convection-diffusion problems in [17,49].

(iv) It is discussed in [40,49] that the one-time use of first-order single-step methods, A(1)
∆t [uh]φ

n
h

and B(1)∆t [uh]un
h , has no loss of convergence order in discrete version of L∞(0, T; L2(Ω))-norm

for a conservative convection-diffusion equation and the Navier–Stokes equations, respectively.
(v) The so-called quadrilateral elements Qk(K), e.g., bilinear (k = 1) and biquadratic (k = 2)

elements, with a partition of Ω, Th = {K}, by rectangles are also available for Ψh and Yh.

Remark 3. Suppose that the pair (φ, u) : Ω× (0, T)→ R×Rd is a smooth solution to Equation (3)
and that n ≥ 2. Then, the truncation errors of the Equations (5a) and (5b) are of second order in
time, i.e., ∥∥A∆t[u]φn − f n∥∥

L∞(Ω)
= O(∆t2),
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∥∥ρφnB∆t[u]un − 2µ∇ ·
(
φD(un)

)
+ ρgφn∇ηn − Fn∥∥

L∞(Ω)
= O(∆t2),

asA∆t[u]φn andB∆t[u]un are second-order approximations of the conservative and non-conservative
material derivatives, respectively, i.e.,

[
A∆t[u]φn](x) =

[∂φ

∂t
+∇ · (uφ)

]
(x, tn) + O(∆t2),[

B∆t[u]un](x) =
[∂u

∂t
+ (u · ∇)u

]
(x, tn) + O(∆t2),

and the evaluation point is (x, tn) ∈ Ω× (0, T), cf. [40,49].

Remark 4. Suppose that Ω is convex and Γ = ΓD, that φ is known and smooth, that there exist
positive constants c† and c† such that (0 <) c† ≤ φ(x, t) ≤ c† for any (x, t) ∈ Ω × [0, T],
and ` = 1. Then, the unknown function of problem (3) is only u, and we can prove stability and
error estimates for the velocity if u is smooth enough, i.e., there exist positive constants h∗ and
c∗ independent of h and ∆t such that, for any pair (h, ∆t) with h ∈ (0, h∗] and ∆t ≤ c∗h2/5,
the solution {un

h}
NT
n=1 ⊂ Vh to scheme (5) whose φn

h is replaced with φn satisfies ‖uh‖`∞(L∞(Ω)) ≤
‖u‖C0(L∞(Ω)) + 1 and ‖uh − u‖`∞(L2) = O(∆t2 + h2) by induction argument similar to the proof
of the stability and error estimates of a scheme for the Navier–Stokes equations in [40].

3. Numerical Results in Square Domains

In this section, numerical results via FreeFem++ [50] with k = ` = 1 (piecewise linear,
P1-element) are presented to see the experimental order of convergence (EOC) and the
effect of the TBC in square domains, where both of the systems of linear equations for
Equations (5a) and (5b) are solved by the LU decomposition method in FreeFem++. We call
scheme (5) LG2, and also call scheme (5) replacing A∆t and B∆t with A(1)

∆t and B(1)∆t , respec-
tively, LG1 [9,10], which is a (single-step) Lagrange–Galerkin scheme of first order in time.

3.1. Experimental Order of Convergence

We solve Examples 1 and 2 below by LG1 and LG2 and compare the experimental
orders of convergence (EOCs).

Example 1 (Γ = ΓD). In problem (3), we set Ω = (0, 1)2, Γ = ΓD (ΓT = ∅), T = 1,
g = ρ = µ = ζ = 1, and the function η0, u0, f and F are given so that the exact solution is

φ(x, t) = 1 +
sin πx1 sin πx2(2 + sin πt)

8
, u(x, t) =

sin πx1 sin πx2(2 + sin πt)
3

[
1
1

]
.

Example 2 (Γ = ΓD ∪ ΓT). In Example 1, we replace ΓT and ΓD with ΓT = {x ∈ Γ; x2 = 0} and
ΓD = Γ \ ΓT, respectively.

