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Abstract: The µ-value or structured singular value is a prominent mathematical tool to analyze
and synthesize both the robustness and performance of time-invariant systems. We establish and
analyze new results concerning structured singular values for the Hadamard product of real square
M-matrices. The new results are obtained for structured singular values while considering a set
of block diagonal uncertainties. The targeted uncertainties are of two types, that is, pure real
scalar block uncertainties and real full-block uncertainties. The eigenvalue perturbation result is
utilized in order to determine the behavior of the spectrum of perturbed matrices (A ◦ B)∆(t) and
((A ◦ B)T∆(t) + ∆(t)(A ◦ B)).
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1. Introduction

The µ-value or structured singular value is a notable and prominent mathematical tool
for analyzing both the robustness and performance of time-invariant dynamical systems
appearing in control [1]. The notion of µ-value or structured singular value was first
introduced and popularized by Doyle in his famous article [2]. The structured singular
value quantifies the stability of time-invariant dynamical systems depending upon the
structured and unstructured uncertainties, such as mixed real and complex, pure real, pure
complex and a mixture of full real/complex and full real or full complex uncertainties.
For practical usage of a structured singular value, we refer to [3–12] and references therein.

The computation of the definite value of an µ-value or structured singular value is
very hard, in fact, NP-hard [4], and this allows the development of suitable and efficient
numerical techniques for its approximation. The main objective of such numerical tech-
niques is to approximate the computation of the µ-value or structured singular value
from below or above more accurately and efficiently. The numerical approximation of a
µ-value or structured singular value from below and above provides the most suitable
and reliable conditions to guarantee stability and instability of time-invariant dynamical
systems, respectively.

The numerical approximation of tightly structured singular values from below for the
case of real uncorrelated parametric uncertainties was carried out by a numerical algorithm
presented in [13], which is based on top of the simple matrix algebra operations. This
new algorithm is much simpler than the already existing algorithm [14–18]. A non-linear
programming methodology is introduced in [19] to determine the tight lower bounds when
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real structured uncertainties are present, and the obtained results are better than µ− toolbox
and GAMS optimization solvers.

A low-rank ODE-based numerical technique is presented in [20] to approximate the
µ-value or structured singular values from below for LTV dynamical systems, and the
obtained results match with those obtained with the MATLAB function mussv. The stability
analysis of LTI dynamical systems while considering diagonal norm-bounded linear differ-
ential inclusions is studied by approximating the bounds of structured singular values [21].

In [22], it has been shown that five full block µ-values or structured singular values
subject to real uncertainties are exactly equal to the computation of their upper bounds.
The results are obtained by formulating the equality conditions and equality constraints as
a feasibility semi-definite programming problem and invoking results on the existence of a
low-rank solution. In [23], authors have given new results concerning the exact computation
of the upper bounds of µ-values or structured singular values and skewed structured
singular values. These results were obtained along with their dual characterizations and
presented and analyzed while defining characterization in the sense that it acts as an
application to the duality argument in the context of convex sets. A Newton-type method
is developed in [24] to approximate the upper bounds of the largest structured singular
value for a class of general mixed real and complex perturbations.

In [25], the asymptotic behavior of solution trajectories corresponding to dynamical
systems is stated uniformly while introducing some new notions—”asymptotic equiv-
alence” and ”asymptotic reduction of solution space dimension”. Furthermore, a new
method to split the spaces provides an extension of the phenomenon of special solutions
onto large classes of operator difference equations and provides new results for delay
differential equations.

The maximal regularity properties of abstract differential operator equations corre-
sponding to weighted spaces are studied in [26]. The idea of Fourier multiplier theorems for
obtaining the coercive properties of convolution differential-operator equations (CDOEs) is
applied while considering the unbounded operator coefficient in weight Lp spaces.

A variable step size strategy to formulate a new step hybrid block method (VSHBM)
to solve the rigid and stiff differential equations is presented in [27]. The proposed method-
ology is formulated by integrating the Lagrange polynomial with a limit of integration
taken at some special points. The graphical illustration for the stability regions indicated
that the method is suitable for dealing with dynamical systems involving rigid and stiff
differential equations.

An ordinary differential-equations-based technique is developed in [28] to analyze the
quadratic stability of non-linear dynamical systems. The norm-bounded linear differential
inclusions are used to model the non-linear dynamical systems. Furthermore, the existence
of a symmetric positive definite matrix to study the stability of non-linear dynamical
systems is demonstrated by means of the Lyapunov function.

A new controller for UPQC in order to perform the power quality conditioning in
microgrid is presented in [29]. This new controller improves the stability and performance
towards the power quality problems.

A reduced order model is utilized to deal with the problem involving the designing of
interval observer for the system described by a linear discrete-time model subject to some
external disturbances and the measurement noises, for more details we refer [30].

