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1. Introduction

Feynman integrals are undoubtedly of central importance in the most varied fields
of quantum physics. It is remarkable how they have been defying attempts at a direct
mathematical interpretation since the times of Gelfand and Yaglom [1]. There has been an
abundance of indirect definitions of this infinite-dimensional “integral” through discretiza-
tions or via analytic continuation of better-defined integrals such as in the Feynman–Kac
formula, which is the analytic continuation of the Wiener integral to a purely imaginary
time (see, e.g., [2]), which together with complex scaling was a method used by Doss [3].
Another one is the work of DeWitt-Morette on promeasures (also called cylindrical mea-
sures) in relation to the Feynman path integrals [4]. Albeverio and Høegh-Krohn also
developed a general theory of oscillating integrals to give a mathematical foundation to
Feynman path integrals [2]. A rather fruitful alternative is to generalize the notion of
such (infinite-dimensional) integrals as one does in the theory of generalized functions
or “distributions”, for which white noise analysis provides a natural framework [5–8].
This approach, whose construction of Feynman integrals was first proposed in [9,10], and
by Khandekar and Streit [11], turned out to be useful for a large and growing class of
potentials [10–16]. The case of potentials that are Laplace transforms of measures has
already been explored in [12]. In the present paper, we extend this to combinations of
the harmonic oscillator with potentials that are Laplace transforms of rapidly decreasing
measures, such as the Morse potential. On the other hand, white noise analysis proved to
be a useful approach to phase space Feynman integrals [17,18], and we shall show similar
results obtained with this method in Appendix A.

This paper is organized as follows. In Section 2, we collect the necessary tools from
white noise analysis that are needed later on. In Section 3, we describe how to realize
the Feynman integrals in white noise analysis as well as the classes of potentials we are
interested in. The main results of this paper are included in Section 4, namely Theorem 3.
Finally, in Appendix A, we sketch how to realize the Feynman integrands in the phase
space in white noise analysis.
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2. Some Facts on White Noise Analysis

From [5–8], we collected the concepts and theorems of white noise analysis used in
this paper.

Let d ∈ N be given and L2
d be the Hilbert space of vector-valued square integrable

measurable functions:
L2

d := L2(R)⊗Rd.

The space L2
d is unitary isomorphic to a direct sum of d identical copies of L2 := L2(R), the

space of real-valued square integrable measurable functions with respect to the Lebesgue
measure. Any element f ∈ L2

d may be written in the form

f = ( f1 ⊗ e1, . . . , fd ⊗ ed), (1)

where fi ∈ L2(R), i = 1, . . . , d and {e1, . . . , ed} denotes the canonical basis of Rd. The norm
of f ∈ L2

d is given by

| f |20 :=
d

∑
k=1
| fk|2L2 =

d

∑
k=1

∫
R

f 2
k (x)dx. (2)

As a densely embedded nuclear space in L2
d, we choose Sd := S(R)⊗Rd, where S(R) is the

Schwartz test function space. With (| · |p)p∈N0 , we denote the sequence of Hilbert norms
which topologizes Sd. An element ϕ ∈ Sd has the form

ϕ = (ϕ1 ⊗ e1, . . . , ϕd ⊗ ed), (3)

where ϕi ∈ S(R), i = 1, . . . , d. Together with the basic nuclear space of tempered distribu-
tions S′d := S′(R)⊗Rd (the dual space of Sd), we obtain the triple

Sd ⊂ L2
d ⊂ S′d. (4)

The dual pairing between S′d and Sd is given as an extension of the scalar product in L2
d by

〈w, ϕ〉 =
d

∑
k=1
〈wk, ϕk〉, (5)

for any w = (w1 ⊗ e1, . . . , wd ⊗ ed) ∈ S′d with wi ∈ S′(R), i = 1, . . . , d and ϕ, as in
Equation (3). The space S′d is provided with the σ algebra B generated by the cylinder sets.

Using Minlos’ theorem, we construct a measure space
(
S′d, B, µ

)
, called the white

noise space, by fixing the characteristic functional in the following way:

C(ϕ) =
∫

S′d
exp(i〈w, ϕ〉)dµ(w) = exp

(
−1

2
|ϕ|20

)
, ϕ ∈ Sd. (6)

Within this formalism, a version of Wiener’s Brownian motion B is given by

B(t, w) := (〈w,1[0,t) ⊗ e1〉, . . . , 〈w,1[0,t) ⊗ ed〉)

=

(∫ t

0
w1(s)ds, . . . ,

∫ t

0
wd(s)ds

)
, w ∈ S′d.