For a numerical solution zh = {zn
h}

NT
n=0 and its exact solution z = {zn}NT

n=0, we intro-
duce notations of errors, Ei(z), i = 0, 1, defined by

E0(z) :=
‖zh − z‖`∞(L2)

‖z‖`∞(L2)
, E1(z) :=

‖∇(zh − z)‖`∞(L2)

‖∇z‖`∞(L2)
,

where ‖ · ‖`∞(L2) is a norm given by

‖z‖`∞(L2) := max{‖zn‖L2(Ω); n = 0, . . . , NT}.

Let N be a division number of each side of the unit square domain Ω and h := 1/N
a representative mesh size. We prepare non-uniform triangulations of Ω, Th, for N =
8, 16, 32, 64, 128 and 256, cf. Figure 3 for N = 32.

Choosing ∆t = 0.25
√

h, we compute the errors, Ei(η) and Ei(u), i = 0, 1, by LG1
and LG2. Figures 4 and 5 show graphs of the errors of E0(·) and E1(·), respectively, in loga-
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rithmic scale by LG1 for Example 1 (i) and Example 2 (ii), and by LG2 for Example 1 (iii)
and Example 2 (iv), and the values of errors and their EOCs are given in Tables 1 and 2. We
observe that LG2 is of second order in time numerically and that the order is higher than
that of LG1. Although E1(η) is not of second order in time, it is natural as Equation (3a)
for φ (= η + ζ) does not include any diffusion term.

Remark 5. Lagrange–Galerkin schemes are basically CFL-free, and our scheme also has this
property. In fact, the CFL number in this computation is U∆t/h = 1/(4

√
h) = 4 for N = 256 as

the maximum velocity U is 1 and the ∆t is chosen as ∆t = 0.25
√

h.

Figure 3. A sample mesh with N = 32 for Example 1.
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Figure 4. Graphs of errors E0(η) and E0(u) in logarithmic scale by LG1 for Example 1 (i) and
Example 2 (ii), and by LG2 for Example 1 (iii) and Example 2 (iv).
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Figure 5. Graphs of errors E1(η) and E1(u) in logarithmic scale by LG1 for Example 1 (i) and
Example 2 (ii), and by LG2 for Example 1 (iii) and Example 2 (iv).

Table 1. Values of Ei(η) and Ei(u), i = 0, 1, by schemes LG1 and LG2 for Example 1 (Γ = ΓD).

LG1

N ∆t E0(η) EOC E0(u) EOC

8 8.84× 10−2 3.89× 100 - 3.78× 10−2 -
16 6.25× 10−2 2.20× 100 1.65 2.28× 10−2 1.45
32 4.42× 10−2 1.45× 100 1.19 1.57× 10−2 1.09
64 3.13× 10−2 1.01× 100 1.05 1.10× 10−2 1.03

128 2.21× 10−2 7.11× 10−1 1.01 7.77× 10−3 1.00
256 1.56× 10−2 5.02× 10−1 1.00 5.51× 10−3 0.99

LG1

N ∆t E1(η) EOC E1(u) EOC

8 8.84× 10−2 3.00× 100 - 7.78× 10−2 -
16 6.25× 10−2 1.73× 100 1.59 4.63× 10−2 1.49
32 4.42× 10−2 1.25× 100 0.93 2.95× 10−2 1.31
64 3.13× 10−2 9.78× 10−1 0.71 2.04× 10−2 1.06

128 2.21× 10−2 6.42× 10−1 1.22 1.42× 10−2 1.04
256 1.56× 10−2 4.35× 10−1 1.12 1.00× 10−2 1.01

LG2

N ∆t E0(η) EOC E0(u) EOC

8 8.84× 10−2 6.81× 10−1 - 1.71× 10−2 -
16 6.25× 10−2 1.96× 10−1 3.60 7.03× 10−3 2.57
32 4.42× 10−2 8.53× 10−2 2.40 3.32× 10−3 2.16
64 3.13× 10−2 3.82× 10−2 2.32 1.64× 10−3 2.04

128 2.21× 10−2 1.87× 10−2 2.05 8.20× 10−4 1.99
256 1.56× 10−2 9.46× 10−3 1.97 4.17× 10−4 1.95