In [31], an uncertainty and disturbance estimator UDE-based control is employed in
order to ensure the finite-time tracking and disturbance rejection performance for a class of
Takagi-Sugero fuzzy switched systems involving the unknown time-varying uncertainties.

Motivated by the above results, in this article, we present the computation of structured
singular values for the Hadamard product of the given matrices A and B. The structure of
A = (aij) is taken such that aij ≤ 0, ∀i 6= j and aij > 0 ∀i = j and for B = (bij), bij ≥ 0,
∀i 6= j and bij > 0 ∀i = j. The set of block diagonal-structured uncertainties is of two types,
that is,
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1. The set of block diagonal uncertainties contains only pure real full-blocks, that is,

B1 := {diag(∆1, ∆2, . . . , ∆s) : ∆i ∈ Rn×n, ∀ i = 1 : s}.

2. The set of real/complex scalar blocks uncertainties contains blocks that are real/complex
scalar multiple of an identity matrix, that is,

B2 := {diag(δ1 I1, δ2 I2, . . . , δi Ii) : δs ∈ R, ∀ i = 1 : s}.

The novelty of this paper is providing algorithms for the computation of structured
singular values and admissible perturbations for M-matrices A, B. The proposed algorithms
allow us to check the behavior of the spectrum of perturbed matrices (A ◦ B)∆(t) and
((A ◦ B)T∆(t)+∆(t)(A ◦ B)). To the best of our observation, no result exists in the literature
in this regard.

Overview of article. Section 2 of the article provides definitions of µ-values or struc-
tured singular values for pure real repeated scalar blocks and a number of real full blocks.
Furthermore, the definitions of real/complex scalar block uncertainties and real full block
uncertainties and four fundamental properties of µ-values or structured singular values
are presented.

In Section 3, we give definitions of the spectral radius of a given matrix. Furthermore,
the definition and results on the spectrum of M-matrices are presented.

In Section 4, we present some new results on µ-values or structured singular values
for the Hadamard product of real squared M-matrices. The new results are presented with
suitable examples with numerical tests.

Applications of structured singular values to discuss the stability of dynamical systems
containing M-matrices are presented in Section 5. Furthermore, we provide Algorithm 1
for the computation of an admissible perturbation level to determine the lower bounds of
structured singular values.

Algorithm 1: Approximate the perturbation level to approximate structured singular values

procedure GIVEN(A(M-matrix), BLK, tol > 0, ε(0)(given lower bound), εl(given lower bound) , εu(given upper
bound), imax(starting number of eigenvalues) )

for i← 1 to imax do solve the system of ODEs (4.10) in [20] corresponding to each case start from initial choice
∆i(0).
Let ∆i be a stationary solution and ξi be the smallest eigenvalue corresponding to perturbed matrix I − ε(0)A∆i
Set i∗ = argmin|ξi|
Set ∆(0) = ∆i∗ , ξ(0) = ξi, x(0), y(0) the eigenvectors
Compute ε(1) by one step Newton Iteration
Set k = 1
While |ε(k) − ε(k−1)| > tol do
solve ODEs (4.10) in [20] with ε = ε(k) starting from ∆(0) = ∆(k−1)

Let ∆(k) be a stationary solution of (4.10) in [20].
Let ξ(k) be smallest eigenvalue of perturbed matrix I − ε(0)A∆(k)

if |ξ(k)| > tol do then
Set εl = ε(k)

Compute ε(k+1) with one step Newton Iteration.
end procedure

2. Structured Singular Values

This section of our article is devoted to defining the structured singular value, which
in fact is a map µB(M) : Mn(C(or R))→ [0, ∞) and is defined below:

Definition 1. For any M ∈ Kn×n,K = C(or R), the structured singular value µB(M) is defined
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µB(M) :=

{
0, if det(I −M∆) 6= 0, ∆ ∈ B

1
min {‖∆‖2 :∆∈B,det(I−M∆)=0} , else.

The set B denotes the set of uncertainties, that is, a set of block diagonal matrices. Furthermore,
we use the convention that the minimum over an empty set is +∞. The µB(M) is a positively
homogeneous function, that is,

µB(αM) = αµB(M).

Definition 2. The set of pure real full blocks is defined

B1 :=




∆1
∆2

. . .
∆s

 : ∆i ∈ Ri×i ∀ i = 1 : s

.

Definition 3. The set of real scalar blocks is defined

B2 :=




δ1 I1
δ2 I2

. . .
δs Is

 : δi ∈ R ∀ i = 1 : s

.

