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Abstract: In this work, we study the nonlocality of star-shaped correlation tensors (SSCTs) based on
a general multi-star-network MSN(m, n1, . . . , nm). Such a network consists of 1 + m + n1 + · · ·+ nm

nodes and one center-node A that connects to m star-nodes B1, B2, . . . , Bm while each star-node Bj has
nj + 1 star-nodes A, Cj

1, Cj
2, . . . , Cj

nj . By introducing star-locality and star-nonlocality into the network,
some related properties are obtained. Based on the architecture of such a network, SSCTs including
star-shaped probability tensors (SSPTs) are proposed and two types of localities in SSCTs and SSPTs
are mathematically formulated, called D-star-locality and C-star-locality. By establishing a series of
characterizations, the equivalence of these two localities is verified. Some necessary conditions for a
star-shaped CT to be D-star-local are also obtained. It is proven that the set of all star-local SSCTs is a
compact and path-connected subset in the Hilbert space of tensors over the index set ∆S and has least
two types of star-convex subsets. Lastly, a star-Bell inequality is proved to be valid for all star-local
SSCTs. Based on our inequality, two examples of star-nonlocal MSN(m, n1, . . . , nm) are presented.
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1. Introduction

As promising platforms for quantum information processing, quantum networks
(QNs) [1] have recently attracted much interest [2–7]. It is important to understand the
quantum correlations that arise in a QN. Recent developments have shown that the topo-
logical structure of a QN leads to novel notions of nonlocality [8,9] and new concepts
of entanglement and separability [10–12]. These new concepts and definitions are differ-
ent from the traditional ones [13,14] and thus need to be analysed using new theoretical
tools, such as mutual information [10,11], fidelity with pure states [11,12], and covariance
matrices built from measurement probabilities [15,16].

According to Bell’s local causality assumption [17,18], the joint probability
P(o1o2 . . . on|m1m2 . . . mn) of obtaining measurement outcomes o1, o2, . . . , on of systems
A1, A2, . . . , An can be obtained in terms of a local hidden variable model (LHVM) with just
one “hidden variable", or “hidden state", λ. Such a probability distribution is said to be Bell
local. Focusing on QNs, completely different approaches to multipartite nonlocality were
proposed [19–23]. That means that network nonlocalities are fundamentally different from
standard multipartite nonlocalities. Carvacho et al. [24] investigated a quantum network
consisting of three spatially separated nodes and experimentally witnessed quantum
correlations in the network. Due to the complex topological structure of a network, it is
possible to detect the quantum nonlocality in experiments by performing just one fixed
measurement [8,25–28].

Quantum coherence originated from the superposition principle originally pointed
out by Schrödinger [29] and is a fundamentally quantum property [30,31]. Quantum
nonlocality is a correlation property of subsystems of a multipartite system, exhibited by a
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set of local measurements. It is also a powerful tool for analyzing correlations in a quantum
network [32] and a direct link between the theory of multisubspace coherence [33] and the
approach to quantum networks with covariance matrices [15,16].

Patricia et al. [34] found some sufficient conditions for nonlocality in QNs and showed
that any network with shared pure entangled states is genuinelu multipartite nonlocal.
S̆upić et al. [35] proposed a concept of genuine network quantum nonlocality and proved
several examples of genuine network nonlocal correlations.

Recently, Tavakoli et al. [36] discussed the main concepts, methods, results, and future
challenges of network nonlocality with a list of open problems. More recently, Xiao et al. [37]
discussed two types of trilocality in probability tensors (PTs), P = JP(a1a2a3)K and that
of correlation tensors (CTs) P = JP(a1a2a3|x1x2x3)K, based on the triangle network [8] and
described by continuous (integral) and discrete (sum) trilocal hidden variable models (C-
triLHVMs and D-triLHVMs).

Haddadi et al. [38] studied the thermal evolution of the entropic uncertainty bound in
the presence of quantum memory for an inhomogeneous, four-qubit, spin-star system and
proved that the entropic uncertainty bound can be controlled and suppressed by adjusting
the inhomogeneity parameter of the system. Related research on spin-star systems can be
found in [39,40] and the references therein. As a generalization of star-networks [22,23],
Yang et al. [41] considered the nonlocality of (2n− 1)-partite tree-tensor networks (referring
to Figure 1 for the case where n = 2) and derived the Bell-type inequalities.

Mathematics 2016, xx>0 0xx , x>0 0x 2 of 32

Haddadi et al. [38] studied the thermal evolution of the entropic uncertainty bound in the presence of quantum memory
for an inhomogeneous four-qubit spin-star system and proved that the entropic uncertainty bound can be controlled and
suppressed by adjusting the inhomogeneity parameter of the system. Related researches on spin-star systems can be found
in [39,40] and the references therein. As a generalization of star-network [22,23], Yang et al. [41] considered the nonlocality of
(2n − 1)-partite tree-tensor networks (referring to Figure 1 for the case where n = 2), derived the Bell-type inequalities.

Alice

Bob 1 Bob 2

Charlie 1 Charlie 2 Charlie 3 Charlie 4

λ1
λ2

λ3 λ4
λ5

λ6

Figure 1. The six-local tree-tensor network consisting of seven parties and six independent sources S1, S2, . . . , S6 characterized by hidden
variables λ1, λ2, . . . , λ6, respectively[41].
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In this work, we study nonlocality of star-shaped CTs and star-shaped PTs based on a more general multi-star-network
MSN(m, n1, . . . , nm) depicted in Fig. 3.

Figure 3. The multi-star-network scenario, denoted by MSN(m, n1, . . . , nm). When m = 1, n1 = n− 1, it reduces to MSN(1, n− 1), which
is just n-local scenario [22,43] and m = n1 = 1, it becomes MSN(1, 1), reducing to the bi-local scenario [20,43].
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In Section 2, we will introduce star-locality and star-nonlocality of the multi-star-network MSN(m, n1, . . . , nm) and give
some related properties. In Section 3, we will first introduce star-shaped CTs (SSCTs) including star-shaped PTs (SSPTs) and
discuss two types of localities of SSCTs and SSPTs, called D-star-locality and C-star-locality. Then we establish a series of
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Extending the scenario in [41], Yang et al. [42] discussed the nonlocality of a type of
multi-star-shaped QNs (Figure 2), called 3-layer m-star QNs (3-m-SQNWs), and established
related Bell-type inequalities.
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Figure 2. A 3-layer m-star quantum network (3-m-SQNW) for m = 3 consisting of a node A, m
star-nodes B1, B2, . . . , Bm, and m2 star-nodes Cj

1, Cj
2, . . . , Cj

m(j = 1, 2, . . . , m) [42].

In this work, we study the nonlocality of star-shaped CTs and star-shaped PTs based
on a more general multi-star network MSN(m, n1, . . . , nm) depicted in Figure 3.
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Such a network consists of 1 + m + n1 + · · ·+ nm nodes and one center-node A that
connects to m star-nodes B1, B2, . . . , Bm while each star-node Bj has nj + 1 star-nodes

A, Cj
1, Cj

2, . . . , Cj
nj .

In Section 2, we will introduce the star-locality and star-nonlocality of the multi-star-
network MSN(m, n1, . . . , nm) and give some related properties. In Section 3, we will first
introduce star-shaped CTs (SSCTs), including star-shaped PTs (SSPTs), and discuss two
types of localities of SSCTs and SSPTs, called D-star-locality and C-star-locality. Then,
we establish a series of characterizations of D-star-localities and C-star-localities, show
the equivalence of these two types of localities, and give some necessary conditions for
star-shaped CT to be D-star-local. At the end of this section, we will show that the set
CT star-local(∆S) of all star-local SSCTs over the index set ∆S is a compact and path-connected
subset in the Hilbert space T star(∆S) of all tensors over ∆S and contains at least two types
of subsets that are star-convex. In Section 4, we shall establish an inequality that holds for
all star-local SSCTs, called a star-Bell inequality. Based on our inequality, two examples are
given. The first example is a star-nonlocal MSN(m, n1, . . . , nm), in which the shared states
are all entangled pure states, and the second one gives a star-nonlocal MSN(m, n1, . . . , nm)
in which the shared states are all entangled mixed states. In Section 5, we will give a
summary and conclusions.

2. Multi-Star-Network Scenario
2.1. Notations and Concepts

In what follows, we consider the multi-star-network scenario as depicted in Figure 3,
denoted by MSN(m, n1, . . . , nm). The network involves 1 + m + ∑m

j=1 nj parties

A, B1, . . . , Bm, C1
1 , . . . , C1

n1
, . . . , Cm

1 , . . . , Cm
nm

and m + ∑m
j=1 nj sources

S1, . . . , Sm, S1
1, . . . , S1

n1
, . . . , Sm

1 , . . . , Sm
nm ,

which are characterized by hidden variables λj ∈ Dj and µ
j
k ∈ Fj(k)(j ∈ [m], k ∈ [nj]),

where [n] := {1, 2, . . . , n}.
We use ρ

AjB
j
0
∈ D(HAj ⊗HBj

0
) to denote the states shared by A and Bj for all j ∈ [m],

and ρ
Bj

kCj
k
∈ D(H

Bj
k
⊗H

Cj
k
) to denote the states shared by Bj and Cj

k for all j ∈ [m] and
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k ∈ [nj]. We get HA =
⊗m

j=1HAj , HBj = HBj
0
⊗ (

⊗nj
k=1HBj

k
)(j = 1, 2, . . . , m). Then we

define the system state as

Γ =

 m⊗
j=1

ρ
AjBj

0

⊗
 m⊗

j=1

(ρ
Bj

1Cj
1
⊗ ρ

Bj
2Cj

2
⊗ . . .⊗ ρ

Bj
nj Cj

nj
)

. (1)

Consider the measurement assemblages

M(A) =
{

M(x) := {Ma|x}o(A)
a=1 : x = 1, 2, . . . , m(A)

}
,

N (Bj) =
{

N j(yj) := {N j
bj |yj
}o(Bj)

bj=1 : yj = 1, 2, . . . , m(Bj)
}

,

L(Cj
k) =

{
Lj

k(zj,k) := {Lj,k
cj,k |zj,k

}o(Cj
k)

cj,k=1 : zj,k = 1, 2, . . . , m(Cj
k)

}
 (2)

consisting of positive-operator-valued measures (POVMs), on systems A, Bj and Cj
k, re-

spectively, where j ∈ [m] and k ∈ [nj], consisting of positive operators satisfying the
normalization conditions:

o(A)

∑
a=1

Ma|x = IA,
o(Bj)

∑
bj=1

N j
bj |yj

= IBj ,
o(Cj

k)

∑
cj,k=1

Lj,k
cj,k |zj,k

= I
Cj

k
.

Then, we can obtain a measurement assemblage (MA)

M :=M(A)⊗
 m⊗

j=1

N (Bj)

⊗
 m⊗

j=1

(L(Cj
1)⊗L(C

j
2)⊗ . . .⊗L(Cj

nj))

 (3)

of the quantum network with measurement operators

Mabc|xyz := Ma|x ⊗
 m⊗

j=1

N j
bj |yj

⊗
 m⊗

j=1

(Lj,1
cj,1|zj,1

⊗ Lj,2
cj,2|zj,2

⊗ . . .⊗ L
j,nj
cj,nj
|zj,nj

)

, (4)

where x ∈ [m(A)], yj ∈ [m(Bj)] and zj
k ∈ [m(Cj

k)] denote the inputs of parties A, Bj and Cj
k

with the corresponding outputs a ∈ [o(A)], bj ∈ [o(Bj)] and cj
k ∈ [o(Cj

k)], respectively, and

y = (y1, y2, . . . , ym) ≡ {yj}m
j=1, b = (b1, b2, . . . , bm) ≡ {bj}m

j=1,

z = (z1,1, . . . , z1,n1 , z2,1, , . . . , z2,n2 , . . . , zm,1, . . . , zm,nm) ≡ {zj,k}j∈[m],k∈[nj ]
,

c = (c1,1, . . . , c1,n1 , c2,1, . . . , c2,n2 , . . . , cm,1, . . . , cm,nm) ≡ {cj,k}j∈[m],k∈[nj ]
.