LG2

N ∆t E1(η) EOC E1(u) EOC

8 8.84× 10−2 3.97× 100 - 5.68× 10−2 -
16 6.25× 10−2 2.24× 100 1.65 2.90× 10−2 1.94
32 4.42× 10−2 2.00× 100 0.33 1.20× 10−2 2.54
64 3.13× 10−2 1.64× 100 0.57 6.72× 10−3 1.67

128 2.21× 10−2 1.17× 100 0.97 3.23× 10−3 2.11
256 1.56× 10−2 8.64× 10−1 0.88 1.47× 10−3 2.28
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Table 2. Values of Ei(η) and Ei(u), i = 0, 1, by schemes LG1 and LG2 for Example 2 (Γ = ΓD ∪ ΓT).

LG1

N ∆t E0(η) EOC E0(u) EOC

8 8.84× 10−2 3.88× 100 - 3.86× 10−2 -
16 6.25× 10−2 2.19× 100 1.65 2.33× 10−2 1.46
32 4.42× 10−2 1.45× 100 1.19 1.58× 10−2 1.11
64 3.13× 10−2 1.01× 100 1.05 1.11× 10−2 1.03

128 2.21× 10−2 7.09× 10−1 1.01 7.82× 10−3 1.01
256 1.56× 10−2 5.01× 10−1 1.00 5.53× 10−3 1.00

LG1

N ∆t E1(η) EOC E1(u) EOC

8 8.84× 10−2 2.95× 100 - 7.80× 10−2 -
16 6.25× 10−2 1.71× 100 1.57 4.64× 10−2 1.50
32 4.42× 10−2 1.24× 100 0.94 2.95× 10−2 1.31
64 3.13× 10−2 9.78× 10−1 0.67 2.03× 10−2 1.07

128 2.21× 10−2 6.42× 10−1 1.21 1.41× 10−2 1.04
256 1.56× 10−2 4.34× 10−1 1.13 9.96× 10−3 1.01

LG2

N ∆t E0(η) EOC E0(u) EOC

8 8.84× 10−2 6.70× 10−1 - 1.75× 10−2 -
16 6.25× 10−2 1.95× 10−1 3.56 7.23× 10−3 2.55
32 4.42× 10−2 8.58× 10−2 2.37 3.37× 10−3 2.20
64 3.13× 10−2 3.97× 10−2 2.22 1.67× 10−3 2.03

128 2.21× 10−2 1.87× 10−2 2.17 8.37× 10−4 2.00
256 1.56× 10−2 9.54× 10−3 1.94 4.25× 10−4 1.96

LG2

N ∆t E1(η) EOC E1(u) EOC

8 8.84× 10−2 3.89× 100 - 5.70× 10−2 -
16 6.25× 10−2 2.21× 100 1.63 2.93× 10−2 1.92
32 4.42× 10−2 1.98× 100 0.32 1.24× 10−2 2.49
64 3.13× 10−2 1.65× 100 0.54 6.90× 10−3 1.69

128 2.21× 10−2 1.17× 100 0.97 3.26× 10−3 2.16
256 1.56× 10−2 8.62× 10−1 0.89 1.48× 10−3 2.27

3.2. Effect of the TBC

We consider the following example to see the effect of the TBC.

Example 3. In problem (3), we set Ω = (0, 10)2, T = 100, g = ρ = µ = ζ = 1, ( f , F) = (0, 0),
η0 = c exp(−100 |x− p|2), c = 10−3, p = (5, 5)>, and u0 = 0. We consider five cases of ΓT,

(a) ΓT = ∅, i.e., Γ = ΓD,
(b) ΓT = {x ∈ Γ; x2 = 0} (bottom), ΓD = Γ \ ΓT,
(c) ΓT = {x ∈ Γ; x1 = 10, x2 = 0} (right and bottom), ΓD = Γ \ ΓT,
(d) ΓT = {x ∈ Γ; x1 = 10, x2 = 0, 10} (right, bottom and top), ΓD = Γ \ ΓT,
(e) ΓT = Γ.