We give some basic but important properties of an µ-value or structured singular
values deducted from the definition of an µ-value or structured singular value. For given
A, B ∈ Rn×n with A = (aij), aij ≤ 0 ∀i 6= j and aij > 0 ∀i = j and B = (bij), bij ≥ 0 ∀i 6= j
and bij > 0 ∀i = j. Let B1 and B2 be the set of block diagonal uncertainties, then

Property 1. µB1(α(A ◦ B)) = |α|µB1(A ◦ B) for A, B ∈ Rn×n and α ∈ C. Furthermore, it holds
true that µB2(α(A ◦ B)) = |α|µB2(A ◦ B) for A, B ∈ Rn×n and α ∈ C.

Property 2. µB1(A ◦ B) = δ̄(A ◦ B), for A, B ∈ Rn×n. Here, δ̄(·) represent the maximum
singular value of A ◦ B. Furthermore, µB2(A ◦ B) = δ̄(A ◦ B).

Property 3. ρ(A ◦ B) ≤ µB1(A ◦ B) ≤ δ̄(A ◦ B), for A, B ∈ Rn×n and ρ(·) denotes the spectral
radius of (A ◦ B). Furthermore, ρ(A ◦ B) ≤ µB2(A ◦ B) ≤ δ̄(A ◦ B).

Property 4. For B3 := {diag(δ1 Ir1 , . . . , δs Irs ; δs+1 In1 , . . . δs+t Int)|δi ∈ (0, ∞)} and let B̂3 :=
{U ∈ B3|U be a unitary matrix }. Then, for (A ◦ B), we have

max
U∈B̂3

ρ((A ◦ B)U) ≤ µB1(A ◦ B) ≤ inf
D∈B3

(D(A ◦ B)D−1).

Furthermore,

max
U∈B̂3

ρ((A ◦ B)U) ≤ µB2(A ◦ B) ≤ inf
D∈B3

(D(A ◦ B)D−1).

3. M-Matrices

The concept of M-matrices was introduced by Ostrowski in 1937. These matrices
appear in a variety of scientific areas such as finite difference methods for partial differential
equations, Markov chains in stochastic processes etc. M-matrices are helpful for establishing
the bounds of the spectrum of given matrices [32]. Furthermore, such a class of matrices
is helpful in providing convergence criteria for numerical algorithms to approximate the
suitable and more accurate solution for large-scale sparse systems of linear equations.
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Definition 4. A real-valued square matrix A ∈ Rn×n can be expressed as A = δI − B where
B = (bij), bij ≥ 0, 1 ≤ i, j ≤ n and δ ≥ ρ(B), then A is called an M−matrix.

Definition 5. For a given matrix X ∈ Rn×n, ρ(X) := max1≤i≤n |λi| with λi ∈ Λ(X) eigenval-
ues of X and ρ(·) is called spectral radius.

Theorem 1. A non-singular matrix A ∈ Rn×n with aii ≤ 0, i 6= j is an M−matrix if and only if
A−1 ≥ 0.

Theorem 2. Let A ∈ Rn×n be a real-value-squared M−matrix, that is, A = δI − B with B ≥ 0
and δ ≥ ρ(B) ≥ 0. Then

(i) δ− ρ(B) ∈ δ(A) with δ(A), the spectrum.
(ii) Re(λ) ≥ 0, ∀λ ∈ δ(A)
(iii) det(A) ≥ 0 and det(A) = 0↔ δ = ρ(B).

4. Main Results

Lemma 1 ([11]). Let M : R→ Cn,n be a smooth matrix family and let λ(t) be a continuous branch
of eigenvalues of M(t), t ∈ R corresponding to a simple eigenvalue λ̃0 of M̃0 = M(0) as t → 0.
Then λ(t) is analytic near t = 0 with

d
dt

λ(t)|t=0 =
ỹ0M1 x̃0

ỹ0
∗ x̃0

,

where M1 = d
dt (M(0)) and x̃0, ỹ0 are the right and left eigenvectors of M̃0 corresponding to λ̃0

that is, (M̃0 − λ̃0 I)x̃0 = 0 and ỹ0(M̃0 − λ̃0 I) = 0.

Theorem 3 ([33]). Any matrix A ∈ Rm,n can be factorized as the product of an orthogonal matrix
U, a diagonal matrix Σ and an orthogonal matrix V such that

A = UΣVt.

Theorem 4. Let

∆(t) =


∆1(t)

∆2(t)
. . .

∆s(t)

 ∈ Rn,n,

and assume that (A ◦ B)∆ has a simple and maximum eigenvalue in terms of its absolute value,
that is, λ = |λ(t)|eiθ , 0 ≤ θ ≤ 2π. Let x = (xt

1, xt
2, . . . , xt

s). Assume that λ = eiθy∗x > 0. Then,
‖∆(t)‖2 = ‖∆i(t)‖2 = 1, ∀i = 1 : s.

Proof. For

∆(t) =


∆1(t)

∆2(t)
. . .