(7)

We now introduce the complex Hilbert space

L2(µ) := L2(S′d, B, dµ
)

(8)

with the inner product given by

((F, G)) :=
∫

S′d
F̄(w)G(w)dµ(w), F, G ∈ L2(µ). (9)
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In applications, the space L2(µ) is often too small. We enlarge it by first choosing a nuclear
subspace (Sd)

1 of the test functionals. Then, the corresponding Gel’fand triple is

(Sd)
1 ⊂ L2(µ) ⊂ (Sd)

−1. (10)

Elements of the space (Sd)
−1 are called Kondratiev distributions, and its explicit

construction is given in [19]. The dual pairing between (Sd)
1 and (Sd)

−1 is denoted by 〈〈·, ·〉〉
and is a bilinear extension of the inner product of L2(µ). More precisely, if F, G ∈ L2(µ),
then we have

〈〈F, G〉〉 = ((F̄, G)) =
∫

S′d
F(w)G(w)dµ(w).

Instead of reproducing its construction here, we shall completely characterize the
Kondratiev distributions Φ ∈ (Sd)

−1 by their “T-transforms”.
We make use of the fact that in many physics applications, Φ will be given in terms of

a “source functional”. More precisely, for every Φ ∈ (Sd)
−1, there exist p, q ∈ N0 such that

for any ϕ ∈ Up,q with Up,q := {ϕ ∈ Sd | |ϕ|2p < 2−q}, the T-transform of Φ is given by

TΦ(ϕ) = Eµ[Φ exp(i〈·, ϕ〉)] = 〈〈Φ, exp(i〈·, ϕ〉)〉〉, (11)

where we introduce the convenient notation of the expectation Eµ of a µ-integrable function.
Fortunately, these expressions provide a complete characterization. Generalized functionals
in the Kondratiev space are characterized by the local analyticity and local boundedness of
these source functionals. To formulate precisely the characterization theorem, we need the
motion of holomorphy in a nuclear space. See [20] for more details:

Definition 1. Let U ⊆ Sd,C be an open set and F : U −→ C be a given function. Then, F is
holomorphic on U if and only if, for all ϕ0 ∈ U, the following apply:

1. For any ϕ ∈ Sd,C, the map C 3 z 7→ F(ϕ0 + zϕ) ∈ C is holomorphic in a neighborhood of
zero in C;

2. There exists an open neighborhood U′ of ϕ0 such that F is bounded on U′.

F is holomorphic at zero if and only if F is holomorphic in a neighborhood of zero.

Now, we are ready to state the announced characterization theorem of Kondratiev
distributions (see [19]):

Theorem 1. Let U ⊆ Sd,C be an open set and F : U → C be holomorphic at zero. Then, there
exists a unique Φ ∈ (Sd)

−1 such that TΦ = F. Conversely, given Φ ∈ (Sd)
−1, then TΦ is

holomorphic at zero. The correspondence between F and Φ is bijective if we identify holomorphic
functions which coincide on an open neighborhood of zero.

In applications, we have to handle the convergence of sequences of distributions from
(Sd)

−1 as well as integrals of elements in (Sd)
−1, depending on a parameter. The following

two corollaries are a consequence of Theorem 1 and will be applied in what follows:

Corollary 1. Let (Φn)n∈N be a sequence in (Sd)
−1 such that there exists Up,q ⊂ Sd, p, q ∈ N0 so

that the following are true:

1. All TΦn are holomorphic on Up,q;
2. There exists a C > 0 such that |TΦn(ϕ)| ≤ C for all ϕ ∈ Up,q and all n ∈ N;
3. (TΦn(ϕ))n∈N is a Cauchy sequence in C for all ϕ ∈ Up,q.

Then, (Φn)n∈N converges strongly in (Sd)
−1.

Corollary 2. Let (Λ, A , ν) be a measure space and λ 7→ Φλ be a mapping from Λ to (Sd)
−1. We

assume there exists Up,q ⊂ Sd, p, q ∈ N0 such that the following are true:

1. TΦλ is holomorphic on Up,q for every λ ∈ Λ;



Mathematics 2023, 11, 1632 4 of 13

2. The mapping λ 7→ TΦλ(ϕ) is measurable for every ϕ ∈ Up,q;
3. There exists C ∈ L1(Λ, A , ν) such that

|TΦλ(ϕ)| ≤ C(λ) (12)

for all ϕ ∈ Up,q and for ν-almost all λ ∈ Λ.