Clearly, the measurement operators Mabc|xyz are positive operators acting on the Hilbert
space

HMHS := HA ⊗
 m⊗

j=1

HBj

⊗
 m⊗

j=1

(H
Cj

1
⊗H

Cj
2
⊗ . . .⊗H

Cj
nj
)

,

while the system state Γ given by (1) is an operator acting on the Hilbert space

HSHS :=

 m⊗
j=1

(HAj ⊗HBj
0
)

⊗
 m⊗

j=1

(H
Bj

1
⊗H

Cj
1
⊗ . . .⊗H

Bj
nj
⊗H

Cj
nj
)

.

Generally, HMHS 6= HSHS due to the non-commutativity of tensor product, and in that
case, the product Mabc|xyzΓ does not work well. Therefore, we have to change the system
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state Γ to a state Γ̃ acting on the spaceHMHS in order to make the tensor product Mabc|xyzΓ̃
reasonable. To do this, we define a swapping operation U : HSHS → HMHS by |Ψ〉 7→ U|Ψ〉,
where

U|Ψ〉 =

 m⊗
j=1

|ψAj〉
⊗

 m⊗
j=1

(|ψ
Bj

0
〉 ⊗ |ψ

Bj
1
〉 ⊗ . . .⊗ |ψ

Bj
m
〉)
⊗

 m⊗
j=1

(|ψ
Cj

1
〉 ⊗ . . .⊗ |ψ

Cj
nj
〉)


∈ HMHS

for all

|Ψ〉 =

 m⊗
j=1

(
|ψAj〉 ⊗ |ψBj

0
〉
)

⊗
 m⊗

j=1

(
|ψ

Bj
1
〉 ⊗ |ψ

Cj
1
〉 ⊗ . . .⊗ |ψ

Bj
nj
〉 ⊗ |ψ

Cj
nj
〉
)

∈ HSHS.

Then, we obtain a new state Γ̃ = UΓU† acting the Hilbert spaceHMHS so that the operator
product Mabc|xyzΓ̃ works well. Furthermore, it is easy to see that

tr[Mabc|xyzΓ̃] = tr[M̃abc|xyzΓ], (5)

where M̃abc|xyz = U† Mabc|xyzU, which is an operator acting on the Hilbert spaceHSHS for
every index (a, b, c, x, y, z). Thus, the joint probability distribution P(abc|xyz) of obtaining
a, b, c reads:

PΓ
M(abc|xyz) := tr[Mabc|xyzΓ̃] = tr[M̃abc|xyzΓ]. (6)

With these preparations, we can describe the locality and nonlocality of our quantum
network MSN(m, n1, . . . , nm) as follows.

Definition 1. A quantum network MSN(m, n1, . . . , nm) with the state (1) is said to be star-local
for an MAM given by (3) if there exists a probability distribution (PD)

p(λ, µ1, . . . , µm) =
m

∏
j=1

p(λj)×
m

∏
j=1

nj

∏
k=1

p(µj
k), (7)

where {pj(λ
j)}λj and {pj,k(µ

j
k)}µ

j
k

are respectively probability distributions (PDs) of λj and µ
j
k

such that for all a, b, c, x, y, z, it holds that

PΓ
M(abc|xyz) = ∑

λ∈D,µ1∈F1,...,µm∈Fm

p(λ, µ1, . . . , µm)PA(a|x, λ)

×
m

∏
j=1

PBj(bj|yj, λj, µj)×
m

∏
j=1

nj

∏
k=1

P
Cj

k
(cj,k|zj,k, µ

j
k), (8)

where

λ = (λ1, . . . , λm) ∈ D, µj = (µ
j
1, . . . , µ

j
nj) ∈ Fj(j ∈ [m]) (local hidden variables(LHVs));

D = D1 × . . .× Dm, Fj = Fj
1 × . . .× Fj

nj(j ∈ [m]) (finite sets of LHVs) ,
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{PA(a|x, λ)}, {PBj(bj|yj, λj, µj)} and {P
Cj

k
(cj,k|zj,k, µ

j
k)} are PDs of a, bj and cj,k, respectively.

Otherwise, MSN(m, n1, . . . , nm) is said to be star-nonlocal forM.
MSN(m, n1, . . . , nm) is said to be star-local if it is star-local for anyM, and it is said to be

star-nonlocal if it is not star-local, i.e., it is star-nonlocal for someM.

2.2. Properties

Similar to the reference [42], we can obtain the following results:

Proposition 1. If a network MSN(m, n1, . . . , nm) with the state (1) is star-local forM given
by Equation (3), then the Γ̃ as a state of system AB1 · · · BmC1

1 · · ·C1
n1
· · ·Cm

1 · · ·Cm
nm is Bell-local

forM.

Proposition 2. The reduced states of Γ̃ on subsystems AjB
j
0 and Bj

kCj
k are Γ̃

AjB
j
0
= ρ

AjB
j
0

and

Γ̃
Bj

kCj
k
= ρ

Bj
kCj

k
, respectively, for all j ∈ [m] and k ∈ [nj].

Proposition 3. If the network MSN(m, n1, . . . , nm) with the state (1) is star-local, then the
bipartite states ρ

Bj
tC

j
t

and ρ
AjB

j
0

are Bell-local for all s ∈ [m] and t ∈ [nj]. Furthermore, the

m-partite reduced state (Γ̃)B1B2 ...Bm is Bell-local.

Consequently, if one of bipartite states ρ
Bj

tC
j
t

and ρ
AjB

j
0

is Bell-nonlocal, then the net-

work MSN(m, n1, . . . , nm) must be star-nonlocal. Especially, if one of the shared states
is a pure entangled state, then the network MSN(m, n1, . . . , nm) is star-nonlocal. See
Examples 1 and 2 in Section 4.

Proposition 4. Every separable (i.e., all of the shared states are separable) MSN(m, n1, . . . , nm)
is star-local.

Proof. Since the shared states ρ
AjB

j
0

and ρ
Bj

kCj
k

are separable, they can be written as

ρ
AjB

j
0
=

dj

∑
λj=1

pj(λ
j)|s′

λj〉〈s′λj | ⊗ |s′′λj〉〈s′′λj |,

ρ
Bj

kCj
k
=

dj
k

∑
µ

j
k=1

pj,k(µ
j
k)|t′µj

k
〉〈t′

µ
j
k
| ⊗ |t′′

µ
j
k
〉〈t′′

µ
j
k
|,

where pj(λ
j) and pj,k(µ

j
k) are PDs of λj and µ

j
k. Put

λ = (λ1, λ2, . . . , λm), µj = (µ
j
1, µ

j
2, . . . , µ

j
nj),

D = [d1]× . . .× [dm], Fj = [dj
1]× . . .× [dj

nj ](j ∈ [m]),

then

Γ =

 m⊗
j=1

ρ
AjBj

0

⊗
 m⊗

j=1

(ρ
Bj

1Cj
1
⊗ ρ

Bj
2Cj

2
⊗ . . .⊗ ρ

Bj
nj Cj

nj
)


= ∑

λ∈D
∑

µ1∈F1,...,µm∈Fm

m

∏
j=1

pj(λ
j)×

m

∏
j=1

nj

∏
k=1

pj,k(µ
j
k)

m⊗
j=1

(
|s′

λj〉〈s′λj | ⊗ |s′′λj〉〈s′′λj |
)
⊗
 m⊗

j=1

nj⊗
k=1

|t′
µ

j
k
〉〈t′

µ
j
k
| ⊗ |t′′

µ
j
k
〉〈t′′

µ
j
k
|
,
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which induces the measurement state

Γ̃ = UΓU† = ∑
λ∈D

∑
µ1∈F1,...,µm∈Fm

m

∏
j=1

pj(λ
j)×

m

∏
j=1

nj

∏
k=1

pj,k(µ
j
k)× Γ′(λ, µ1, . . . , µm),

where

Γ′(λ, µ1, . . . , µm) =

 m⊗
j=1

|s′
λj〉〈s′λj |

⊗
 m⊗

j=1

(
|s′′

λj〉〈s′′λj | ⊗
nj⊗

k=1

|t′
µ

j
k
〉〈t′

µ
j
k
|
)

⊗
 m⊗

j=1

nj⊗
k=1

|t′′
µ

j
k
〉〈t′′

µ
j
k
|
.

Thus, for any MAM given by (3), we compute that

PΓ
M(abc|xyz) = tr[(Ma|x⊗Nb|y⊗Lc|z)Γ̃]

= ∑
λ∈D

∑
µ1∈F1,...,µm∈Fm

m

∏
j=1

pj(λ
j)×

m

∏
j=1

nj

∏
k=1

pj,k(µ
j
k)

×tr[(Ma|x⊗Nb|y⊗Lc|z)Γ
′(λ, µ1, . . . , µm)]

= ∑
λ∈D,µ1∈F1,...,µm∈Fm

m

∏
j=1

pj(λ
j)×

m

∏
j=1

nj

∏
k=1

pj,k(µ
j
k)× PA(a|x, λ)

×
m

∏
j=1

PBj(bj|yj, λj, µj)×
m

∏
j=1

nj

∏
k=1

P
Cj

k
(cj,k|zj,k, µ

j
k), (9)

where

PA(a|x, λ) = tr[Ma|x

 m⊗
j=1

|s′
λj〉〈s′λj |

];

PBj(bj|yj, λj, µj) = tr[Nbj |yj
(|s′′

λj〉〈s′′λj | ⊗
nj⊗

k=1

|t′
µ

j
k
〉〈t′

µ
j
k
|)];

P
Cj

k
(cj,k|zj,k, µ

j
k) = tr[L

cj
k |z

j
k
|t′′

µ
j
k
〉〈t′′

µ
j
k
|)].

This shows that Equation (8) holds and then the network is star-local. The proof is com-
pleted.

3. Star-Locality of Star-Shaped Cts

When a multi-star network given by Figure 3 for the case that m = 3 is measured by
parties

A, B1, . . . , Bm, C1
1 , . . . , C1

n1
, . . . , Cm

1 , . . . , Cm
nm ,

the conditional probabilities P(abc|xyz) of obtaining result (a, b, c) conditioned on the
measurement choice (x, y, z) form a correlation tensor (CT) [44] P = JP(abc|xyz)K over the
index set

∆S = [o(A)]×
m

∏
j=1

[o(Bj)]×
m

∏
j=1

nj

∏
k=1

[o(Cj
k)]× [mA]×

m

∏
j=1

[m(Bj)]×
m

∏
j=1

nj

∏
k=1

[m(Cj
k)], (10)

which is a non-negative function defined on ∆S satisfying the following completeness
condition:

∑
a,b,c

P(abc|xyz) = 1, ∀x, y, z. (11)
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We call such a P a star-shaped CT over ∆S. Let CT star(∆S) be the set of all star-shaped CTs
over ∆S.

To discuss the algebraic and topological properties of the CT star(∆S), we have to
make it live in a Hilbert space. To accomplish this, we let T star(∆S) be the set of all real
tensors P = JP(abc|xyz)K over ∆S. That is, P ∈ T star(∆S) if and only if it is a real-valued
function defined on ∆S with the value P(abc|xyz) and a point (a, b, c, x, y, z) in ∆S. Clearly,
T star(∆S) becomes a finite-dimensional Hilbert space over R with respect to the following
operation and inner product:

sP1 + tP2 = JsP1(abc|xyz) + tP2(abc|xyz)K,

〈P1, P2〉 = ∑
a,b,c,x,y,z

P1(abc|xyz)P2(abc|xyz).

The norm induced by the inner product reads

‖P‖ :=
√
〈P, P〉 =

{
∑

a,b,c,x,y,z
(P(abc|xyz))2

} 1
2

.

Especially, when m(A) = m(Bj) = m(Cj
k) = 1 for all k, j, we denote P = JP(abc|xyz)K

by P = JP(abc)K and call it a star-shaped probability tensor (PT) over

ΩS = [o(A)]×
m

∏
j=1

[o(Bj)]×
m

∏
j=1

nj

∏
k=1

[o(Cj
k)].

Let PT star(ΩS) be the set of all star-shaped PTs over ΩS and let T star(ΩS) be the set of all
real tensors P = JP(abc)K over ΩS, which is a finite-dimensional Hilbert space over R with
respect to the following operation and inner product:

sP1 + tP2 = JsP1(abc) + tP2(abc)K,

〈P1, P2〉 = ∑
a,b,c

P1(abc)P2(abc).