We solve Example 3 by LG2. Figure 6 shows the color contours of ηn
h for t = 25k,

k = 0, . . . , 4, cf. (i)–(v), for the five cases, (a)–(e). We can see the effect of the boundary
conditions; the artificial reflection is observed and removed significantly when the wave
touches the Dirichlet (ΓD) and the transmission (ΓT) boundaries, respectively. Thus, LG2
works well for the SWEs with and without the TBC in the simple square domain.
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Figure 6. Color contours of ηn
h by LG2 with and without the TBC for the five cases, (a–e), in Example 3.

4. Application to the Bay of Bengal

In this section, we apply LG2, i.e., scheme (5) discussed in Section 2.2, to a computa-
tional domain of the Bay of Bengal region, cf. Figure 7, which is an approximate domain of
the original, cf. Figure 1. All the computations are performed via FreeFem++ [50].
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Figure 7. The domain for the Bay of Bengal region with the information of boundaries, ΓD

and ΓT (= ΓT1 ∪ ΓT2 ∪ ΓT3) used in Example 4.

4.1. Numerical Simulation with and without the TBC

We set the following example.

Example 4. Let Ω be the domain shown in Figure 7. The domain is considered from 0 to 1051.4 [km] in
the horizontal direction and 0 to 889.59 [km] in the vertical direction. We employ two boundary conditions,
the Dirichlet boundary condition on ΓD and the TBC on ΓT, cf. Figure 7. We set ΓD on the coastal and
island boundaries and ΓT on the artificial boundaries for the open sea. As shown in Figure 7, there are three
artificial boundaries on the open sea, i.e., ΓT = ΓT1 ∪ ΓT2 ∪ ΓT3. In problem (3), we set T = 5000 [s],
ζ = 2 [km], η0(x) = c1 exp(−0.04|x− p|2) [km], c1 = 0.01 [−], p = (559.56, 430.02)>, u0 = 0,
µ = 1 [Pa · s], ρ = 1012 [kg/km3], g = 9.8× 10−3 [km/s2] and ( f , F) = (0, 0).

We prepare a triangular mesh of the domain as shown in Figure 8, where the numbers
of elements and nodal points are 60,619 and 31,120, respectively. Then, a numerical
simulation is done by LG2 with ∆t = 0.2 [s]. The results at t = 0, 2500, 3000, 4000, 4500
and 5000 [s] are presented in Figures 9 and 10. In the figures, for comparison to see the
effect of the TBC, we compute Example 4 by replacing ΓT with ΓD and put it on the left.
From Figure 9, we can see that a circular wave is created at around the point p, that it
propagates towards the boundary over time, that reflections are found when the wave
touches ΓD, and that the results with Γ = ΓD (left) and Γ = ΓD ∪ ΓT (right) are similar.
From Figure 10, we can observe that artificial reflections on the open sea boundaries are
significantly removed when the wave touches ΓT, cf. the right figures. Thus, LG2 works
well for a simple (square) domain and this complex domain, the Bay of Bengal region,
which is non-convex and includes islands.

For any (smooth) solution to problem (3), we define the total energy E(t) by

E(t) := E1(t) + E2(t) :=
∫

Ω

ρ

2
φ|u|2dx +

∫
Ω

ρg|η|2
2

dx, (6)

where E1(t) is the kinetic energy, and E2(t) is the potential energy. Then, it is worthy to
note that the following energy estimate holds, cf. ([9] Corollary 3.3-(i)),

d
dt
E(t) = −ρ

2

∫
ΓT

φ|u|2u · n ds− ρg
∫

ΓT

φηu · n ds
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+ 2µ
∫

ΓT

φ[D(u)n] · u ds− 2µ
∫

Ω
φ|D(u)|2 dx. (7)

Here, focusing on E2(t) (= 1
2

∫
Ω ρg|η|2dx) and the mass of η, i.e.,

∫
Ω η dx, we present

the values of the L2(Ω)-norm of ηn
h , i.e, ‖ηn

h‖L2(Ω), and the mass of ηn
h , i.e.,

∫
Ω ηn

h dx,
in Figures 11 and 12, respectively. In principle, we can say that the TBC works well
numerically if ‖ηn

h‖L2(Ω) and
∫

Ω ηn
h dx decrease around the time that the wave touches

the transmission boundaries. Figure 11 shows graphs of ‖ηn
h‖L2(Ω) for the two cases,

with and without the transmission boundaries, i.e., Γ = ΓD ∪ ΓT and Γ = ΓD (ΓT = ∅),
respectively. Figure 12 shows the graphs of