Then, Φλ is Bochner integrable. In particular, we have∫
Λ

Φλ dν(λ) ∈ (Sd)
−1 (13)

and we may interchange the dual pairing and integration such that〈〈∫
Λ

Φλ dν(λ), ξ

〉〉
=
∫

Λ
〈〈Φλ, ξ〉〉dν(λ), ξ ∈ (Sd)

1. (14)

3. Feynman Integrals in Terms of White Noise

To realize the heuristic integral∫
e

i
h̄ SF[x]d∞x(t) = 〈〈I, F〉〉, I ∈ (Sd)

−1, (15)

where S is the classical action, as an average over paths, the basic idea is to invoke Brownian
paths from (x0, t0) to (x, t):

x(τ) = x0 +

(
h̄

mo

)1/2
〈w,1[t0,τ)〉, (16)

where h̄ = h/(2π) is the reduced Planck’s constant h and mo is the mass of the particle. We
shall set h̄ = mo = 1 from here on. It is noteworthy to mention in passing that the Wiener
integral [21] ∫

e−
∫ t

t0
V(γ(τ)+x)dτ F[γ(t0) + x]dB(γ), (17)

where V is a kind of “potential” and γ(τ) ∈ R is an absolutely continuous function on
[t0, t], having a form of functional integration similar to that in Equation (15) except for
having a purely imaginary time (i.e., t→ −it), is rigorously defined for the heat equation
(see, for example, [2]), as Equation (15) is heuristically defined for the Schrödinger equation,
which is analogous to the heat equation upon replacing t with it. In the expression for the
free Feynman integrand

I0(x, t|x0, t0) = Nexp
(

i + 1
2

∫
R
|w(τ)|2 dτ

)
δ(x(t)− x), (18)

where N is a normalizing constant and the imaginary part of the exponent is the free action,
the real part compensates the Gaussian fall-off of the white noise measure, and the Donsker
delta function pins the path at the final point (x, t). From the characteristic functional in
Equation (6), it is straightforward to calculate the T-transform of I0 using, for example, the
Fourier representation of the delta function to obtain the following with ϕ ∈ Sd:

TI0(ϕ) =
1

(2πi|t− t0|)
d
2

exp
[
− i

2
|ϕ|20 dτ − 1

2i|t− t0|

∣∣∣∣∫ t

t0

ϕ(τ)dτ + x− x0

∣∣∣∣2
0

]
, (19)

which satisfies the assumptions of the characterization in Theorem 1. Hence, we arrive at a
definition of the Feynman integrand I0 as a well-defined element in (Sd)

−1. In addition,
from the physics point of view, the Feynman integral Eµ[I0] = TI0(0) is the free particle
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propagator (2π(t− t0))
−d/2 exp

[
i

2|t−t0|
|x− x0|2

]
and is the fundamental solution to the

Schrödinger equation.
For the harmonic oscillator (for space dimension d = 1), the potential Vh is given by

Vh(x) =
1
2

k2x2, x ∈ R (20)

and the corresponding Feynman integrand is

Ih := I0 exp
(
−i
∫ t

t0

V(x(τ))dτ

)
.

For k ≥ 0, the corresponding T-transform of Ih at ϕ ∈ Sd is given by comparison with Equa-
tion (9) in [13] (for the results obtained using “phase space white noise analysis”, see (A1)
of Appendix A):

TIh(ϕ) =

(
k

2πi sin k|∆|

) d
2

exp
(
− i

2
|ϕ∆|20 −

1
2
|ϕ∆c |20

)
exp

{
ik

2 sin k|∆|

×
[(

x2
0 + x2

)
cos k|∆|+ 2x

∫ t

t0

ϕ(t′) cos k(t′ − t0)dt′ − 2x0

∫ t

t0

ϕ(t′) cos k(t− t′)dt′

−2x0x + 2
∫ t

t0

∫ s1

t0

ϕ(s1)ϕ(s2) cos k(t− s1) cos k(s2 − t0)ds2 ds1

]}
, (21)

where we denoted ∆ := [t0, t] and ϕ∆ and ϕ∆c are the restrictions of ϕ to ∆ and to
∆c := R\∆, respectively.