The norm induced by the inner product reads

‖P‖ :=
√
〈P, P〉 =

{
∑

a,b,c
(P(abc))2

} 1
2

.

3.1. Concepts

Definition 2. A star-shaped CT P = JP(abc|xyz)K over ∆S is said to be C-star-local if it admits
a “C-star-shaped LHVM":

P(abc|xyz) =
∫

D×F1×...×Fm
p(λ, µ1, . . . , µm)PA(a|x, λ)

m

∏
j=1

PBj(bj|yj, λj, µj)

×
m

∏
j=1

nj

∏
k=1

P
Cj

k
(cj,k|zj,k, µ

j
k)dγ(λ)dτ1(µ1) . . . dτm(µm) (12)

for all a, b, c, x, y, z, where
(i) (Λ, Ω, µ) ≡

(
D×∏m

j=1 Fj, σ×∏m
j=1 δj, γ×∏m

j=1 τj

)
is a product measure space with

λ = (λ1, . . . , λm) ∈ D, µj = (µ
j
1, . . . , µ

j
nj) ∈ Fj(j ∈ [m]) (LHVs);
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D = D1 × . . .× Dm, Fj = Fj
1 × . . .× Fj

nj(j ∈ [m]) (spaces of LHVs) ;

σ =
m

∏
j=1

σj, δj =

nj

∏
k=1

δ
j
k(j ∈ [m]) (product σ-algebras) ;

γ =
m

∏
j=1

γj, τj =

nj

∏
k=1

τ
j
k(j ∈ [m]) (product measures) ;

(ii) All of the local hidden variables (LHVs) λ1, . . . , λm, µ
j
1, . . . , µ

j
nj(∀j ∈ [m]) are indepen-

dent, i.e.,

p(λ, µ1, . . . , µm) =
m

∏
j=1

pj(λ
j)×

m

∏
j=1

nj

∏
k=1

pj,k(µ
j
k), (13)

where pj(λ
j) and pj,k(µ

j
k) are density functions (DFs) of λj and µ

j
k, respectively, i.e., they are

non-negative and satisfy∫
Dj

pj(λ
j)dγj(λ

j) = 1,
∫

Fj
k

pj,k(µ
j
k)dτ

j
k(µ

j
k) = 1;

(iii) PA(a|x, λ), PBj(bj|yj, λj, µj) and P
Cj

k
(cj,k|zj,k, µ

j
k) are PDs of a, bj and cj,k, respectively,

and are measurable with respect to λ, (λj, µj) and µ
j
k, respectively.

A star-shaped CT P = JP(abc|xyz)K over ∆S is said to be C-star-nonlocal if it is not
C-star-local.

We use CT C-star-local(∆S) and CT C-star-nonlocal(∆S) to denote the sets of all C-star-local
CTs and all C-star-nonlocal CTs over ∆S, respectively.

Specifically, when D1, . . . , Dm, Fj
1, . . . , Fj

nj(j ∈ [m]) are finite sets with the counting
measures, a C-star-shaped-LHVM (12) becomes a “D-star-shaped-LHVM”:

P(abc|xyz) = ∑
λ∈D,µ1∈F1,...,µm∈Fm

p(λ, µ1, . . . , µm)PA(a|x, λ)

×
m

∏
j=1

PBj(bj|yj, λj, µj)×
m

∏
j=1

nj

∏
k=1

P
Cj

k
(cj,k|zj,k, µ

j
k), (14)

where {PA(a|x, λ)}, {PBj(bj|yj, λj, µj)}, and {P
Cj

k
(cj,k|zj,k, µ

j
k)} are PDs of a, bj and cj,k, re-

spectively, and the joint PD p(λ, µ1, . . . , µm) is given by (13). In this case, we say that P
is D-star-local. If P has no D-star-shaped LHVMs of the form (14), then we say that it is
D-star-nonlocal.

We use CT D-star-local(∆S) and CT D-star-nonlocal(∆S) to denote the sets of all D-star-local
CTs and all D-star-nonlocal CTs over ∆S, respectively. Clearly,

CT D-star-local(∆S) ⊂ CT C-star-local(∆S).

Definition 3. A star-shaped PT P = JP(abc)K over ΩS is said to be C-star-local if it admits a
”C-star-shaped LHVM”:

P(abc) =
∫

D×F1×...×Fm
p(λ, µ1, . . . , µm)PA(a|λ)

m

∏
j=1

PBj(bj|λj, µj)

×
m

∏
j=1

nj

∏
k=1

P
Cj

k
(cj,k|µj

k)dγ(λ)dτ1(µ1) . . . dτm(µm) (15)
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for all a, b, c, where p(λ, µ1, . . . , µm) is a DF of the form (13). It is said to be C-star-nonlocal if it is
not C-star-local.

Definition 4. A star-shaped PT P = JP(abc)K over ΩS is said to be D-star-local if it admits a
”D-star-shaped LHVM":

P(abc) = ∑
λ∈D,µ1∈F1,...,µm∈Fm

p(λ, µ1, . . . , µm)PA(a|λ)

×
m

∏
j=1

PBj(bj|λj, µj)×
m

∏
j=1

nj

∏
k=1

P
Cj

k
(cj,k|µj

k) (16)

for all a, b, c, where p(λ, µ1, . . . , µm) is a PD of the form (13). It is said to be D-star-nonlocal if it
is not D-star-local.

Definition 5. A star-shaped PT P = JP(abc)K over ΩS is said to be star-local if it is either
C-star-local or D-star-local. It is said to be star-nonlocal if is neither C-star-local nor D-star-local.

We use PT C-star-local(ΩS) (resp., PT D-star-local(ΩS)) to denote the set of all C-star-local
(resp., D-star-local) star-shaped PTs over ΩS.

Clearly,
PT D-star-local(ΩS) ⊂ PT C-star-local(ΩS).

3.2. Characterizations

To show every C-star-local CT (especially every PT) is D-star-local, we need the
following lemma [37,43]. Recall that an m× n function matrix B(λ) = [bij(λ)] on Λ is said
to be row-statistic (RS) if, for each λ ∈ Λ, bij(λ) ≥ 0 for all i, j and ∑n

j=1 bij(λ) = 1.

Lemma 1. Let (Λ, Ω) be a measurable space and let B(λ) = [bij(λ)] be an m× n RS function
matrix whose entries bij are Ω-measurable on Λ. Then, B(λ) can be written as:

B(λ) =
nm

∑
k=1

αk(λ)[δj,Jk(i)], ∀λ ∈ Λ, (17)

where αk(k = 1, 2, . . . , nm) are all non-negative and Ω-measurable functions on Λ with ∑nm

k=1 αk(λ) =
1 for all λ ∈ Λ, and {Jk}nm

k=1 denotes the set of all maps from [m] into [n].

Put
N(A) = o(A)m(A), N(Bj) = o(Bj)m(Bj), N(Cj

k) = o(Cj
k)

m(Cj
k)

and let {Ji}N(A)
i=1 be the set of all maps from [m(A)] into [o(A)], {K j

sj}
N(Bj)
sj=1 the set of all

maps from [m(Bj)] into [o(Bj)], and let {Lj,k
tjk
}N(Cj

k)

tjk=1 be the set of all maps from [m(Cj
k)] into

[o(Cj
k)].
Let P = JP(abc|xyz)K be a C-star-local CT over ∆S. Then, it has a C-star-shaped

LHVM (12). Since function matrices

M(λ) := [PA(a|x, λ)]x,a, M(λj, µj) := [PBj(bj|yj, λj, µj)]yj ,bj
, M(µ

j
k) := [P

Cj
k
(cj,k|zj,k, µ

j
k)]zj,k ,cj,k

are RS for each parameters λ, (λj, µj), µ
j
k and their entries are measurable with respect to

the related parameters, respectively, it follows from Lemma 1 that they have the following
decompositions:

M(λ) =
N(A)

∑
i=1

α(i|λ)[δa,Ji(x)],



Mathematics 2023, 11, 1625 11 of 33

M(λj, µj) =
N(Bj)

∑
sj=1

βj(sj|λj, µj)[δbj ,K
j
sj (yj)

],

M(µ
j
k) =

N(Cj
k)

∑
tjk=1

f j,k(tjk|µj
k)[δcj,k ,Lj,k

tjk
(zj,k)

];

equivalently,

PA(a|x, λ) =
N(A)

∑
i=1

α(i|λ)δa,Ji(x), (18)

PBj(bj|yj, λj, µj) =
N(Bj)

∑
sj=1

βj(sj|λj, µj)δbj ,K
j
sj (yj)

, (19)

P
Cj

k
(cj,k|zj,k, µ

j
k) =

N(Cj
k)

∑
tjk=1

f j,k(tjk|µj
k)δcj,k ,Lj,k

tjk
(zj,k)

, (20)

where αi(λ), β
j
sj(λ

j, µj) and f j,k
tjk
(µ

j
k) are PDs of i, sj and tjk, respectively, and are measurable

with respect to λ, (λj, µj) and µ
j
k, respectively. It follows from Equations (12) and (18)–(20)

that

P(abc|xyz) = ∑
i,sj ,tjk

π(i, s, t)δa,Ji(x)

m

∏
j=1

δ
bj ,K

j
sj (yj)

×
m

∏
j=1

nj

∏
k=1

δ
cj,k ,Lj,k

tjk
(zj,k)

(21)

for all a, b, c, x, y, z, where s = (s1, s2, . . . , sm) ≡ {sj}m
j=1,

t = (t11, t12, . . . , t1n1 , t21, t22, . . . , t2n2 , . . . , tm1, tm2, . . . , tmnm) ≡ {tjk}j∈[m],k∈[nj ]
,

and

π(i, s, t) =
∫

D×F1×...×Fm
p(λ, µ1, . . . , µm)α(i|λ)

m

∏
j=1

βj(sj|λj, µj)

×
m

∏
j=1

nj

∏
k=1

f j,k(tjk|µj
k)dγ(λ)dτ1(µ1) . . . dτm(µm), (22)

with p(λ, µ1, . . . , µm) given by (13). Clearly, p = Jπ(i, s, t)K is a C-star-local PT over

ΓS = [N(A)]×
m

∏
j=1

[N(Bj)]×
m

∏
j=1

ni

∏
k=1

[N(Cj
k)],

which generates P in terms of Equation (21).
Conversely, if (21) holds for some completely independent PD (13) and a C-star-local

PT p = Jπ(i, s, t)K with a C-star-shaped LHVM (22), then (12) holds for PA, PBj and P
Cj

k
given by Equations (18)–(20). Thus, P is C-star-local.

This shows that (12)⇔ (21) and leads to the following.

Theorem 1. A star-shaped CT P over ∆S is C-star-local if and only if it has the following decompo-
sition:

P = ∑
i,s,t

π(i, s, t)Di,s,t, (23)
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where p = Jπ(i, s, t)K is a C-star-local PT over ΓS given by (22) and Di,s,t = JDi,s,t(abc|xyz)K is
given by

Di,s,t(abc|xyz) = δa,Ji(x)

m

∏
j=1

δ
bj ,K

j
sj (yj)

×
m

∏
j=1

nj

∏
k=1

δ
cj,k ,Lj,k

tjk
(zj,k)

.