∫
Ω ηn

h dx for the four cases of (transmission)
boundaries, (i) no transmission boundary, i.e., ΓT = ∅, (ii) one transmission boundary,
i.e., ΓT = ΓT2, (iii) two transmission boundaries, i.e., ΓT = ΓT1 ∪ ΓT3, and (iv) three
transmission boundaries, i.e., ΓT = ΓT1 ∪ ΓT2 ∪ ΓT3. From Figures 11 and 12, we can see that
there are decreasing phenomena of the value of L2(Ω)-norm as well as the value of the mass
when the TBC is imposed. From Figure 9, we can see that the wave touches the transmission
boundary ΓT2 at time around t = 3000 [s]; that is why, the mass of ηn

h decreases drastically
from around 3000 [s] to 3200 [s], cf. Figure 12 (yellow and green lines). Again, the mass
started to decrease between the period from around 4000 [s] to 4500 [s], cf. Figure 12, since
the wave reached the transmission boundary ΓT1 and ΓT3, cf. Figure 10.

Figure 8. The mesh for the Bay of Bengal region used for Example 4.
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(a1) t = 0 (a2) t = 0

(b1) t = 2500 (b2) t = 2500

(c1) t = 3000 (c2) t = 3000

Figure 9. Contour plot of ηn
h by LG2 with Γ = ΓD (left) and Γ = ΓD ∪ ΓT (right) on the Bay of Bengal

for t = 0, 2500 and 3000.
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(a1) t = 4000 (a2) t = 4000

(b1) t = 4500 (b2) t = 4500

(c1) t = 5000 (c2) t = 5000

Figure 10. Contour plot of ηn
h by LG2 with Γ = ΓD (left) and Γ = Γ̄D ∪ Γ̄T (right) on the Bay of Bengal

for t = 4000, 4500 and 5000.

Remark 6. We recall the results in [9] and mention the advantage of the TBC Equation (3e) on the
stability under the assumption φ > 0 on ΓT × [0, T].

(i) The last term in the RHS of (7) is obviously non-positive. From the TBC Equation (3e),
i.e., φu = c0

√
gζηn, we observe that the second term in the RHS of Equation (7) is non-positive:

−ρg
∫

ΓT

φηu · n ds = −ρg
∫

ΓT

c0
√

gζ η2 ds ≤ 0.

Since it is numerically observed in [9] that the second term is dominant from the viewpoint of
the energy E(t), cf. ([9] (Remark 3.5)), we can expect that this non-positivity derived from the
TBC Equation (3e) improves the stability of the SWEs Equation (3).
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(ii) Let us additionally introduce a theorem ([9] (Theorem 3.4)). Suppose that there exists α ∈ (0, 1)
such that

η(x, t) ≥ −αζ(x) (x ∈ ΓT, t ∈ [0, T]),

0 < c0 ≤
√

2/α (1− α). (8)

Then, the summation of the first and second terms in the RHS of Equation (7) is non-positive, i.e.,

−ρ

2

∫
ΓT

φ|u|2u · n ds− ρg
∫

ΓT

φηu · n ds ≤ 0,

in particular,

d
dt
E(t) ≤ 2µ

∫
ΓT

φ[D(u)n] · u ds.

(iii) As mentioned in ([9] (Remark 3.6)), the condition (8) is not strict in the practical computation,
where α and c0 are chosen typically as, e.g., α = 0.01 and c0 = 0.9. These satisfy condition (8)
since

√
2/α (1− α) ≈ 14.

(iv) We have compared our results by the TBC (c0 = 0.9) and a modified TBC (c0 = 1) with those
by the RBC:

u =
√

g/ζ ηn on ΓT × (0, T). (9)

The results by the three boundary conditions are not significantly different as presented
in Appendix B. We note that condition (9) is the well-known RBC, cf., e.g., [8], and that
the modified TBC is obtained by replacing ζ with φ2/ζ in Equation (9), where the rela-
tion ζ ≈ φ2/ζ ≈ φ holds if |η| � ζ is satisfied.