∆s(t)

,

it is not possible to have the negative singular values, that is, δi(∆(t)) < 0 ∀i. Let ‖∆(t)‖2 = γ
with γ ∈ R, γ 6= 0. This can be seen by making use of a singular value decomposition
algorithm on ∆(t), which yields ∆(t) = U(t)∑(t)VT(t), where T represents the transpose.
Hence Σ, a diagonal matrix is obtained as follows, that is,



Mathematics 2023, 11, 1622 6 of 17

Σ(t) =


δ1(t)

δ2(t)
. . .

δs(t)

,

where σi(t) =
√

λi(t), ∀i, the singular values. By making use eigenvalue perturbation
results [11], we obtain

d
dt
|λ(t)|2|t=0 = 2Re( ¯λ(t)λ̇(t)) = 2Re(λ̄

y∗(A ◦ B)∆̇(t)x
y∗x

)

= 2|λ(t)|Re(
y∗(A ◦ B)∆̇(t)x

eiθy∗x
) =

2|λ(t)|
λ

Re(z∗(t)∆̇(t)x(t)).

Since, |λ(t)| > 0, λ > 0 and ∆(t) =


∆1(t)

∆2(t)
. . .

∆s(t)

.

Therefore, z∗(t)∆̇(t)x(t) = y∗(t)(A ◦ B)


∆̇1(t)

∆̇2(t)
. . .

∆̇s(t)

x(t) = y∗(t)(A ◦

B)x̃(t), where x̃(t) = (∆̇1x(t), ∆̇2x(t), . . . , ∆̇sx(t)). Since z∗(t)∆̇(t)x(t) > 0, which is true
and in turn implies that

d
dt
|λ(t)|2|t=0 > 0,

which leads clearly to a contradiction to the fact that λ(t) cannot exceed 1 ∀t. As ‖∆i(t)‖2 6= 0,
and from above, it is evident that ‖∆i(t)‖2 > 0, which is impossible. Finally, we have that
for each i = 1 : s, ‖∆i(t)‖2 = 1.

Example 1. Let A =

(
1 −2
0 1

)
and B =

(
2 −1
0 2

)
are M-matrices and let ∆(t) =

(
t2 t

1 + t 2t

)
,

t ∈ R+ ∪ {0} be the admissible perturbation. The spectrum of the perturbed matrix ((A ◦ B)∆) is
obtained as non-negative, as shown in Figure 1. Furthermore, it can be seen that λ1((A ◦ B)∆) and
λ2((A ◦ B)∆) have a smooth growth as t→ ∞. The spectrum of ((A ◦ B)∆) after differentiation is
also positive and has a smooth growth as t→ ∞. Furthermore, λ′1((A ◦ B)∆) and λ′2((A ◦ B)∆)
satisfies the condition that d

dt (λ(t)) > 0 for all t ∈ R+ ∪ {0}.

Theorem 5. Let the set of block diagonal uncertainties ∆(t) contain only pure repeated real scalar
blocks, that is, 

δ1(t)I1
δ2(t)I2

. . .
δs(t)Is

,

where δi ∈ R, ∀i = 1 : s.
Assume that (A ◦ B)∆(t) has simple and maximum eigenvalues in terms of absolute value, that

is, λ(t) = |λ(t)|eiθ , 0 ≤ θ ≤ 2π. Let x = (xt
1, xt

2, . . . , xt
s) and z = (A ◦ B)ty = (zt

1, zt
2, . . . , zt

s).
Furthermore, assume that λ = eiθy∗x > 0. Then, ‖∆(t)‖2 = ‖δi(t)Ii‖2 = 1 ∀i = 1 : s.
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Figure 1. Spectrum of (A ◦ B)∆ before and after differentiation.

Proof. Since (δi(t)Ii) can have negative eigenvalues depending on δi(t), our aim is to
transform all the negative eigenvalues λi(t) such that λi(t) > 0, ∀i. Secondly, we restrict
λi(t) = 1, ∀i because of the extremality condition of λi(t). In this direction, we aim to
construct an admissible perturbation matrix (say) E(t), ∀t ∈ R, and then we determine the
direction D = Ė(t), where dot operator stands for the differentiation. The computation of
the derivative of E(t) shows how fast the negative eigenvalues move so that λi(t) > 0, ∀i.
For this purpose, we make use of the following eigenvalue problem of the form

(∆(t) + εE(t))x(t) = λ(t)x(t), (1)

where ε > 0 is a small parameter to adjust the perturbation, and E(t) is the perturbation ma-
trix. In Equation (1), x(t) is an eigenvector corresponding to eigenvalue λ(t). Furthermore,
we assume that ‖x(t)‖2 ≤ 1, ∀t ∈ R. Upon differentiation with respect to t, Equation (1)
takes the form,

(∆(t) + εE(t))
d
dt
(x(t)) + ε

d
dt
(E(t))x(t) =

d
dt
(λ(t))x(t) + λ(t)

d
dt
(x(t)). (2)