As an application of Theorem 1, we obtain the following relationship between C-star-
local CTs and C-star-local PTs:

CT C-star-local(∆S) =

{
∑
i,s,t

π(i, s, t)Di,s,t : p = Jπ(i, s, t)K ∈ PT C-star-local(ΓS)

}
(24)

Again, we let P be a C-star-local CT over ∆S. We aim to prove that P is D-star-local.
First, it has a C-star-shaped LHVM (12). Since

p(λ, µ1, . . . , µm) =
m

∏
j=1

pj(λ
j)×

m

∏
j=1

nj

∏
k=1

pj,k(µ
j
k),

we obtain from (12) and (20) that

P(abc|xyz) = ∑
tjk∈[N(Cj

nj )](j∈[m])

∫
D

m

∏
j=1

pj(λ
j)× PA(a|x, λ)dγ(λ)

×
∫

F1×...×Fm

m

∏
j=1

PBj(bj|yj, λj, µj)×
m

∏
j=1

nj

∏
k=1

pj,k(µ
j
k) f j,k

tjk
(µ

j
k)dτ1(µ1) . . . dτm(µm)

×
m

∏
j=1

nj

∏
k=1

δ
cj,k ,Lj,k

tjk
(zj,k)

. (25)

Put
qj,k(tjk) =

∫
Fj

k

f j,k
tjk
(µ

j
k)pj,k(µ

j
k)dτ

j
k(µ

j
k),

which are PDs of tjk and satisfy

nj

∏
k=1

qj,k(tjk) =
∫

Fj

nj

∏
k=1

( f j,k
tjk
(µ

j
k)pj,k(µ

j
k)) dτj(µj),

and define

PBj(bj|yj, λj, tj1, . . . , tjnj) =
1

∏
nj
k=1 qj,k(tjk)

∫
Fj

PBj(bj|yj, λj, µj)×
( nj

∏
k=1

f j,k
tjk
(µ

j
k)pj,k(µ

j
k)

)
dτj(µ

j)

if ∏
nj
k=1 qj,k(tjk) > 0; and

PBj(bj|yj, λj, tj1, . . . , tjnj) =
1

o(Bj)
,

otherwise. Clearly, PBj(bj|yj, λj, tj1, . . . , tjnj) is a PD of bj for each (yj, λj, tj1, . . . , tjnj), and

when ∏
nj
k=1 qj,k(tjk) > 0, we have

nj

∏
k=1

qj,k(tjk)× PBj(bj|yj, λj, tj1, . . . , tjnj) =
∫

Fj

PBj(bj|yj, λj, µj)

( nj

∏
k=1

f j,k
tjk
(µ

j
k)pj,k(µ

j
k)

)
dτj(µ

j). (26)
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Note that the right-hand side of above equation is less than equal to ∏
nj
k=1 qj,k(tjk) and

is equal to zero when ∏
nj
k=1 qj,k(tjk) = 0. Thus, Equation (26) is valid in any case. Using

Equation (26) yields that

m

∏
j=1

nj

∏
k=1

qj,k(tjk)×
m

∏
j=1

PBj(bj|yj, λj, tj1, . . . , tjnj)

=
m

∏
j=1

∫
Fj

PBj(bj|yj, λj, µj)×
( nj

∏
k=1

f j,k
tjk
(µ

j
k)pj,k(µ

j
k)

)
dτj(µ

j)

=
∫

F1×...×Fm

m

∏
j=1

PBj(bj|yj, λj, µj)

(
m

∏
j=1

nj

∏
k=1

f j,k
tjk
(µ

j
k)pj,k(µ

j
k)

)
dτ1(µ1) . . . dτm(µm).

Combining Equation (25) yields that

P(abc|xyz) = ∑
tjk∈[N(Cj

nj )](j∈[m],j∈[m])

m

∏
j=1

nj

∏
k=1

qj,k(tjk)

×
∫

D

m

∏
j=1

pj(λ
j)×

m

∏
j=1

PBj(bj|yj, λj, tj1, . . . , tjnj)× PA(a|x, λ)dγ(λ)

×
m

∏
j=1

nj

∏
k=1

δ
cj,k ,Lj,k

tjk
(zj,k)

. (27)

Using Lemma 1 for the RS function matrix [PBj(bj|yj, λj, tj1, . . . , tjnj)]with (yjtj1 · · · tjnj , bj)-
entry PBj(bj|yj, λj, tj1, . . . , tjnj), we get that

PBj(bj|yj, λj, tj1, . . . , tjnj) =
N∗(Bj)

∑
rj=1

gj
rj(λ

j)δ
bj ,E

j

rj (yj ,tj1,...,tjnj
)
, (28)

where

N∗(Bj) = o(Bj)
m(Bj)N(Cj

1)···N(Cj
nj ),

gj
rj(λ

j) is a PD of rj and is measurable with respect to λj, and {Ej
rj}rj∈[N∗(Bj)] denotes the set

of all maps from [m(Bj)N(Cj
1) · · ·N(Cj

nj)] into [o(Bj)]. Thus, we see from Equation (28) that

m

∏
j=1

PBj(bj|yj, λj, tj1, . . . , tjnj) =
m

∏
j=1

N∗(Bj)

∑
rj=1

gj
rj(λ

j)δ
bj ,E

j

rj (yj ,tj1,...,tjnj
)

=
N∗(B1)

∑
r1=1

· · ·
N∗(Bm)

∑
rm=1

m

∏
j=1

gj
rj(λ

j)×
m

∏
j=1

δ
bj ,E

j

rj (yj ,tj1,...,tjnj
)
. (29)

It follows from Equations (27) and (29) that

P(abc|xyz) =
N∗(B1)

∑
r1=1

· · ·
N∗(Bm)

∑
rm=1

∑
tjk∈[N(Cj

nj )](j∈[m],j∈[m])

m

∏
j=1

nj

∏
k=1

qj,k(tjk)

×
∫

D

m

∏
j=1

pj(λ
j)×

m

∏
j=1

gj
rj(λ

j)× PA(a|x, λ)dγ(λ)

×
m

∏
j=1

δ
bj ,E

j

rj (yj ,tj1,...,tjnj
)
×

m

∏
j=1

nj

∏
k=1

δ
cj,k ,Lj,k

tjk
(zj,k)

. (30)
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Put
hj(rj) =

∫
Dj

pj(λ
j)gj

rj(λ
j)dτj(λ

j), (31)

then we obtain a PD hj(rj) of rj for every j. Define r = (r1, r2, . . . , rm) and put

PA(a|x, r) =
1

∏m
j=1 hj(rj)

∫
D

m

∏
j=1

pj(λ
j)×

m

∏
j=1

gj
rj(λ

j)× PA(a|x, λ)dγ(λ)

if ∏m
j=1 hj(rj) > 0; otherwise, define PA(a|x, r) = 1

oA
for all a, x, then PA(a|x, r) is a PD of a

and ∫
D

m

∏
j=1

pj(λ
j)×

m

∏
j=1

gj
rj(λ

j)× PA(a|x, λ)dγ(λ) =
m

∏
j=1

hj(rj)× PA(a|x, r). (32)

Thus, from Equations (30) and (32), we get that

P(abc|xyz) = ∑
r∈R,t1∈T1,...,tm∈Tm

m

∏
j=1

hj(rj)×
m

∏
j=1

nj

∏
k=1

qj,k(tjk)× PA(a|x, r)

×
m

∏
j=1

δ
bj ,K

j

rj (yj ,tj1,...,tjnj
)
×

m

∏
j=1

nj

∏
k=1

δ
cj,k ,Lj,k

tjk
(zj,k)

, (33)

where tj = (tj1, . . . , tjnj), and

R =
m

∏
j=1

[N∗(Bj)], Tj = [N(Cj
1)]× · · · × [N(Cj

nj)](j = 1, 2, . . . , m).

Put
PBj(bj|yj, rj, tj) = δ

bj ,K
j

rj (yj ,tj1,...,tjnj
)
, PCi

k
(cj,k|zj,k, tjk) = δ

cj,k ,Lj,k
tjk

(zj,k)
,

which are of PDs of bj and cj,k, respectively. Then Equation (33) becomes

P(abc|xyz) = ∑
r∈R,t1∈T1,...,tm∈Tm

m

∏
j=1

hj(rj)×
m

∏
j=1

nj

∏
k=1

qj,k(tjk)× PA(a|x, r)

×
m

∏
j=1

PBj(bj|yj, rj, tj)×
m

∏
j=1

nj

∏
k=1

PCi
k
(cj,k|zj,k, tjk). (34)

This shows that P is D-star-local.
From this discussion, we have the following conclusion.

Theorem 2. A star-shaped CT P over ∆S is C-star-local if and only if it is D-star-local, that is,

CT C-star-local(∆S) = CT D-star-local(∆S) ≡ CT star-local(∆S).

Due to this conclusion, we say that a star-shaped CT P over ∆S is star-local if it is
C-star-local, equivalently, if it is D-star-local.

As a special case of m = n1 = n2 = 2, Theorem 2 implies the following result, which
is an equivalent characterization of the six-locality discussed in [41].
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Corollary 1. The correlations P(a, b1, b2, c1, c2, c3, c4|x, y1, y2, z1, z2, z3, z4) discussed in [41] are
six-local if and only if the following decomposition is valid:

P(a, b1, b2, c1, c2, c3, c4|x, y1, y2, z1, z2, z3, z4)

= ∑
λk∈[nk ](∀k)

6

∏
k=1

pk(λk)× P1(a|x, λ1λ2)P2(b1|y1, λ1λ3λ4)P3(b2|y2, λ2λ5λ6)

×P4(c1|z1, λ3)P5(c2|z2, λ4)P6(c3|z3, λ5)P7(c4|z4, λ6), (35)

for all possible a, b1, b2, c1, c2, c3, c4, x, y1, y2, z1, z2, z3, z4, where pk(λk)’s are PDs of λk, and
P1, P2, . . . , P7 are PDs of a, b1, b2, c1, c2, c3, c4, respectively.

Theorem 3. A star-shaped CT P = JP(abc|xyz)K over ∆S is star-local if and only if it is
“separable star-quantum", i.e., it can be generated by an MA (3) together with some separable states
ρ

AjB
j
0
∈ D(HAj ⊗HBj

0
) and ρ

Bj
kCj

k
∈ D(H

Bj
k
⊗H

Cj
k
), in such a way that

P(abc|xyz) = tr[(Ma|x⊗Nb|y⊗Lc|z)Γ̃], ∀x, a, y, b, z, c, (36)

where the network state Γ is given by Equation (1).

Proof. To show the necessity, we let P = JP(abc|xyz)K be star-local. Then, it can be written
as (14), that is,

P(abc|xyz) = ∑
λ∈D,µ1∈F1,...,µm∈Fm

p(λ, µ1, . . . , µm)PA(a|x, λ)

×
m

∏
j=1

PBj(bj|yj, λj, µj)×
m

∏
j=1

nj

∏
k=1

P
Cj

k
(cj,k|zj,k, µ

j
k), (37)

where {PA(a|x, λ)}, {PBj(bj|yj, λj, µj)} and {P
Cj

k
(cj,k|zj,k, µ

j
k)} are PDs of a, bj and cj,k, re-

spectively, and

p(λ, µ1, . . . , µm) =
m

∏
j=1

pj(λ
j)×

m

∏
j=1

nj

∏
k=1

pj,k(µ
j
k), (38)

in which pj(λ
j) and pj,k(µ

j
k) are PDs of λj and µ

j
k, respectively. Choose Hilbert spaces

HAj = HBj
0
= C|Dj |, H

Bj
k
= H

Cj
k
= C|F

j
k |, ∀j, k,

where |S| denotes the cardinality of a finite set S; take their orthonormal bases {|sλj〉}|Dj |
λj=1

and {|t
µ

j
k
〉}|F

j
k |

µ
j
k=1

(∀j, k), respectively; and put

HA =
m⊗

j=1

HAj , HBj = HBj
0
⊗
( nj⊗

k=1

H
Bj

k

)
.

Choose separable states

ρ
AjB

j
0
=

|Dj |
∑

λj=1

pj(λ
j)|sλj〉〈sλj | ⊗ |sλj〉〈sλj |, ρ

Bj
kCj

k
=
|Fj

k |
∑

µ
j
k=1

pj,k(µ
j
k)|tµ

j
k
〉〈t

µ
j
k
| ⊗ |t

µ
j
k
〉〈t

µ
j
k
|.
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Then, we can obtain a network state

Γ =

 m⊗
j=1

ρ
AjBj

0

⊗
 m⊗

j=1

(ρ
Bj

1Cj
1
⊗ ρ

Bj
2Cj

2
⊗ . . .⊗ ρ

Bj
nj Cj

nj
)

,

which induces the measurement state

Γ̃ = ∑
λ∈D

∑
µ1∈F1,...,µm∈Fm

m

∏
j=1

pj(λ
j)×

m

∏
j=1

nj

∏
k=1

pj,k(µ
j
k)× Γ′(λ, µ1, , . . . , µm),

where

Γ′(λ, µ1, , . . . , µm) =

 m⊗
j=1

|sλj〉〈sλj |
⊗

 m⊗
j=1

[|sλj〉〈sλj | ⊗
nj⊗

k=1

|t
µ

j
k
〉〈t

µ
j
k
|]
⊗

 m⊗
j=1

nj⊗
k=1

|t
µ

j
k
〉〈t

µ
j
k
|
.