A rather surprising class of potentials is given by the Laplace transforms of a complex
measure m on the Borel sets on Rd (see [12]):

V(x) =
∫
Rd

eα·x dm(α), x ∈ Rd, (22)

where m satisfies ∫
Rd

eC|y| d|m|(y) < ∞, ∀C > 0. (23)

Example 1. It follows from the assumption in Equation (23) that the measure m is finite. In
addition, every finite measure with compact support satisfies the condition in Equation (23):

1. If the measure m is chosen to be m = gδa, where a > 0, then the corresponding potential is
V(x) = geax;

2. Polynomials and exponential functions also belong to the class of potentials covered by
Equations (22) and (23). In particular, sinh(ax), cosh(ax), and the Morse potential

V(x) = g
(

e−2ax − 2γe−ax
)

with g, a, x ∈ R and γ > 0,

are also included in the class.

Example 2. A Gaussian measure m gives the anharmonic oscillator potential V(x) = gebx2
,

g, b, x ∈ R. Entire functions of arbitrary high orders of growth are also in this class.

Remarkably, in each case, the construction of the Feynman integrand is perturbative.
We have to give a meaning to the pointwise multiplication

IV = I0 · exp
(
−i
∫ t

t0

V(x(τ))dτ

)
with x(τ) given as in Equation (16). We have the following result (see Theorem 16 in [12]):
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Theorem 2. If we let V be as in Equation (22) above, then

IV :=
∞

∑
n=0

(−i)n

n!

∫
[t0,t]n

dns
∫
Rdn

I0 ·
n

∏
j=1

eαj ·x(sj)
n

∏
j=1

dm(αj) (24)

exists as a generalized white noise functional. The series converges in the strong topology of (Sd)
−1.

The integrals exist in the sense of Bochner.

The proof is based on the characterization theorem and its corollaries from Section 2.

4. The Feynman Integrand for a New Class of Potentials

Our aim is to define the Feynman integrand

I := I0 · exp
(
−i
∫ t

t0

V(x(τ))dτ

)
(25)

for a new class of potentials V of the form V = V1 + V2, with

x(τ) = x0 + 〈w,1[t0,τ)〉,

V1(x) =
∫
Rd

eα·x dm(α), V2(x) =
1
2

k2|x|2, x ∈ Rd (26)

as before. In order to accomplish this, we will first give a mathematical meaning to the
heuristic expression

I = I0 exp
(
−i
∫ t

t0

V(x(τ))dτ

)
= Ih exp

(
−i
∫ t

t0

V1(x(τ))dτ

)
. (27)

We shall start from a perturbative ansatz which we then justify by using Theorem 1 and its
corollaries. In Theorem 3 below, it will be shown that I is indeed a well-defined generalized
white noise functional.

We formally expand the exponential in Equation (27) into a perturbation series with
respect to V1. This leads to

I =
∞

∑
n=0

(−i)n

n!

∫
[t0,t]n

dns
∫
Rdn

Ih exp

(
n

∑
l=1

αl · x(sl)

)
n

∏
l=1

dm(αl), (28)

and will show that the rhs defines a generalized function of white noise (i.e., an element in
(Sd)

−1). We accomplish this in three steps:

Step 1. For each n ∈ N0, the integrand Φn := Ih · exp(∑n
l=1 αl · x(sl)) is a Kondratiev

distribution, compared with Proposition 1 below.
Step 2. For each n ∈ N0, the s and α integration of Φn is a well-defined element in (Sd)

−1,
compared with Lemma 1.

Step 3. The series in Equation (28) converges in (Sd)
−1, compared with Theorem 3.

Now, we show the three steps above in order to establish that I, given in Equation (28),
is a well-defined element in (Sd)

−1.