Equation (2) can also be written as

λ(t)x∗(t)
d
dt
(x(t)) + εxt(t)

d
dt
(E(t))x(t) =

d
dt

λ(t) + λ(t)xt(t)
d
dt
(x(t)). (3)

Equation (3) in view of Equation (2) takes the form

d
dt
(λ(t)) = εxt(t)

d
dt

E(t)x(t). (4)

Take xt(t) d
dt (x(t)) = 0 in Equation (3) and D = d

dt (E(t)) = Ė(t), which results into
the following mathematical optimization problem of the form

max(x∗(t)Dx(t))
subject to

〈D, E(t)〉 = 0
diag(D) = 0.
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The solution of the above optimization problem yields that d
dt (λ

2(t)) > 0, ∀t ∈ R. This
is against the extremality condition of λ(t), and hence, ‖δi(t)‖2 = ‖∆‖2 = 1, ∀i, t ∈ R.

Example 2. Let A =


3 −1 −0.5 −1
−1 2 −1 −1
−1 −2 4 −1
−1 −1 −2 7

 and B =


2 −1 −1 −0.5
−1 2 −0.4 −1
−0.5 −1 2 −0.1
−0.2 −0.2 −1 2

 be M-

matrices. Consider ∆(t) =


t2 0 0 0
0 t 0 0
0 0 2t + 1 0
0 0 0 1 + t

, t ∈ R+ ∪ {0} as the set of block-diagonal

matrices. The eigenvalue λ1((A ◦ B)∆) before and after differentiation has a smooth growth as t
increases. The eigenvalue λ2((A ◦ B)∆) before differentiation is obtained as positive but for t ∈ [0, 5]
it first grows rapidly and then decays. Furthermore, λ2((A ◦ B)∆) has a linear growth for t ≥ 5.
However, after the differential λ′2((A ◦ B)∆) has a non-linear growth and t ∈ [0, 5], λ′2((A ◦ B)∆)
first grows monotonically with a small magnitude, then there is a sharp decay. The eigenvalues of
λ3((A ◦ B)∆) and λ4((A ◦ B)∆) have a positive linear growth before differentiation but a smooth
non-linear growth after differentiation, as shown in Figure 2. Furthermore, both λ′3((A ◦ B)∆) and
λ′4((A ◦ B)∆) satisfy d

dt (λ(t))) > 0, t ∈ R+ ∪ {0}. The behavior of the spectrum of (A ◦ B)∆
after differentiation is shown in Figure 3.

Theorem 6. Let A = (aij) ∈ Rn,n with aij ≤ 0, i 6= j and aij > 0, i = j and let B = (bij) ∈ Rn,n

with bij ≥ 0, i 6= j and bij > 0, i = j be real and squared valued matrices. Let (A ◦ B) be the
Hadamard product, and then there exists ∆ ∈ B with ‖∆‖2 = 1 such that (A ◦ B)T∆ + ∆(A ◦ B)
is a positive definite matrix, that is, (A ◦ B)T∆ + ∆(A ◦ B) > 0.
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Figure 3. Spectrum of (A ◦ B)∆ after differentiation.

Proof. Assume that ∆ ∈ B has a block diagonal structure, that is,

∆ =


∆1

∆2
. . .

∆s

,

and further assume that λ = |λ|eiθ , 0 ≤ θ ≤ 2π is the simple eigenvalue of ((A ◦ B)T∆ +
∆(A ◦ B)), and let x = (xt

1, xt
2, . . . , xt

s), y = (yt
1, yt

2, . . . , yt
s) and z = ((A ◦ B)T∆ + ∆(A ◦

B))Ty, where x and y are partitioned according to the structure of ∆ and act as left and
right eigenvectors, respectively. By making use of the eigenvalue perturbation result, we
obtain the following result for the behavior of the maximum eigenvalue,

d
dt
|λ(t)|2|t=0 = 2ε

|λ|
s

Re(z∗∆̇x), (5)

with s = eiθy∗x, 0 ≤ θ ≤ 2π.
In Equation (5), ε, s are positive parameters, and furthermore, Re(z∗∆̇x) > 0 and ∆

possess a unit 2-norm, that is, ‖∆‖2 = 1. Since A = (aij) with aij ≤ 0 for i 6= j and aij > 0
for i = j and B = (bij) with bij ≥ 0 for i 6= j and bij > 0 for i = j, in turn, this implies that
((A ◦ B)T∆ + ∆(A ◦ B)) has positive eigenvalues, that is,

((A ◦ B)T∆ + ∆(A ◦ B)) > 0.