To define an MA (3), we put

Ma|x = ∑
λ∈D

PA(a|x, λ)
m⊗

j=1

|sλj〉〈sλj |,

Nbj |yj
= ∑

µj∈Fj

PBj(bj|yj, λj, µj)|sλj〉〈sλj | ⊗
( nj⊗

k=1

|t
µ

j
k
〉〈t

µ
j
k
|
)

,

Lcj,k |cj,k
= ∑

µ
j
k∈Fj

k

P
Cj

k
(cj,k|zj,k, µ

j
k)|tµ

j
k
〉〈t

µ
j
k
|.

It can be checked that

P(abc|xyz) = tr[(Ma|x⊗Nb|y⊗Lc|z)Γ̃]

for all possible variables a, b, c, x, y, and z. This proves that P is separable star-quantum.
Conversely, we suppose that P can be written as the form of (36). Then, from the proof

of Proposition 4, we see that P has a D-star-shaped LHVM (9) and then is star-local. The
proof is completed.

Theorem 4. Let a star-shaped CT P = JP(abc|xyz)K over ∆S be star-local. Then, for each
1 ≤ j0 ≤ m and (j0, k0) ∈ [m]× [nj0 ], the following conclusions are valid.

(a) The marginal P
ABj0 C

j0
k0

= JP
ABj0 C

j0
k0

(abj0 cj0,k0 |xyj0 zj0,k0)K of P on subsystem ABj0 Cj0
k0

is

bilocal.
(b) The marginal P

AC
j0
k0

= JP
AC

j0
k0

(acj0,k0 |xzj0,k0)K of P on subsystem ACj0
k0

is product:

P
AC

j0
k0

= PA ⊗ P
C

j0
k0

, i.e.,

P
AC

j0
k0

(acj0,k0 |xzj0,k0) = PA(a|x)P
C

j0
k0

(cj0,k0 |zj0,k0). (39)

(c) The (n0 + 1)-partite CT

P
C

j0
1 ···C

j0
nj0

Bj0
= JP

C
j0
1 ···C

j0
nj0

Bj0
(cj0,1 · · · cj0,n0 bj0 |zj0,1 · · · zj0,n0 yj0)K

:= JP
ABj0 C

j0
k0

(bj0 cj0,1 · · · cj0,n0 |yj0 zj0,1 · · · zj0,n0)K

is n0-local.
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Proof. Since P is star-local, it has a D-star-shaped LHVM (14):

P(abc|xyz) = ∑
λ∈D,µ1∈F1,...,µm∈Fm

p(λ, µ1, . . . , µm)PA(a|x, λ)

×
m

∏
j=1

PBj(bj|yj, λj, µj)×
m

∏
j=1

nj

∏
k=1

P
Cj

k
(cj,k|zj,k, µ

j
k), (40)

where

p(λ, µ1, . . . , µm) =
m

∏
j=1

pj(λ
j)×

m

∏
j=1

nj

∏
k=1

pj,k(µ
j
k), (41)

in which pj(λ
j) and pj,k(µ

j
k) are PDs of λj and µ

j
k, respectively.

(a) Using (40) implies that

P
ABj0 C

j0
k0

(abj0 cj0,k0 |xyj0 zj0,k0)

= ∑
bj ,cj,k(j 6=j0,k 6=k0)

P(abc|xyz)

= ∑
λj0

∑
µ

j0
1 ···µ

j0
nj0

pj0(λ
j0)pj0,1(µ

j0
1 ) · · · pj0,nj0

(µ
j0
nj0

)PA(a|x, λj0)

×PBj0 (bj0 |yj0 , λj0 , µ
j0
1 · · · µ

j0
nj0

)P
C

j0
k0

(cj0,k0 |zj0,k0 , µ
j0
k0
)

= ∑
λj0

∑
µ

j0
k0

pj0(λ
j0)pj0,k0(µ

j0
k0
)PA(a|x, λj0)PBj0 (bj0 |yj0 , λj0 , µ

j0
k0
)P

C
j0
k0

(cj0,k0 |zj0,k0 , µ
j0
k0
),

where
PA(a|x, λj0) = ∑

λj∈Fj(j 6=j0)
pj(λj)PA(a|x, λ),

PBj0 (bj0 |yj0 , λj0 , µ
j0
k0
) = ∑

µ
j0
k (k 6=k0)

∏
µ

j0
k (k 6=k0)

pj0,k(µ
j0
k )× PBj0 (bj0 |yj0 , λj0 , µ

j0
1 µ

j0
2 · · · µ

j0
nj0

).

This shows that P
ABj0 C

j0
k0

is bilocal [43]

(b) Using Equation (42) implies that

P
AC

j0
k0

(acj0,k0 |xzj0,k0) = ∑
bj0

P
ABj0 C

j0
k0

(abj0 cj0,k0 |xyj0 zj0,k0)

= ∑
λj0 ,µ

j0
k0

pj0(λ
j0)pj0,k0(µ

j0
k0
)PA(a|x, λj0)P

C
j0
k0

(cj0,k0 |zj0,k0 , µ
j0
k0
)

= PA(a|x)P
C

j0
k0

(cj0,k0 |zj0,k0),

implying Equation (39).
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(c) Using the definition of P
C

j0
1 ···C

j0
nj0

Bj0
and (14), we have

P
C

j0
1 ···C

j0
nj0

Bj0
(cj0,1 · · · cj0,n0 bj0 |zj0,1 · · · zj0,n0 yj0)

= P
ABj0 C

j0
k0

(bj0 cj0,1 · · · cj0,n0 |yj0 zj0,1 · · · zj0,n0)

= ∑
a

∑
bj(j 6=j0)

∑
cj,k(k∈[nj ],j 6=j0)

P(abc|xyz)

= ∑
λj0

∑
µ

j0
1 µ

j0
2 ···µ

j0
nj0

pj0(λ
j0)pj0,1(µ

j0
1 ) · · · pj0,nj0

(µ
j0
nj0

)

×
nj0

∏
k=1

P
C

j0
k
(cj0,k|zj0,k, µ

j0
k )× PBj0 (bj0 |yj0 , λj0 , µ

j0
1 · · · µ

j0
nj0

)

for all possible cj0,1, . . . , cj0,n0 , bj0 , zj0,1, . . . , zj0,n0 , yj0 . This shows that the (n0 + 1)-partite CP
P

C
j0
1 ···C

j0
nj0

Bj0
is n0-local [43]. The proof is completed.

For a star-shaped CT P over ∆S, the conclusion (a) of Theorem 4 ensures that if there
exists an index (j0, k0) ∈ [m] × [n0] such that the marginal P

ABj0 C
j0
k0

is not bilocal, and

conclusion (b) implies that if some of the marginal P
AC

j0
k0

is not a product, then P must be

star-nonlocal. Using conclusion (c) shows that when some marginal P
C

j0
1 C

j0
2 ···C

j0
nj0

Bj0
is not

n0-local [43], P must be star-nonlocal.

3.3. Global Properties

As the end of this section, let us give some properties of the set CT star-local(∆S). First,
since all elements of CT star-local(∆S) admit their D-star-shaped LHVMs (34) with the unified
form ∑r∈R,t1∈T1,...,tm∈Tm of summation, in which the index sets R, T1, . . . , Tm are independent
of P, the following conclusion can be checked easily.

Theorem 5. CT star-local(∆S) is a compact subset of the Hilbert space T star(∆S).

This conclusion ensures that the set CT star-nonlocal(∆S) forms a relative open set in the
Hilbert space T star(∆S). That means that any star-shaped CTs near a star-nonlocal CT are
all star-nonlocal.

Theorem 6. CT star-local(∆S) is a path-connected set in the Hilbert space T star(∆S).

Proof. Put

I(abc|xyz) ≡
{

o(A)
m

∏
j=1

(
o(Bj)

nj

∏
k=1

o(Cj
k)

)}−1

,

then I := JI(abc|xyz)K is an element of CT star-local(∆S). Let P = JP(abc|xyz)K and Q =
JQ(abc|xyz)K be any two elements of CT star-local(∆S). Then, P and Q admit D-star-shaped-
LHVMs:

P(abc|xyz) = ∑
λ∈D,µ1∈F1,...,µm∈Fm

p(λ, µ1, . . . , µm)PA(a|x, λ)

×
m

∏
j=1

PBj(bj|yj, λj, µj)×
m

∏
j=1

nj

∏
k=1

P
Cj

k
(cj,k|zj,k, µ

j
k),

where

p(λ, µ1, . . . , µm) =
m

∏
j=1

pj(λ
j)×

m

∏
j=1

nj

∏
k=1

pj,k(µ
j
k), (42)
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in which pj(λ
j) and pj,k(µ

j
k) are PDs of λj and µ

j
k, respectively, and

Q(abc|xyz) = ∑
η∈D′ ,ξ1∈F′1,...,ξm∈F′m

q(η, ξ1, . . . , ξm)QA(a|x, η)

×
m

∏
j=1

QBj(bj|yj, η j, ξ j)×
m

∏
j=1

nj

∏
k=1

Q
Cj

k
(cj,k|zj,k, ξ

j
k),

where η = (η1, . . . , ηm), ξ j = (ξ
j
1, . . . ξ

j
nj), and

q(η, ξ1, . . . , ξm) =
m

∏
j=1

qj(η
j)×

m

∏
j=1

nj

∏
k=1

qj,k(ξ
j
k), (43)

in which qj(η
j) and qj,k(ξ

j
k) are PDs of η j and ξ

j
k, respectively.

For every t ∈ [0, 1/2], set

Pt
A(a|x, λ) = (1− 2t)PA(a|x, λ) + 2t

1
o(A)

,

Pt
Bj(bj|yj, λj) = (1− 2t)PBj(bj|yj, λj) + 2t

1
o(Bj)

(j ∈ [m]),

Pt
Cj

k
(cj,k|zj,k, µ

j
k) = (1− 2t)P

Cj
k
(cj,k|zj,k, µ

j
k) + 2t

1

o(Cj
k)
(j ∈ [m], k ∈ [nj]),

which are clearly PDs of a, bj, and cj,k, respectively. Put

Pt(abc|xyz) = ∑
λ∈D,µ1∈F1,...,µm∈Fm

p(λ, µ1, . . . , µm)Pt
A(a|x, λ)

×
m

∏
j=1

Pt
Bj(bj|yj, λj, µj)×

m

∏
j=1

nj

∏
k=1

Pt
Cj

k
(cj,k|zj,k, µ

j
k),

then f (t) := JPt(abc|xyz)K is a star-local CT over ∆S for all t ∈ [0, 1/2] with f (0) = P and
f (1/2) = I. Obviously, the map t 7→ f (t) from [0, 1/2] into CT star-local(∆S) is continuous.
Similarly, for every t ∈ [1/2, 1], set

Qt
A(a|x, η) = (2t− 1)QA(a|x, η) + 2(1− t)

1
o(A)

,

Qt
Bj(bj|yj, η j) = (2t− 1)QBj(bj|yj, η j) + 2(1− t)

1
o(Bj)

(j ∈ [m]),

Qt
Cj

k
(cj,k|zj,k, ξ

j
k) = (2t− 1)Q

Cj
k
(cj,k|zj,k, ξ

j
k) + 2(1− t)

1

o(Cj
k)
(j ∈ [m], k ∈ [nj]),

which are clearly PDs of a, bj, and cj
k, respectively. Put

Qt(abc|xyz) = ∑
λ∈D,µ1∈F1,...,µm∈Fm

q(λ, µ1, . . . , µm)Qt
A(a|x, λ)

×
m

∏
j=1

Qt
Bj(bj|yj, λj, µj)×

m

∏
j=1

nj

∏
k=1

Qt
Cj

k
(cj,k|zj,k, µ

j
k),
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then g(t) := JQt(abc|xyz)K is a star-local CT over ∆S for all t ∈ [1/2, 1] with g(1/2) = I
and g(1) = Q. Obviously, the map t 7→ g(t) from [1/2, 1] into CT star-local(∆S) is continuous.
Thus, the function p : [0, 1]→ CT star-local(∆S) defined by

p(t) =
{

f (t), t ∈ [0, 1/2];
g(t), t ∈ (1/2, 1],

is continuous everywhere and then induces a path p in CT star-local(∆S) with p(0) = P and
p(1) = Q. This shows that CT star-local(∆S) is path-connected. The proof is completed.