Figure 11. Graphs of ‖ηn
h ‖L2(Ω) with respect to time (t = tn) for Example 4 with ΓT (Γ = ΓD ∪ ΓT)

and without ΓT (Γ = ΓD).
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Figure 12. Graphs of the mass of ηn
h with respect to time (t = tn) for Example 4 with the fol-

lowing four settings; no transmission boundary, i.e., ΓT = ∅ (purple), one transmission boundary,
i.e., ΓT = ΓT2 (green), two transmission boundaries, i.e., ΓT = ΓT1 ∪ ΓT3 (blue), and three transmission
boundaries, i.e., ΓT = ΓT1 ∪ ΓT2 ∪ ΓT3 (yellow).

4.2. Effect of Position of a Transmission Boundary

We consider Example 4 again to see the effect of the TBC with an extension of the do-
main (Ω), where the size of the domain in the vertical direction is extended from 889.59 [km]
to 989.59 [km], i.e., 100 [km] extension. We employ the same boundary conditions on
Γ = ΓD ∪ ΓT for both original and extended domains, where ΓT = ΓT1 ∪ ΓT2 ∪ ΓT3. We
compare the numerical results for the extended domain with the ones for the original
domain, cf. Figures 13 and 14, where the left and right figures show the results for the
extended and original domains, respectively. It is observed that there is no significant effect
of the vertical position of the bottom transmission boundary ΓT2. We also computed the
mass of η for both domains, cf. Figure 15. From Figure 15, we can see that the mass of
ηk

h started to decrease at time t = 3000 for the original domain, cf. Figure 13c2, while the
mass of ηk

h started to decrease at time t = 4000 for the extended domain, cf. Figure 14b1,
because the wave touches the boundary ΓT2 at these times (t = 3000 and t = 4000) for the
original and extended domains, respectively. A similar decreasing property of mass of ηk

h
can be observed from Figure 15 when the wave touches the transmission boundaries. The
results confirm that the TBC works well numerically and that we can choose the vertical
position of the bottom transmission boundary ΓT2 without significant effect.
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(a1) t = 0 (a2) t = 0

(b1) t = 2500 (b2) t = 2500

(c1) t = 3000 (c2) t = 3000
Figure 13. Contour plot of ηn

h by LG2 with Γ = Γ̄D ∪ Γ̄T for the extended domain (left) and for the
original domain (right) on the Bay of Bengal for t = 0, 2500 and 3000. The green dotted lines in the
left figures indicate the position of the bottom boundary of the original domain.
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(a1) t = 3500 (a2) t = 3500

(b1) t = 4000 (b2) t = 4000

(c1) t = 5000 (c2) t = 5000
Figure 14. Contour plot of ηn

h by LG2 with Γ = Γ̄D ∪ Γ̄T for the extended domain (left) and for the
original domain (right) on the Bay of Bengal for t = 3500, 4000 and 5000.
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Figure 15. Graphs of the mass of ηn
h for the extended and original domain with a TBC.

5. Conclusions

We have presented a two-step Lagrange–Galerkin scheme for the shallow water
equations with a TBC. For the scheme, the EOCs have been computed (cf. Examples 1 and 2
in Section 3.1) and the second-order accuracy in time has been confirmed. From numerical
experiments on a simple square domain (cf. Example 3 in Section 3.2), it has been observed
that the effect of the TBC works well. Our scheme has been applied to a realistic domain,
the Bay of Bengal, and numerical experiments have been performed for two different types
of boundary conditions, i.e., with and without the TBC (cf. Section 4.1). There have been
no significant reflections from ΓT and the wave has passed through ΓT while reflections
have been observed from ΓD, and, in the graphs of ‖ηn

h‖L2(Ω) and the mass of ηn
h (cf.