Example 3. Let A =

 1 −1 −0.5
−1 2 −1
−0.2 −0.3 1

 and B =

 2 −2 −0.3
−1.2 1 −0.5
−0.1 0.5 1

 be M-matrices,

and let ∆(t) =

 t2 1 + t 2t
t t3 1 + 2t

1 + t2 4t t

, t ∈ R+ ∪ {0} be an admissible perturbation.
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The eigenvalue λ1((A ◦ B)T∆ + ∆(A ◦ B)) before and after differentiation has a smooth non-
linear growth for t = 1 : 50, as shown in Figure 4. The eigenvalues λ2((A ◦ B)T∆ + ∆(A ◦ B))
and λ3((A ◦ B)T∆ + ∆(A ◦ B)) infinitely appear to be almost zero but then become negative as t
increases. Both λ2 and λ3 have a decreasing monotonic behavior before differentiation. However,
after the differentiation, λ′2((A ◦ B)T∆ + ∆(A ◦ B)) and λ′3((A ◦ B)T∆ + ∆(A ◦ B)) become
strictly positive and possess monotonically increasing behavior, as shown in Figure 5.

Theorem 7. Let A = (aij) with aij ≤ 0, i 6= j and aij > 0, i = j and B = (bij) with bij ≥ 0,
i 6= j and bij > 0, i = j. Let A ◦ B be the Hadamard product of A and B. Then there exists a block
diagonal structured matrix ∆ with structure

∆ =


δ1 I1

δ2 I2
. . .

δs Is

,

where δ1, δ2, . . . , δs are real numbers and I1, I2, . . . Is are identity matrices, such that ((A ◦ B)T∆ +
∆(A ◦ B)) > 0, ‖∆‖2 = 1.

The Algorithm 2 computes the derivatives for the spectrum of (AoB)∆(t) for the
given M-matrices A and B and a set of pure real uncertainties ∆(t). The Algorithm 2
demands the input arguments as the M-matrices A, B, the set of pure real uncertainties
in the form of block diagonal matrices, π and a suitable choice for the parameter Θ. The
output of Algorithm 2 is spectrum before and after differentiation for the modified matrices
(AoB)∆(t) and spectrum has a monotonically increasing behavior for all values of time t.

Algorithm 2: Compute the derivative of the spectrum of (AoB)∆(t).

Data: t ∈ R+ ∪ {0}
A[1, 2, ·, ·, ·, N; 1, 2, ·, ·, ·, N] ∈ Rn,n, M-Matrix
B[1, 2, ·, ·, ·, N; 1, 2, ·, ·, ·, N] ∈ Rn,n, M-Matrix
pi←− 3.14
theta ∈ [0, 2pi]
delta_t[1, 2, ·, ·, ·, N; 1, 2, ·, ·, ·, N], uncertainty

Result: Spectrum before and after Differentiation
lambda_t[1, 2, ·, ·, ·, N], eigenvalues before Differentiation
lambda_prime[1, 2, ·, ·, ·, N], eigenvalues after Differentiation

for i in 1 to N :
for j in 1 to N :

diff_ij←− derivative o f delta_t[i, j] diff_t[i,j]←− di f f _ij (t)
end for

end for
S[1, 2, ·, ·, ·, N]←− element wise multiplication o f A and B
S_delta[1, 2, ·, ·, ·, N]←− S× delta_t(t)
eig_vec[1, 2, ·, ·, ·, N]←− eigen vectors o f S_delta
lambda[1, 2, ·, ·, ·, N]←− eigen values o f S_delta
y[1, 2, ·, ·, ·, N]←− 0
y[1]←− 1
z ←− transpose(S)×y
r ←− exp(i×theta)× (y×eig_vec)
for i in 1 to N :

lambda_prime[i]←− 2×abs(lambda[i])
r × (transpose(z) × di f f _t × eig_vec)

end for



Mathematics 2023, 11, 1622 11 of 17

0 5 10 15 20 25 30 35 40 45 50

t (time)

0

2

4

6

1
((

A
o

B
)T

+
(A

o
B

))

105 Spectrum of ((AoB)T + (AoB)) before Differentiation

0 5 10 15 20 25 30 35 40 45 50

t (time)

-4

-3

-2

-1

0

2
((

A
o

B
)T

+
(A

o
B

))

104 Spectrum of ((AoB)T + (AoB)) before Differentiation

0 5 10 15 20 25 30 35 40 45 50

t (time)

-1500

-1000

-500

0

3
((

A
o

B
)T

+
(A

o
B

))

Spectrum of ((AoB)T + (AoB)) before Differentiation

Figure 4. Spectrum of (A ◦ B)T∆ + ∆(A ◦ B) before differentiation.