Next, we discuss the “quasi-convexity" of the set CT star-local(∆S) by finding two classes
of subsets of CT star-local(∆S) that are star-convex.

For any fixed 1 ≤ u ≤ m and 1 ≤ v ≤ nu, by taking a star-shaped CT E =
JE(abc|xyz)K such that the marginal E

Ĉu
v Bu is completely product:

E
Ĉu

v Bu(abu ĉu
v |xyuẑu

v) = EA(a|x)×∏
j 6=u

EBj(bj|yj)× ∏
(j,k) 6=(u,v)

E
Cj

k
(cj,k|zj,k),

where

bu = {bj}j 6=u, ĉu
v = {cj,k}(j,k) 6=(u,v), yu = {yi}i 6=u, ẑu

v = {zj,k}(j,k) 6=(u,v),

we define a star-shaped CT Su,v = JSu,v(abc|xyz)K by

Su,v(abc|xyz) = E
Ĉu

v Bu(abu ĉu
v |xyuẑu

v)×
1

o(Cu
v )
× 1

o(Bu)
. (44)

Put
CT star-local

E
Ĉu

v Bu
(∆S) =

{
P ∈ CT star-local(∆S) : P

Ĉu
v Bu = E

Ĉu
v Bu

}
, (45)

which is just the set of all star-local CTs over ∆S with a fixed marginal distribution E
Ĉu

v Bu

on the subsystem Ĉu
v Bu = A ∏j 6=u Bj ∏(j,k) 6=(u,v) Cu

v . Clearly, (Su,v)Ĉu
v Bu = E

Ĉu
v Bu and Su,v ∈

CT star-local
E

Ĉu
v Bu

(∆S).

Using these notations, we obtain the following.

Theorem 7. The set CT star-local
E

Ĉu
v Bu

(∆S) is star-convex with a sun Su,v, i.e., for all t ∈ [0, 1], it holds

that
(1− t)Su,v + tCT star-local

E
Ĉu

v Bu
(∆S) ⊂ CT star-local

E
Ĉu

v Bu
(∆S). (46)

Proof. Let t ∈ [0, 1] and P ∈ CT star-local
E

Ĉu
v Bu

(∆S). Then, P ∈ CT star-local(∆S) and P
Ĉu

v Bu = E
Ĉu

v Bu .

Since P has a D-star-shaped-LHVM:

P(abc|xyz) = ∑
λ∈D,µ1∈F1,...,µm∈Fm

m

∏
j=1

pj(λ
j)×

m

∏
j=1

nj

∏
k=1

pj,k(µ
j
k)

×PA(a|x, λ)
m

∏
j=1

PBj(bj|yj, λj, µj)×
m

∏
j=1

nj

∏
k=1

P
Cj

k
(cj,k|zj,k, µ

j
k),
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we get that

P
Ĉu

v Bu(abu ĉu
v |xyuẑu

v) = ∑
cu,v ,bu

P(abc|xyz)

= ∑
λ,µj

k((j,k) 6=(u,v))

m

∏
j=1

pj(λ
j)× ∏

(j,k) 6=(u,v)
pj,k(µ

j
k)

×PA(a|x, λ) ∏
j 6=u

PBj(bj|yj, λj, µj)

× ∏
(j,k) 6=(u,v)

P
Cj

k
(cj,k|zj,k, µ

j
k).

For every t ∈ [0, 1], put

µu(s) = (µu
1 , . . . , µu

v−1, (µu
v , s), µu

v+1, . . . , µu
nu),

and define

f t
u,v(µ

u
v , s) =

{
pu,v(µu

v)(1− t), s = 0;
pu,v(µu

v)t, s = 1,
(47)

PBu(bu|yu, λu, µu(s)) =

{
1

o(Bu)
, s = 0;

PBu(bu|yu, λu, µu), s = 1,
(48)

PCu
v (cu,v|zu,v, (µu

v , s)) =

{
1

o(Cu
v )

, s = 0;
PCu

v (cu,v|zu,v, µu
v), s = 1,

(49)

which are PDs of (µu
v , s), bu and cu,v, respectively. Put

Qt(abc|xyz) = ∑
s=0,1

∑
λ∈D,µ1∈F1,...,µm∈Fm

m

∏
j=1

pj(λ
j)× ∏

(j,k) 6=(u,v)
pj,k(µ

j
k)× f t

u,v(µ
u
v , s)

×PA(a|x, λ) ∏
j 6=u

PBj(bj|yj, λj, µj)× PBu(bu|yu, λu, µu(s))

× ∏
(j,k) 6=(u,v)

P
Cj

k
(cj,k|zj,k, µ

j
k)× PCu

v (cu,v|zu,v, (µu
v , s)),

then Qt = JQt(abc|xyz)K ∈ CT star-local(∆S).
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On the other hand, for all a, b, c, x, y, z, we compute that

Qt(abc|xyz) = ∑
λ∈D,µ1∈F1,...,µm∈Fm

m

∏
j=1

pj(λ
j)× ∏

(j,k) 6=(u,v)
pj,k(µ

j
k)× f t

u,v(µ
u
v , 0)

×PA(a|x, λ) ∏
j 6=u

PBj(bj|yj, λj, µj)× PBu(bu|yu, λu, µu(0))

× ∏
(j,k) 6=(u,v)

P
Cj

k
(cj,k|zj,k, µ

j
k)× PCu

v (cu,v|zu,v, (µu
v , 0))

+ ∑
λ∈D,µ1∈F1,...,µm∈Fm

m

∏
j=1

pj(λ
j)× ∏

(j,k) 6=(u,v)
pj,k(µ

j
k)× f t

u,v(µ
u
v , 1)

×PA(a|x, λ) ∏
j 6=u

PBj(bj|yj, λj, µj)× PBu(bu|yu, λu, µu(1))

× ∏
(j,k) 6=(u,v)

P
Cj

k
(cj,k|zj,k, µ

j
k)× PCu

v (cu,v|zu,v, (µu
v , 1)).

Using Equations (47)–(49), we obtain that

Qt(abc|xyz) = (1− t) ∑
λ,µj

k((j,k) 6=(u,v))

m

∏
j=1

pj(λ
j)× ∏

(j,k) 6=(u,v)
pj,k(µ

j
k)

×PA(a|x, λ) ∏
j 6=u

PBj(bj|yj, λj, µj)×
1

o(Bu)

× ∏
(j,k) 6=(u,v)

P
Cj

k
(cj,k|zj,k, µ

j
k)×

1
o(Cu

v )

+t ∑
λ∈D,µ1∈F1,...,µm∈Fm

m

∏
j=1

pj(λ
j)×∏

(j,k)
pj,k(µ

j
k)

×PA(a|x, λ)
m

∏
j=1

PBj(bj|yj, λj, µj)×∏
(j,k)

P
Cj

k
(cj,k|zj,k, µ

j
k)

= (1− t)Su,v(abc|xyz) + tP(abc|xyz).

This shows that

(1− t)Su,v + tP = Qt ∈ CT star-local(∆S), ∀t ∈ [0, 1].

Since (Su,v)Ĉu
v Bu = P

Ĉu
v Bu = E

Ĉu
v Bu , we have Qt

Ĉu
v Bu

= (1− t)(Su,v)Ĉu
v Bu + tP

Ĉu
v Bu = E

Ĉu
v Bu .

This shows that Qt ∈ CT star-local
E

Ĉu
v Bu

(∆S). The proof is completed.

Next, let us find another star-convex subset of CT star-local(∆S). Fixed 1 ≤ u ≤ m and
taken a star-shaped CT F = JF(abc|xyz)K such that

FÂBu(buc|yuz) := ∑
a,bu

F(abc|xyz) = ∏
j 6=u

FBj(bj|yj)×∏
j,k

F
Cj

k
(cj,k|zj,k),

where bu = {bj}j 6=u, yu = {yj}j 6=u, we define a star-shaped CT Su = JSu(abc|xyz)K by

Su(abc|xyz) =
1

o(A)
× FÂBu(buc|yuz)× 1

o(Bu)
×∏

j,k
F

Cj
k
(cj,k|zj,k). (50)

Put
CT star-local

FÂBu
(∆S) =

{
P ∈ CT star-local(∆S) : PÂBu = FÂBu

}
, (51)



Mathematics 2023, 11, 1625 23 of 33

which is just the set of all star-local CTs over ∆S with fixed marginal distribution FÂBu on
the subsystem ÂBu = (∏j 6=u Bj)C. Clearly, (Su)ÂBu = FÂBu = JFÂBu(buc|yuz)K and then
Su ∈ CT star-local

FÂBu
(∆S).

With these notations, we have the following.

Theorem 8. The set CT star-local
FÂBn

(∆S) is star-convex with a sun Su, i.e., for all t ∈ [0, 1], it holds
that

(1− t)Su,v + tCT star-local
FÂBu

(∆S) ⊂ CT star-local
FÂBu

(∆S). (52)

Proof. Let P ∈ CT star-local
FÂBu

(∆S). Then, P ∈ CT star-local(∆S) and PÂBu = FÂBu . Since P has a
D-star-shaped LHVM

P(abc|xyz) = ∑
λ∈D,µ1∈F1,...,µm∈Fm

m

∏
j=1

pj(λ
j)×

m

∏
j=1

nj

∏
k=1

pj,k(µ
j
k)

×PA(a|x, λ)
m

∏
j=1

PBj(bj|yj, λj, µj)×
m

∏
j=1

nj

∏
k=1

P
Cj

k
(cj,k|zj,k, µ

j
k),

we get that

PÂBu(buc|yuz) = ∑
λ∈D,µ1∈F1,...,µm∈Fm

m

∏
j=1

pj(λ
j)×

m

∏
j=1

nj

∏
k=1

pj,k(µ
j
k)×

×∏
j 6=u

PBj(bj|yj, λj, µj)×
m

∏
j=1

nj

∏
k=1

P
Cj

k
(cj,k|zj,k, µ

j
k).

For every t ∈ [0, 1], put

gt
u(λ

u, s) =
{

pu(λu)(1− t), s = 0;
pn(λu)t, s = 1,

λ′ = (λ1, λ2, λu−1, (λu, s), λu+1, . . . , λm),

P′(a|x, λ′) =

{
1

o(A)
, s = 0;

P(a|x, λ), s = 1,

P′Bu(bu|yu, (λu, s), µu) =

{
1

o(Bn)
, s = 0;

PBn(bu|yu, λu, µu), s = 1,

and define

Qt(abc|xyz) = ∑
s=0,1

∑
λ∈D,µ1∈F1,...,µm∈Fm

∏
j 6=u

pj(λ
j)× gt

u(λ
u, s)×

m

∏
j=1

nj

∏
k=1

pj,k(µ
j
k)×

×P′A(a|x, λ′)×∏
j 6=u

PBj(bj|yj, λj, µj)× P′Bu(bu|yu, (λu, s), µu)

×
m

∏
j=1

nj

∏
k=1

P
Cj

k
(cj,k|zj,k, µ

j
k).

Clearly, Qt := JQt(abc|xyz)K ∈ CT star-local(∆S).
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On the other hand, for all a, b, c, x, y, z, we compute that

Qt(abc|xyz) = (1− t) ∑
λ∈D,µ1∈F1,...,µm∈Fm

m

∏
j=1

pj(λ
j)×

m

∏
j=1

nj

∏
k=1

pj,k(µ
j
k)×

× 1
o(A)

×∏
j 6=u

PBj(bj|yj, λj, µj)×
1

o(Bu)

×∏
j,k

P
Cj

k
(cj,k|zj,k, µ

j
k)

+t ∑
λ∈D,µ1∈F1,...,µm∈Fm

m

∏
j=1

pj(λ
j)×

m

∏
j=1

nj

∏
k=1

pj,k(µ
j
k)×

×PA(a|x, λ)×
m

∏
j=1

PBj(bj|yj, λj, µj)×
m

∏
j=1

nj

∏
k=1

P
Cj

k
(cj,k|zj,k, µ

j
k)

= (1− t)Su(abc|xyz) + tP(abc|xyz).