Step 1. First, we need to check that the pointwise multiplication of generalized functionals
for each natural number n ∈ N0, where

Φn = Ih · exp

(
n

∑
l=1

αl · x(sl)

)
(29)
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produces a well-defined generalized functional. Due to the characterization in Theorem 1,
it is enough to define this product through its T-transform. Arguing formally, for ϕ ∈ Sd,
we arrive at

TΦn(ϕ) =
∫

S′d
Φn(w) exp(i〈w, ϕ〉)dµ(w) = TIh(ϕ + iξt) exp

(
n

∑
l=1

x · αl

)
, (30)

where we have denoted ξt := ∑n
l=1 αl1[sl ,t). Note also that we have used the fact that

from Equation (16) (with h̄ = mo = 1), it follows that for each l = 1, . . . , n, we have
x(sl) = x(t)− 〈w,1[sl ,t)〉. Hence, we need only to deal with the T-transform of Ih on the
function ϕ + iξt (i.e., the first factor in Equation (30)). Explicitly, by invoking the result in
Equation (21), for k ≥ 0, we obtain

TIh(ϕ + iξt) =

(
k

2πi sin k|∆|

) d
2

exp
(
− i

2
|(ϕ + iξt)∆|20 −

1
2
|ϕ∆c |20

)
exp

{
ik

2 sin k|∆|

×
[(
|x0|2 + |x|2

)
cos k|∆|+ 2x ·

∫ t

t0

(ϕ + iξt)(t′) cos k(t′ − t0)dt′

− 2x0 ·
∫ t

t0

(ϕ + iξt)(t′) cos k(t− t′)dt′ − 2x0x

+ 2
∫ t

t0

∫ s1

t0

(ϕ + iξt)(s1) · (ϕ + iξt)(s2)

× cos k(t− s1) cos k(s2 − t0)ds2 ds1

]}
. (31)

Note that the scalar products in the first exponent must be considered as a bilinear
analytic continuations from the case of real-valued functions ϕ. As a result, we have

TIh(ϕ + iξt) = TIh(ϕ) exp
(
(ϕ∆, ξt)0 +

i
2
|ξt|20

)
exp

{
ik

2 sin k|∆|

×
[

2ix ·
∫ t

t0

ξt(t′) cos k(t′ − t0)dt′ − 2ix0 ·
∫ t

t0

ξt(t′) cos k(t− t′)dt′

+ 2i
∫ t

t0

∫ s1

t0

(
ϕ(s1) · ξt(s2) + ϕ(s2) · ξt(s1)

)
cos k(t− s1) cos k(s2 − t0)ds2 ds1

− 2
∫ t

t0

∫ s1

t0

ξt(s1) · ξt(s2) cos k(t− s1) cos k(s2 − t0)ds2 ds1

]}
. (32)

Now, we are ready to state the result of Step 1:

Proposition 1. Let k ≥ 0 be such that 0 < k|∆| < 1, sl ∈ [t0, t], and αj ∈ Rd, 1 ≤ l ≤ n are
given. Then, for every n ∈ N0, the product

Φn = Ih · exp

(
n

∑
l=1

αl · x(sl)

)
(33)

defined for any ϕ ∈ Sd by

TΦn(ϕ) = TIh

(
ϕ + i

n

∑
l=1

αl1[sl ,t)

)
exp

(
x ·

n

∑
l=1

αl

)

is a well-defined element in the Kondratiev distribution space (Sd)
−1.
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Proof. We write
TΦn(ϕ) = TIh(ϕ)Ψn(ϕ, ξt) (34)

with

Ψn(ϕ, ξt) := exp

(
x ·

n

∑
l=1

αl

)
exp

(
(ϕ∆, ξt)0 +

i
2
|ξt|20

)
exp

{
ik

2 sin k|∆|

×
[

2ix ·
∫ t

t0

ξt(t′) cos k(t′ − t0)dt′ − 2ix0 ·
∫ t

t0

ξt(t′) cos k(t− t′)dt′

+2i
∫ t

t0

ds1

∫ s1

t0

ds2
(

ϕ(s1) · ξt(s2) + ϕ(s2) · ξt(s1)
)

cos k(t− s1) cos k(s2 − t0)

−2
∫ t

t0

ds1

∫ s1

t0

ds2 ξt(s1) · ξt(s2) cos k(t− s1) cos k(s2 − t0)

]}
. (35)

The first factor on the right-hand side of Equation (34) is known to be the T-transform
of a Hida distribution (which forms a subspace of the Kondratiev distribution). Hence, we
only need to show that Ψn fulfills the conditions of Theorem 1. Obviously, Ψn(ϕ0 + zϕ, ξt)
is entire in z. To show boundedness, we perform an estimation as follows:

|Ψn(ϕ, ξt)| ≤ exp

(
|x|

n

∑
l=1
|αl |
)

exp |(ϕ∆, ξt)0| exp

{
k

sin k|∆|

×
[∣∣∣∣∣x ·

∫ t

t0

dt′ξt(t′) cos k(t′ − t0)