0 5 10 15 20 25 30 35 40 45 50

t (time)

0

2

4

6

1
((

A
o

B
)T

+
(A

o
B

))

1010 Spectrum of ((AoB)T + (AoB)) after Differentiation

0 5 10 15 20 25 30 35 40 45 50

t (time)

0

1

2

3

4

5

2
((

A
o

B
)T

+
(A

o
B

))

109 Spectrum of ((AoB)T + (AoB)) after Differentiation

0 5 10 15 20 25 30 35 40 45 50

t (time)

0

5

10

15

3
((

A
o

B
)T

+
(A

o
B

))

107 Spectrum of ((AoB)T + (AoB)) after Differentiation

Figure 5. Spectrum of (A ◦ B)T∆ + ∆(A ◦ B) after differentiation.

Proof. The proof is similar to the proof of Theorem 6.
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Example 4. Let A =

 2 −0.1 −0.1
−0.5 3 −0.2
−0.5 −0.2 3

 and B =

 3 −0.5 −0.2
−0.1 6 −0.2
−0.2 −0.5 1

 be M-matrices,

and let ∆(t) =

t2 0 0
0 2t 0
0 0 t

, t ∈ R+ ∪ {0} be an admissible perturbation.

The eigenvalues λ1((A ◦ B)T∆ + ∆(A ◦ B)) and λ3((A ◦ B)T∆ + ∆(A ◦ B)) are obtained
as positive and having smooth non-linear behavior before and after differentiation, as shown in
Figure 6. The eigenvalue λ2((A ◦ B)T∆ + ∆(A ◦ B)) remains positive for t = 0 : 4 · 5, but then
it has negative linear growth. However, the eigenvalue λ′2((A ◦ B)T∆ + ∆(A ◦ B)), as shown in
Figure 7, becomes positive, possesses a positive smooth non-linear growth after the differentiation
and satisfies the criterion, that is, d

dt (λ(t)) > 0 for all t ∈ R+ ∪ {0}.

The Algorithm 3 computes the derivatives for the spectrum of ((AoB)T∆(t)+∆(t)(AoB))
for the given M-matrices A and B and a set of pure real uncertainties ∆(t). The Algorithm 2
demands the input arguments as the M-matrices A, B, the set of pure real uncertainties
in the form of block diagonal matrices, π and a suitable choice for the parameter Θ. The
output of Algorithm 2 is spectrum before and after differentiation for the modified matrices
((AoB)T∆(t) + ∆(t)(AoB)) and spectrum has a monotonically increasing behavior for all
values of time t.

Algorithm 3: Compute derivative of spectrum of ((AoB)T∆(t) + ∆(t)(AoB))

Data: t ∈ R+ ∪ {0}
A[1, 2, ·, ·, ·, N; 1, 2, ·, ·, ·, N] ∈ Rn,n, M-Matrix
B[1, 2, ·, ·, ·, N; 1, 2, ·, ·, ·, N] ∈ Rn,n, M-Matrix
pi←− 3.14
theta ∈ [0, 2pi]
delta _ t[1, 2, ·, ·, ·, N; 1, 2, ·, ·, ·, N], uncertainty

Result: Spectrum before and after Differentiation
lambda_t[1, 2, ·, ·, ·, N], eigenvalues before Differentiation
lambda_prime[1, 2, ·, ·, ·, N], eigenvalues after Differentiation

for i in 1 to N :
for j in 1 to N :

diff_ ij←− derivative of delta_t[i, j]
diff_ t[i,j]←− diff_ ij (t)

end for
end for S[1, 2, ·, ·, ·, N]←− element wise multiplication o f A and B
S_delMulAdd[1, 2, ·, ·, ·, N]←− transpose(S)× delta_t + delta_t× S
eig_vec[1, 2, ·, ·, ·, N]←− eigen vectors of S_delMulAdd
lambda [1, 2, ·, ·, ·, N]←− eigen values of S_delMulAdd
y [1, 2, ·, ·, ·, N]←− 0
y[1]←− 1
z ←− transpose(S)× y
r ←− exp(i× theta)× (y× eig_vec)
for i in 1 to N :

lambda_prime[i]←− 2×abs(lambda[i])
r × (transpose(z) × di f f _t × eig_vec)

end for
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Figure 6. Spectrum of (A ◦ B)T∆ + ∆(A ◦ B) before differentiation.
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Figure 7. Spectrum of (A ◦ B)T∆ + ∆(A ◦ B) after differentiation.

5. Applications

In this section, we discuss the stability of dynamical systems. The bounds of struc-
tured singular values act as tools to study the stability of the dynamical system under
consideration. For this purpose, we present the numerical testing for the computation of
lower bounds of structured singular values for M-matrices.
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Example 5. Consider the two-dimensional convection–diffusion equation

−(uxx + uyy) + q(ux + uy) + pu = f (x, y), (x, y) ∈ Ω

u(x, y) = 0, u(x, y) ∈ ∂Ω,

where Ω = (0, 1)× (0, 1) and ∂Ω represent the boundary of Ω, and q is a positive constant and p
is a real number. The five-point finite difference scheme for diffusion terms and central difference
scheme for connective terms, with the equidistant size for h = 1

(m+1) , yields the following linear

system of equations Ax = d with matrix A of order n = m2. The matrix

A = Mx ⊗ Im + Im ⊗My + pIn,

with Mx =

 4 −1 + r 0
−1− r 4 −1 + r

0 −1− r 4

, Ny =

 0 −1 + r 0
−1− r 0 −1 + r

0 −1− r 0

.