This shows that

(1− t)Su + tP = Qt ∈ CT star-local(∆S), ∀t ∈ [0, 1].

Clearly, Qt
ÂBu = FÂBu . Hence, (1− t)Su + tP = Qt ∈ CT star-local

FÂBu
(∆S). The proof is com-

pleted.

4. A Star-Bell Inequality

In this section, we derive an inequality (56) that holds for all star-local star-shaped
CTs, called a star-Bell inequality. Consider a star-shaped CT

P = JP(abc|xyz)K = JP(a, b1 · · · bm, c|x, y1 · · · ym, z)K (53)

with inputs x, yj, zj,k ∈ {0, 1} and outcomes a, bj, cj,k,∈ {0, 1}, where j ∈ [m], k ∈ [nj]. Put
N = ∑m

j=1 nj. For all α0, αj, zj,k ∈ {0, 1}, we define the following two quantities

Iα0α1 ...αm(P) =
1

2N ∑
zj,k=0,1

∑
a,bj ,cj,k=0,1

(−1)a+∑j bj+∑j,k cj,k

×P(a, b1 · · · bm, c|α0, α1 · · · αm, z), (54)

Jβ0β1 ...βm(P) =
1

2N ∑
zj,k=0,1

(−1)
∑
j,k

zj,k

∑
a,bj ,cj,k=0,1

(−1)a+∑j bj+∑j,k cj,k

×P(a, b1 · · · bm, c|β0, β1 · · · βm, z). (55)

Theorem 9. If a star-shaped CT P given by Equation (53) is star-local, then

|Iα0α1 ...αm(P)|
1
N + |Jβ0β1 ...βm(P)|

1
N ≤ 1, ∀αj, β j ∈ {0, 1}. (56)
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Proof. Since P is star-local, it has a D-star-shaped LHVM (14). Thus,

∑
a,bj ,cj,k=0,1

(−1)a+∑j bj+∑j,k cj,k P(a, b1 · · · bm, c|α0, α1 · · · αm, z)

= ∑
a,bj ,cj,k=0,1

(−1)a+∑j bj+∑j,k cj,k ∑
λ∈D,µ1∈F1,...,µm∈Fm

p(λ, µ1, . . . , µm)

×PA(a|α0, λ)×
m

∏
j=1

PBj(bj|αj, λj, µj)
m

∏
j=1

nj

∏
k=1

P
Cj

k
(cj,k|zj,k, µ

j
k)

= ∑
λ∈D,µ1∈F1,...,µm∈Fm

p(λ, µ1, . . . , µm) ∑
a=0,1

(−1)aPA(a|α0, λ)

×
m

∏
j=1

∑
bj=0,1

(−1)bj PBj(bj|αj, λj, µj)

×
m

∏
j=1

nj

∏
k=1

∑
cj,k=0,1

(−1)cj,k P
Cj

k
(cj,k|zj,k, µ

j
k)

= ∑
λ∈D,µ1∈F1,...,µm∈Fm

p(λ, µ1, . . . , µm)〈Aα0〉λ
m

∏
j=1
〈Bj

αj〉λj ,µj

×
m

∏
j=1

nj

∏
k=1
〈Cj

zj,k 〉µj
k
,

where 
〈Aα0〉λ = ∑a=0,1(−1)aPA(a|α0, λ),
〈Bj

αj〉λj ,µj
= ∑bj=0,1(−1)bj PBj(bj|αj, λj, µj),

〈Cj
zj,k 〉µj

k
= ∑cj,k=0,1(−1)cj,k P

Cj
k
(cj,k|zj,k, µ

j
k).

Hence,

|Iα0α1 ...αm(P)| ≤
1

2N ∑
zj,k=0,1

j=1,...m,k=1,...,nj

∑
λ∈D,µ1∈F1,...,µm∈Fm

p(λ, µ1, . . . , µm)

×
∣∣∣∣∣〈Aα0〉λ

m

∏
j=1
〈Bj

αj〉λj ,µj
×

m

∏
j=1

nj

∏
k=1
〈Cj

zj,k 〉µj
k

∣∣∣∣∣
=

1
2N ∑

zj,k=0,1

j=1,...m,k=1,...,nj

∑
λ∈D,µ1∈F1,...,µm∈Fm

p(λ, µ1, . . . , µm)

×|〈Aα0〉λ| ×
m

∏
j=1

∣∣∣〈Bj
αj〉λj ,µj

∣∣∣× m

∏
j=1

nj

∏
k=1

∣∣∣∣〈Cj
zj,k 〉µj

k

∣∣∣∣.
Note that |〈Aα0〉λ| ≤ 1, |〈Bj

αj〉λj ,µj
| ≤ 1, we have

|Iα0α1 ...αm(P)| ≤ ∑
λ∈D,µ1∈F1,...,µm∈Fm

p(λ, µ1, . . . , µm) f (µ1, . . . , µm), (57)

where

f (µ1, . . . , µm) =
m

∏
j=1

nj

∏
k=1

∣∣∣∣∣∣12 ∑
zj,k=0,1

〈Cj
zj,k 〉µj

k

∣∣∣∣∣∣. (58)
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Analogously, we can get

|Jβ0β1 ...βm(P)| ≤ ∑
λ∈D,µ1∈F1,...,µm∈Fm

p(λ, µ1, . . . , µm)g(µ1, . . . , µm), (59)

where

g(µ1, . . . , µm) =
m

∏
j=1

nj

∏
k=1

∣∣∣∣∣∣12 ∑
zj,k=0,1

(−1)zj,k 〈Cj
zj,k 〉µj

k

∣∣∣∣∣∣. (60)

Since

p(λ, µ1, . . . , µm) =
m

∏
j=1

pj(λ
j)×

m

∏
j=1

nj

∏
k=1

pj,k(µ
j
k),

where {pj(λ
j)}λj and {pj,k(µ

j
k)}µ

j
k

are probability distributions, we have from Equation (57)

that

|Iα0α1 ...αm(P)| ≤ ∑
λ∈D,µ1∈F1,...,µm∈Fm

p(λ, µ1, . . . , µm) f (µ1, . . . , µm)

= ∑
λ∈D,µ1∈F1,...,µm∈Fm

m

∏
j=1

pj(λ
j)×

m

∏
j=1

nj

∏
k=1

pj,k(µ
j
k)

×
m

∏
j=1

nj

∏
k=1

∣∣∣∣∣∣12 ∑
zj,k=0,1

〈Cj
zj,k 〉µj

k

∣∣∣∣∣∣
= ∑

µ1∈F1,...,µm∈Fm

m

∏
j=1

(
∑
λj

pj(λ
j)

)

×
m

∏
j=1

nj

∏
k=1

pj,k(µ
j
k)

∣∣∣∣∣∣12 ∑
zj,k=0,1

〈Cj
zj,k 〉µj

k

∣∣∣∣∣∣
.

Note that ∑λj pj(λ
j) = 1 for all j = 1, 2, . . . , m, we obtain that

|Iα0α1 ...αm(P)| ≤
m

∏
j=1

nj

∏
k=1

∑
µ

j
k

pj,k(µ
j
k)

∣∣∣∣∣∣12 ∑
zj,k=0,1

〈Cj
zj,k 〉µj

k

∣∣∣∣∣∣
.

Similarly, using inequality (59) implies that

|Jβ0β1 ...βm(P)| ≤
m

∏
j=1

nj

∏
k=1

∑
µ

j
k

pj,k(µ
j
k)

∣∣∣∣∣∣12 ∑
zj,k=0,1

(−1)zj,k 〈Cj
zj,k 〉µj

k

∣∣∣∣∣∣
.

Using the following inequality [22] Lemma 1 :

m

∑
k=1

(
n

∏
i=1

xk
i

) 1
n

≤
n

∏
i=1

(x1
i + x2

i + . . . + xm
i )

1
n , ∀xk

i ≥ 0,
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we have

(|Iα0α1 ...αm(P)|)
1
N + (|Jβ0β1 ...βm(P)|)

1
N

≤

 m

∏
j=1

nj

∏
k=1

∑
µ

j
k

pj,k(µ
j
k)

∣∣∣∣∣∣12 ∑
zj,k=0,1

〈Cj
zj,k 〉µj

k

∣∣∣∣∣∣


1
N

+

 m

∏
j=1

nj

∏
k=1

∑
µ

j
k

pj,k(µ
j
k)

∣∣∣∣∣∣12 ∑
zj,k=0,1

(−1)zj,k 〈Cj
zj,k 〉µj

k

∣∣∣∣∣∣


1
N

≤
m

∏
j=1

nj

∏
k=1

∑
µ

j
k

pj,k(µ
j
k)

∣∣∣∣∣∣12 ∑
zj,k=0,1

〈Cj
zj,k 〉µj

k

∣∣∣∣∣∣+
∣∣∣∣∣∣12 ∑

zj,k=0,1
(−1)zj,k 〈Cj

zj,k 〉µj
k

∣∣∣∣∣∣



1
N

=
m

∏
j=1

nj

∏
k=1

∑
µ

j
k

pj,k(µ
j
k)


∣∣∣∣∣∣∣
〈Cj

0〉µj
k
+ 〈Cj

1〉µj
k

2

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
〈Cj

0〉µj
k
− 〈Cj

1〉µj
k

2

∣∣∣∣∣∣∣



1
N

≤ 1.

This shows that inequality (56) is valid and completes the proof.

The validity of the inequality (56) is a necessary condition for a star-shaped CT P to
be star-local. So, we call it a star-Bell inequality (SBI). Thus, a violation of SBI for some
parameters α0, α1, . . . , αm and β0, β1, . . . , βm shows that P is star-nonlocal.

Let us return to the network situation. Let Ax, Bj
yj and Cj,k

zj,k be {+1,−1}-valued
observables ofHA,HBj , andH

Cj
k
. Then, we have the following spectrum decompositions:


Ax = M0|x −M1|x = ∑a=0,1(−1)a Ma|x,

Bj
yj = N j

0|yj
− N j

1|yj
= ∑bj=0,1(−1)bj N j

bj |yj
,

Cj,k
zj,k = Lj,k

0|zj,k
− Lj,k

1|zj,k
= ∑zj,k=0,1(−1)cj,k Lj,k

cj,k |zj,k
.

(61)

Put

M(x) = {M0|x, M1|x}, N j(yj) =
{

N j
0|yj

, N j
1|yj

}
, Lj,k(zj,k) =

{
Lj,k

0|zj,k
, Lj,k

1|zj,k

}
,

which are clearly POVMs ofHA,HBj , andH
Cj

k
, respectively. Then, we can get a measure-

ment assemblage

M =

M(x)⊗
 m⊗

j=1

N j(yj)

⊗
 m⊗

j=1

nj⊗
k=1

Lj,k(zj,k)

 : x, yj, zj,k = 0, 1

 (62)

of the quantum network with measurement operators

Mabc|xyz := Ma|x ⊗
 m⊗

j=1

N j
bj |yj

⊗
 m⊗

j=1

(Lj,1
cj,1|zj,1

⊗ Lj,2
cj,2|zj,2

⊗ . . .⊗ L
j,nj
cj,nj
|zj,nj

)

,

where

a ∈ {0, 1}, b = (b1, . . . , bm) ∈ {0, 1}m, c = {cj,k}k∈[nj ],j∈[m](cj,k = 0, 1),
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x ∈ {0, 1}, y = (y1, . . . , ym) ∈ {0, 1}m, z = {zj,k}k∈[nj ],j∈[m](zj,k = 0, 1).