∣∣∣∣∣+
∣∣∣∣∣x0 ·

∫ t

t0

dt′ξt(t′) cos k(t− t′)

∣∣∣∣∣
+

∣∣∣∣∣
∫ t

t0

ds1

∫ s1

t0

ds2
(

ϕ(s1) · ξt(s2) + ϕ(s2) · ξt(s1)
)

cos k(t− s1) cos k(s2 − t0)

∣∣∣∣∣
]}

≤ exp

((
|x|+

√
t− t0|ϕ∆|0

) n

∑
l=1
|αl |
)

× exp

{
k

sin k|∆|

[(
(t− t0)(|x|+ |x0|) + 2(t− t0)

3/2|ϕ∆|0
) n

∑
l=1
|αl |
]}

=
n

∏
l=1

exp(C |αl |) with C = C(t− t0, |ϕ∆|0, |x|, |x0|). (36)

In other words, it is bounded on any ball with |ϕ|0 < const. Hence, Ψn is an element in
(Sd)

−1. The result of the proposition follows the characterization in Theorem 1.

Step 2. The next step will be to tackle the integration of TΦn(ϕ) with respect to s and α as
in Equation (28) under the three conditions of Corollary 2.

Lemma 1. For every n ∈ N0, the integral∫
[t0,t]n

dns
∫
Rdn

Ih exp

(
n

∑
l=1

αl · x(sl)

)
n

∏
l=1

dm(αl)

defined for any ϕ ∈ Sd by∫
[t0,t]n

dns
∫
Rdn

T

(
Ih · exp

(
n

∑
l=1

αl · x(sl)

))
(ϕ)

n

∏
l=1

dm(αl)

= TIh(ϕ)
∫
[t0,t]n

dns
∫
Rdn

n

∏
l=1

dm(αl)Ψn(ϕ) (37)

is a Kondratiev distribution.
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Proof. We have to check the conditions of Corollary 2:

1. For every (s, α) ∈ [t0, t]n ×Rdn, n ∈ N, it follows from Equations (30) and (32) that
TΦn(ϕ) is holomorphic in a neighborhood of zero.

2. Additionally, Equations (30) and (32) imply that

[t0, t]n ×Rnd 3 (s, α) 7→ T

(
Ih · exp

(
n

∑
l=1

αl · x(sl)

))
(ϕ) ∈ C

is measurable for every ϕ in a neighborhood of zero.
3. The estimate in Equation (36) provides an integrable bound: it is independent of s,

and the finiteness of Equation (23) ensures integrability in α:∣∣∣∣∣
∫
[t0,t]n

dns
∫
Rdn

T

(
Ih exp

(
n

∑
l=1

αl · x(sl)

))
(ϕ)

n

∏
l=1

dm(αl)

∣∣∣∣∣
≤ |TIh(ϕ)|

∫
[t0,t]n

dns
∫
Rdn

n

∏
l=1

d|m|(αl) exp(C |αl |)

= |TIh(ϕ)|(t− t0)
n
(∫

Rd
d|m|(α) exp(C |α|)

)n
. (38)

Step 3. To justify the expression in Equation (28), there remains the summation over n.
This is performed with the help of Corollary 1: All terms are Kondratiev distributions, and
hence their T-transforms are holomorphic and uniformly bounded in n for bounded ϕ. In
addition, their series is absolutely convergent since

∞

∑
n=0

1
n!

∣∣∣∣∣
∫
[t0,t]n

dns
∫
Rdn

T

(
Ih exp

(
n

∑
l=1

αl · x(sl)

))
(ϕ)

n

∏
l=1

dm(αl)

∣∣∣∣∣
< |TIh(ϕ)|

∞

∑
n=0

1
n!
(t− t0)

n
(∫

Rd
d|m|(α) exp(C |α|)

)n

= |TIh(ϕ)| exp
(
(t− t0)

(∫
Rd

d|m|(α) exp(C |α|)
))

. (39)

In this way, we have established the existence of the Feynman integrand in Equation (28)
as a Kondratiev distribution for the class of potentials described in Equations (25) and (26).
This is our main result, which we state in the following. In Appendix A we show our
“alternative” result using another approach within white noise analysis.