Figures 11 and 12), natural decays of the values of ‖ηn
h‖L2(Ω) as well as the mass of ηn

h
have been observed when the TBC is imposed. In addition, for the domain extended by
100 [km] in the vertical direction, it has been confirmed that there is no significant effect of
changing the position of the transmission boundary (cf. Section 4.2). From these numerical
experiments, we conclude that our two-step Lagrange–Galerkin scheme, cf. Equation (5),
works well numerically not only for a simple domain but also for a complex domain with
the TBC if the bottom topography is flat. We note that the TBC is employed in this paper
based on the theoretical stability study in [9,10], while the numerical results by the TBC
and the RBC are similar (cf. Appendix B). In our forthcoming paper, Part II, the scheme
will be applied to rapidly varying bottom surfaces and a real bottom topography of the Bay
of Bengal region to investigate the effect of non-homogeneity of the bottom topography. In
addition to the effect of the non-homogeneous bottom topography, there are other effects
for developing an accurate storm surge prediction, e.g., the Coriolis and the bottom friction
forces and the wind stresses, which will be the future work.
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Abbreviations
The following abbreviations are used in this manuscript:

RBC Radiation boundary condition
TBC Transmission boundary condition
SWEs Shallow water equations
EOC Experimental order of convergence
LG1 Single-step Lagrange–Galerkin scheme of first order in time
LG2 Two-step Lagrange–Galerkin scheme of second order in time

Appendix A. Choice of c0

Based on [9], focusing on the potential energy E2(t), cf. Equation (6), we perform
numerical experiments for the choice of c0 for two cases with the following settings:

- Case I (the square domain). In problem (3), we set Ω = (0, 10)2, T = 100, g = 9.8× 10−3,
ρ = 1012, µ = ζ = 1, ( f , F) = (0, 0), c = 10−3, η0 = c exp(−100|x− p|2), p = (5, 5)>,
u0 = 0 and Γ = ΓT (ΓD = ∅). We employ discretization parameters, N = 200 (h = 1/N),
and ∆t = 0.25

√
h.

- Case II (the Bay of Bengal). The parameters are the same as Example 4 except the
value of c0. We employ the same mesh and ∆t (=0.2) in Section 4.

For ηh = {ηn
h}

NT
n=1, let ‖ηh‖`2(L2) be a norm of ηh defined by

‖ηh‖`2(L2) :=

√√√√∆t
NT

∑
n=1
‖ηn

h‖
2
L2(Ω)

(≈ ‖η‖L2(0,T;L2(Ω))).

We compute the two cases for c0 = 0.5, 0.6, . . ., and 1.2. The results are shown
in Table A1 and imply that, for both cases, we have minimum values of ‖ηh‖`2(L2) for c0 = 0.9.

Table A1. Values of c0 and ‖ηh‖`2(L2).

‖ηh‖`2(L2)

Value of c0 Case I (the Square Domain) Case II (the Bay of Bengal)

0.5 8.16 × 10−2 13.55
0.6 8.08 × 10−2 13.54
0.7 8.03 × 10−2 13.5342
0.8 8.002× 10−2 13.5323
0.9 7.997× 10−2 13.5319
1.0 8.006× 10−2 13.5328
1.1 8.02 × 10−2 13.5354
1.2 8.05 × 10−2 13.5375

Appendix B. Comparison with Radiation Type Open Boundary Condition

For the comparison, we consider the same problem settings of Case I and Case II
in Appendix A. We compare the TBC (with c0 = 0.9) and a modified TBC (with c0 = 1)

with the RBC Equation (9) used for the Bay of Bengal in [1–8] by focusing on the values
of ‖ηh‖`2(L2). Table A2 shows the values, which are all similar, while the smallest value is
obtained by the TBC (with c0 = 0.9) employed in this paper. Figure A1 shows the graphs
of ‖ηn

h‖L2(Ω) (≈ ‖η(·, tn)‖L2(Ω)) for further information.
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Table A2. Valuesof ‖ηh‖`2(L2) for different boundary conditions for Case I and Case II.

‖ηh‖`2(L2)

Boundary Condition Case I (the Square Domain) Case II (the Bay of Bengal)

TBC 7.997× 10−2 13.5316
modified TBC with c0 = 1 8.006× 10−2 13.5328

RBC 8.007× 10−2 13.5334

Figure A1. Graphs of L2(Ω)-norm of ηn
h for different boundary conditions for Case II (the Bay of Bengal).
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