For all αj ∈ {0, 1}, it is computed that

Iα0α1 ...αm(P
Γ
M) =

1
2N ∑

zj,k

∑
a,bj ,cj,k

(−1)a+∑j bj+∑j,k cj,k P(a, b1 · · · bm, c|α0, α1 · · · αm, z)

=
1

2N ∑
zj,k

∑
a,bj ,cj,k

(−1)a+∑j bj+∑j,k cj,k

×tr

Ma|α0
⊗
 m⊗

j=1

N j
bj |αj

⊗
 m⊗

j=1

nj⊗
k=1

Lj,k
cj,k |zj,k

Γ̃


=

1
2N ∑

zj,k

〈
Aα0 ⊗

 m⊗
j=1

Bj
αj

⊗
 m⊗

j=1

nj⊗
k=1

Cj,k
zj,k

〉
Γ̃

. (63)

Similarly, for all β j ∈ {0, 1}, we have

Jβ0β1 ...βm(P
Γ
M) =

1
2N ∑

zj,k

(−1)∑j,k zj,k ∑
a,bj ,cj,k

(−1)a+∑j bj+∑j,k cj,k

×P(a, b1 · · · bm, c|β0, β1 · · · βm, z)

=
1

2N ∑
zj,k

(−1)∑j,k zj,k

〈
Aβ0 ⊗

 m⊗
j=1

Bj
β j

⊗
 m⊗

j=1

nj⊗
k=1

Cj,k
zj,k

〉
Γ̃

. (64)

This shows that the SBI (56) becomes

|Iα0α1 ...αm((P
Γ
M))| 1

N + |Jβ0β1 ...βm((P
Γ
M))| 1

N ≤ 1, ∀αj, β j ∈ {0, 1}. (65)

It is valid whenever the network with state Γ is star-local for the given MAM. Hence, to
explore the star-nonlocality of the MSN(m, n1, . . . , nm), it suffices to choose some specific
states distributed in the network and to choose specific measurements for each party such
that the corresponding SBI (56) is violated for some α0, α1, . . . , αm and β0, β1, . . . , βm.

Example 1. Let us consider the situation that the states distributed in the network are pure
entangled states. Denote |ψ〉AjB

j
0
= pj

1|00〉+ pj
2|11〉(j ∈ [m]),

|ψ〉
Bj

kCj
k
= qj,k

1 |00〉+ qj,k
2 |11〉(j ∈ [m], k ∈ [nj]),

(66)

the normalized pure states shared by A and Bj and by Bj and Cj
k, respectively, with real and positive

coefficients pj
1, pj

2 and qj,k
1 , qj,k

1 with (pj
1)

2 + (pj
2)

2 = 1 and (qj,k
1 )2 + (qj,k

2 )2 = 1. Thus,

Λ :=
m

∏
j=1

(2pj
1 pj

2)×
m

∏
j=1

nj

∏
k=1

(2qj,k
1 qj,k

2 ) > 0.

Then, we can get

ρ
AjB

j
0
= |ψ〉

AjB
j
0
〈ψ|, ρ

Bj
kCj

k
= |ψ〉

Bj
kCj

k
〈ψ|, (67)
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Consider the {+1,−1}-valued observables of HA = (C2)⊗m, HBj = (C2)⊗(1+nj), and
H

Cj
k
= C2:

{
X0 = σ⊗m

1 ;
X1 = σ⊗m

3 ,

{
Y j

0 = σ
⊗(1+nj)

1 ;

Y j
1 = σ

⊗(1+nj)

3 ,

{
Zj,k

0 = (cos η j,k, 0, sin η j,k) ·~σ;
Zj,k

1 = (cos θ j,k, 0, sin θ j,k) ·~σ,
(68)

where j ∈ [m], k ∈ [nj],~σ = (σ1, σ2, σ3) is the vector composed of Pauli operators and η j,k, θ j,k ∈
[−π, π]. The spectral projections form an MAM given by (62) for the network.

Using Equations (67), (68) and (63) and taking αj = 0(j = 0, 1, . . . , m), we can get

I00...0(PΓ
M) =

1
2N ∑

zj,k=0,1

〈
X0 ⊗

 m⊗
j=1

Y j
0

⊗
 m⊗

j=1

nj⊗
k=1

Zj,k
zj,k

〉
Γ̃

=
1

2N ∑
zj,k=0,1

〈
σ⊗m

1 ⊗
 m⊗

j=1

σ
⊗(1+nj)

1

⊗
 m⊗

j=1

nj⊗
k=1

Cj,k
zj,k

〉
Γ̃

=
1

2N ∑
zj,k=0,1

〈 m⊗
j=1

(σ1 ⊗ σ1)

⊗
 m⊗

j=1

nj⊗
k=1

(σ1 ⊗ Cj,k
zj,k )

〉
Γ

=
1

2N

m

∏
j=1
〈σ1 ⊗ σ1〉ρ

Aj Bj
0

×
m

∏
j=1

nj

∏
k=1

〈
σ1 ⊗ ∑

zj,k=0,1
Cj,k

zj,k

〉
ρ

Bj
kCj

k

=
1

2N

m

∏
j=1

(2pj
1 pj

2)×
m

∏
j=1

nj

∏
k=1

2(cos η j,k + cos θ j,k)qj,k
1 qj,k

2

=
Λ
2N

m

∏
j=1

nj

∏
k=1

(cos η j,k + cos θ j,k).

Analogously, taking β j = 1(j = 0, 1, . . . , m), we have

J11...1(PΓ
M) =

1
2N

m

∏
j=1
〈σ3 ⊗ σ3〉ρ

Aj Bj
0

m

∏
j=1

nj

∏
k=1

〈
σ3 ⊗ ∑

zj,k=0,1
(−1)zj,k Cj,k

zj,k

〉
ρ

Bj
kCj

k

=
1

2N

m

∏
j=1

nj

∏
k=1

(sin η j,k − sin θ j,k).

Putting

η = (η1,1, . . . , η1,n1 , . . . , ηm,1, . . . , ηm,nm), θ = (θ1,1, . . . , θ1,n1 , . . . , θm,1, . . . , θm,nm)

implies that

f (η, θ) := |I00...0(PΓ
M)| 1

N + |J11...1(PΓ
M)| 1

N

=

∣∣∣∣∣ 1
2N Λ

m

∏
j=1

nj

∏
k=1

(cos η j,k + cos θ j,k)

∣∣∣∣∣
1
N

+

∣∣∣∣∣ 1
2N

m

∏
j=1

nj

∏
k=1

(sin η j,k − sin θ j,k)

∣∣∣∣∣
1
N

=
1
2

N√Λ

∣∣∣∣∣ m

∏
j=1

nj

∏
k=1

(cos η j,k + cos θ j,k)

∣∣∣∣∣
1
N

+
1
2

∣∣∣∣∣ m

∏
j=1

nj

∏
k=1

(sin η j,k − sin θ j,k)

∣∣∣∣∣
1
N

.
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Taking θ = −η, i.e., θ j,k = −η j,k for all j, k yields that

f (η,−η) =
N√Λ

∣∣∣∣∣ m

∏
j=1

nj

∏
k=1

cos η j,k

∣∣∣∣∣
1
N

+

∣∣∣∣∣ m

∏
j=1

nj

∏
k=1

sin η j,k

∣∣∣∣∣
1
N

.

By taking η j,k ∈ [0, π/2] such that

sin η j,k =
1√

1 + Λ
2
N

, cos η j,k =
Λ

1
N√

1 + Λ
2
N

(69)

for each j, k, we get that

|I00...0(PΓ
M)| 1

N + |J11...1(PΓ
M)| 1

N = f (η,−η) =

√
1 + Λ

2
N > 1

since Λ > 0. This shows that SBI (65) is violated for (αj, β j) = (0, 1)(j = 0, 1, . . . , m) and then
the network with the shared states given by (66) is star-nonlocal.

The following example is about a situation in which the states distributed in the
network are Werner states with noise parameters vj and vj

k.

Example 2. Let us consider the Werner states distributed in the network:

ρ
AjB

j
0
= vj|φ+〉〈φ+|+ (1− vj)

I
4

, ρ
Bj

kCj
k
= vj

k|φ+〉〈φ+|+ (1− vj
k)

I
4

, (70)

where vj ∈ (0, 1], vj
k ∈ (0, 1], j ∈ [m], k ∈ [nj] and |φ+〉 = 1√

2
(|00〉+ |11〉).

Consider the {+1,−1}-valued observables of HA = (C2)⊗m, HBj = (C2)⊗(1+nj) and
H

Cj
k
= C2:

{
X0 = σ⊗m

1 ;
X1 = σ⊗m

3 ,

{
Y j

0 = σ
⊗(1+nj)

1 ;

Y j
1 = σ

⊗(1+nj)

3 ,

 Zj,k
0 = 1√

2
(σ1 + σ3);

Zj,k
1 = 1√

2
(σ1 − σ3),

(71)

where j ∈ [m], k ∈ [nj] and σ1, σ3 are Pauli operators. The spectral projections form an MAM
given by (62) for the network. Using Equation (70), Equation (71), and Equation (63) and taking
αj = 0(j = 0, 1, . . . , m), we compute that

I00...0(PΓ
M) =

1
2N ∑

zj,k=0,1

〈
X0 ⊗ (

m⊗
j=1

Y j
0)⊗ (

m⊗
j=1

nj⊗
k=1

Zj,k
zj,k )

〉
Γ̃

=
1

2N ∑
zj,k=0,1

〈
σ⊗m

1 ⊗ (
m⊗

j=1

σ
⊗(1+nj)

1 )⊗ (
m⊗

j=1

nj⊗
k=1

Cj,k
zj,k )

〉
Γ̃

=
1

2N ∑
zj,k=0,1

〈 m⊗
j=1

(σ1 ⊗ σ1)

⊗
 m⊗

j=1

nj⊗
k=1

(σ1 ⊗ Cj,k
zj,k )

〉
Γ

=
1

2N

m

∏
j=1
〈σ1 ⊗ σ1〉ρ

Aj Bj
0

m

∏
j=1

nj

∏
k=1

〈
σ1 ⊗ ∑

zj,k=0,1
Cj,k

zj,k

〉
ρ

Bj
kCj

k

=
V√
2N

,
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where V = ∏m
j=1 vj ∏m

j=1 ∏
nj
k=1 vj

k.
Analogously, taking β j = 1(j = 0, 1, . . . , m), we have J11...1(PΓ

M) = V√
2N . Hence,

|I00...0(PΓ
M)| 1

N + |J11...1(PΓ
M)| 1

N =
√

2V
1
N .

Thus, |I00...0(PΓ
M)| 1

N + |J11...1(PΓ
M)| 1

N > 1 if and only if V > 1√
2N . Therefore, when the coeffi-

cients of the shared state (70) satisfy the condition 1 > V > 1√
2N , Equation (65) is violated, and

then the network MSN(m, n1, . . . , nm) is star-nonlocal.

5. Summary and Conclusions

In this work, a more general multi-star-network MSN(m, n1, . . . , nm) was introduced.
Such a network consists of 1 + m + n1 + · · · + nm nodes and one center-node A that
connects to m star-nodes B1, B2, . . . , Bm while each star-node Bj has nj + 1 star-nodes

A, Cj
1, Cj

2, . . . , Cj
nj . When m = 1, n1 = n− 1, it reduces to MSN(1, n− 1), which is just an

n-local scenario [22,43], and when m = n1 = 1, it becomes MSN(1, 1), reducing to the
bi-local scenario [20,43].

First, we have introduced the nonlocality of the star-locality and star-nonlocality of
such a network and deduced some related properties. Based on the architecture of such a
network, we have proposed the concepts of star-shaped correlation tensors (SSCTs) and star-
shaped probability tensors (SSPTs) and mathematically formulated two types of localities
of SSCTs and SSPTs, named “D-star-locality” and “C-star-locality”. By definition, an
SSCT/SSPT is said to be C-star-local (resp., D-star-local) if it admits an integral star-shaped
LHVM (resp., a finite-sum star-shaped LHVM). By establishing a series of characterizations,
we have proven the equivalence of these localities is verified and then called them “star-
locality". We have also found some necessary conditions for a star-shaped CT to be star-local.
For the global properties of star-local SSCTs, we have proved that the set of all star-local
SSCTs forms a path-connected compact set in the Hilbert space of tensors over the index set
∆S and has least two types of star-convex subsets. Lastly, we have established a star-Bell
inequality, which is proven to be valid for all star-local SSCTs. Based on this inequality, we
have given two examples of star-nonlocal multi-star-network MSN(m, n1, . . . , nm) with the
shared pure and mixed entangled states, respectively.
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