Theorem 3. For a potential V of the form

V(x) =
∫
Rd

eα·x dm(α) +
1
2

k2|x|2, x ∈ Rd, (40)

where m is any complex measure with∫
Rd

eC|α| d|m|(α) < ∞, ∀C > 0, (41)

and 0 < k|∆| < π
2 , the Feynman integrand

I = I0 exp
(
−i
∫ t

t0

V(x(τ))dτ

)
=

∞

∑
n=0

(−i)n

n!

∫
[t0,t]n

dns
∫
Rdn

Ih · exp

(
n

∑
l=1

αl · x(sl)

)
n

∏
l=1

dm(αl) (42)

exists as a generalized white noise functional. The series converges strongly in (Sd)
−1, and the

integrals exist in the sense of Bochner integrals.
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Remark 1. Generalization to time-dependent potentials is straightforward (see [12,15]).

Remark 2. For smooth ϕ, the T-transform of I solves the Schrödinger equation for all x, x0, and
t0 < t. The propagator K(ϕ) with(

i
∂

∂t
+

1
2

∆d − gV(x)− x · ϕ̇(t)
)

K(ϕ)(x, t | x0, t0) = 0 (43)

and initial condition
lim
t↘t0

K(ϕ)(x, t | x0, t0) = δ(x− x0) (44)

are given by

K(ϕ)(x, t | x0, t0) = TI(ϕ) · exp
(

i
2
|ϕ∆c |20 + ix · ϕ(t)− ix0 · ϕ(t0)

)
. (45)

This can be verified explicitly, for example, as shown in [12,14].

Remark 3. Note that Theorem 3 thus implies the existence of a convergent perturbation series for
the propagator, although the potentials

V1(x) =
∫
Rd

eα·x dm(α), x ∈ Rd, (46)

are singular perturbations (i.e., not Kato-small with respect to the free Hamiltonian).
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Appendix A. A White Noise Analysis Approach to Feynman Integrands in a
Phase Space

Applications of white noise analysis have, through the years, improved since the
1970s, when Takeyuki Hida first developed the theory. For instance, one may choose
to construct Feynman integrals for admissible potentials with white noise analysis for a
coordinate space using either the “conventional” approach (for the harmonic oscillator,
see, for example, [13]) or the phase space approach (for the harmonic oscillator, see, for
example, [17]). One can also construct momentum space Feynman integrals as well-defined
white noise functionals using the phase space approach (see, e.g., [18]).



Mathematics 2023, 11, 1632 11 of 13

With that, to exhaust these available white noise analysis methods, we outline here the
proofs on an alternative to our main result in Theorem 3 by using the white noise analysis
approach to phase space Feynman integrals.

In [17], the coordinate x (of dimension dx = 1) and the momentum p (of dimension
dp = 1) are taken as individual dimensions. Hence, if the potential V = V(x) depends
on x but not on p, then it takes the one-dimensional case, while w := (wx, wp) ∈ S′2 and
ϕ := (ϕx, ϕp) ∈ S2, having both x and p components, are therefore two-dimensional. Here,
(·)x denotes that of the coordinate part, while (·)p denotes that of the momentum part.
It has been shown in particular that the Feynman integrand for the harmonic oscillator
in a phase space Ih,phase exists as a Hida distribution, and the T-transform of Ih,phase
at ϕ = (ϕx, ϕp) ∈ S2, is given by the following, compared with Equation (11) in [17]
(t0 = 0, x0 = 0):

TIh,phase(ϕ) =

√
k

2πi sin kt
exp

{
ik

2 tan kt
[x− (η,ϕ)0]

2
}

× exp
[
−1

2

(
ϕ,1[0,t)cϕ

)
0

]
exp

[
−1

2
(ϕ, Q(k, t)ϕ)0

]
, (A1)

where η = (1[0,t), 0) and

Q(k, t) =

(
−i1[0,t)(k2 A− 1[0,t))

−1 −i1[0,t)(k2 A− 1[0,t))
−1

−i1[0,t)(k2 A− 1[0,t))
−1 −ik1[0,t)A(k2 A− 1[0,t))

−1

)
.

Here, the operator A, which has the properties described in [22], applies to f ∈ L2(R,C)
as [17]

A f (s) = 1[0,t)(s)
∫ t

s

∫ τ

0
f (r)dr dτ, s ∈ R.

Let IV,phase and I0,phase be the Feynman integrands in the phase space for the potential
V and for the free particle, respectively. Then, using Equation (A1), and following similar
procedures to those shown in the main body above, we obtain an alternative result (with
respect to Theorem 3), as stated in the following:

Theorem A1. For a potential V of the form (dx = 1)

V(x) =
∫
R

eαx dm(α) +
1
2

k|x|2, x ∈ R, (A2)

where m is any complex measure with∫
R

eC|α| d|m|(α) < ∞, ∀C > 0, (A3)

and 0 < k|∆| < π
2 , the Feynman integrand in phase space

IV,phase = I0,phase · exp
(
−i
∫ t

0
V(x(τ))dτ

)
=

∞

∑
n=0

(−i)n

n!

∫
[0,t]n

∫
Rn

Ih,phase · exp

(
n

∑
l=1

αl x(sl)

)
n

∏
l=1

dm(αl)dns (A4)

exists as a generalized white noise functional. The series converges strongly in (S2)
−1, and the

integrals exist in the sense of Bochner integrals.
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Proof. Let Φn,phase := Ih,phase · exp(∑n
l=1 αl x(sl)), w := (wx, wp) and ξt :=

(
∑n

l=1 αl1[sl ,t), 0
)

.
Then, the T-transform of Φn,phase at ϕ ∈ S2 yields

TΦn,phase(ϕ) =
∫

S′2
Φphase(w) exp(i〈w,ϕ〉)dµ(w)

= TIh,phase(ϕ+ iξt) exp

(
x

n

∑
l=1

αl

)
, (A5)

where we explicitly have

TIh,phase(ϕ+ iξt) =

√
k

2πi sin kt
exp

{
ik

2 tan kt
[x− (η,ϕ+ iξt)0]

2
}

× exp
[
−1

2
(
ϕ+ iξt,1[0,t)c(ϕ+ iξt)

)
0

]
× exp

[
−1

2
(
ϕ+ iξt, Q(k, t)(ϕ+ iξt)

)
0

]
,

= TIh,phase(ϕ)Ψn,phase(ϕ, ξt), (A6)

with

Ψn,phase(ϕ, ξt) = exp

{
n

∑
l=1

αl

[
k

tan kt
x(t− sl) +

(
i
2

n

∑
j=1

αj(t− sl ∧ sj)

+
∫ t

sl

ϕx(s)ds

)(
1− k

tan kt

)
+
∫ t

sl

ϕp(s)ds

]}
. (A7)

Now, let F(ϕ) = TIh,phase(ϕ+ iξt). Notice that F(ϕ) is of second-order polynomials
in ϕ and is thus holomorphic. Hence, F(ϕ) fulfills the first condition of Definition 1.
Furthermore, it has already been shown in [17] that TIh,phase(ϕ) is holomorphic. Therefore,
we only need to see the absolute bounds of Ψn,phase(ϕ, ξt) exp

(
x ∑n

l=1 αl
)
:

∣∣∣∣∣Ψn,phase(ϕ, ξt) exp

(
x

n

∑
l=1

αl

)∣∣∣∣∣ ≤ exp

(
|x|

n

∑
l=1
|αl |
)

exp

(
n

∑
l=1
|αl |
∣∣∣∣∣ k
tan kt

x(t− sl)

∣∣∣∣∣
)

× exp

{
n

∑
l=1
|αl |
∣∣∣∣∣
(∫ t

sl

ϕx(s)ds

)(
− k

tan kt

)∣∣∣∣∣
}

× exp

{
n

∑
l=1
|αl |
∣∣∣∣∣
(∫ t

sl

(
ϕx(s) + ϕp(s)

)
ds

)∣∣∣∣∣
}

≤ exp

(
|x|

n

∑
l=1
|αl |
)

exp

{[
k

tan kt

(∣∣x∣∣t +√t
∣∣ϕx,∆

∣∣
0

)

+
√

t
(∣∣ϕx,∆

∣∣
0 +

∣∣ϕp,∆
∣∣
0

)] n

∑
l=1

∣∣αl
∣∣}

=
n

∏
l=1

exp(C |αl |) with C = C(t, |ϕ∆|0, |x|). (A8)

The remaining part of the proof follows a similar fashion to the procedures already shown
in the main text above, differing only in the value of C as in Equation (A8) compared with
that in Equation (36). The details have been omitted.
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