Here, r = qh
2 is the mesh Reynolds number. For q = 0, p = 10, we have that

A =

 14 0 0
−2 14 −2
0 −1 14

.

The very first column of the table given below represents the block diagonal structure
BLK. The notation [−r 0] represents the i-th block, which is an r-by-r repeated, diagonal
real scalar perturbation. The notation [r 0] represents the i-th block, which is an r-by-r
repeated, diagonal complex scalar perturbation. The second and third columns represent
the approximation of upper and lower bounds of structured singular values with a mussv
function, available in the MATLAB Control Toolbox. The last column represents the
computation of the lower bounds of structured singular values with Algorithm 1. In most
cases, the lower bounds of structured singular values approximated by Algorithm 1 are
sharper than those approximated by the mussv function.

The approximation of bounds of structured singular values for M-matrices

BLK mussv (u.b) mussv (l.b) Algorithm 1 (l.b)

[−1 0;−1 0;−1 0] 15.4142 15.1218 15.1218

[−1 0;−2 0] 15.4142 15.0607 15.0213

[3 0] 15.4142 15.4142 15.1025

[−3 0] 15.4142 15.4142 15.4142

Example 6. The positive definite matrices play an important role in discussing the stability of
dynamical systems. We consider an M-matrix, which is a-symmetric, acts as a Stieltjes matrix, and
is a positive definite matrix. The four-dimensional M-matrix is taken as

A =


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

.

The very first column of the table below represents the block diagonal structure
BLK. The notation [−r 0] represents the i-th block, which is an r-by-r repeated, diagonal
real-scalar perturbation. The notation [r 0] represents the i-th block, which is an r-by-r
repeated, diagonal complex scalar perturbation. The second and third columns represent
the approximation of upper and lower bounds of structured singular values with the
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mussv function, available in the MATLAB Control Toolbox. The last column represents the
computation of the lower bounds of structured singular values with Algorithm 1. In most
cases, the lower bounds of structured singular values approximated by Algorithm 1 are
sharper than those approximated by the mussv function.

The approximation of bounds of structured singular values for M-matrices

BLK mussv (u.b) mussv (l.b) Algorithm 1 (l.b)

[1 0; 1 0; 1 0; 1 0] 3.6180 3.6180 3.6180

[−1 0; 2 0;−1 0] 3.6180 3.6180 3.6153

[−1 0;−1 0;−1 0;−1 0] 3.6180 3.5615 3.5518

[3 0; 1 0] 3.5180 3.5180 13.5180

Example 7. Consider the system of linear equations

(M + µIn)x = b,

where the matrix M = S⊗ Im + Im ⊗ S with S = tridiag(−1, 4,−1) ∈ R3,3. The M-matrix is
A = M + µIn with

A =

 10 0 0
−2 10 −2
0 −2 10

.

The very first column of the table below represents the block diagonal structure
BLK. The notation [−r 0] represents the i-th block, which is an r-by-r repeated, diagonal
real-scalar perturbation. The notation [r 0] represents the i-th block, which is an r-by-r
repeated, diagonal complex scalar perturbation. The second and third columns represent
the approximation of upper and lower bounds of structured singular values with the
mussv function, available in the MATLAB Control Toolbox. The last column represents the
computation of the lower bounds of structured singular values with Algorithm 1. In most
cases, the lower bounds of structured singular values approximated by Algorithm 1 are
sharper than those approximated by the mussv function.

The approximation of bounds of structured singular values for M-matrices

BLK mussv (u.b) mussv (l.b) Algorithm 1 (l.b)

[−1 0;−1 0;−1 0] 12 11.7724 11.7724

[−1 0;−2 0] 12 11.8125 11.8041

[3 0] 12 12 11.9532

[−3 0; 1 0] 12 12 11.9532

6. Conclusions

In this article, we have conferred the computation of structured singular values for
M-matrices. The numerical approximation of lower bounds of structured singular values
for M-matrices with respect to a set of pure real scalar blocks and full blocks are presented
and analyzed. New algorithms are presented to observe the behaviors of the spectrum
of perturbed M-matrices (A ◦ B)∆(t) and ((A ◦ B)T∆(t) + ∆(t)(A ◦ B)). The numerical
testing for the various examples on M-matrices agrees with the fact that:

1. The behaviors of the spectrum of (A ◦ B)∆(t) and ((A ◦ B)T∆(t) + ∆(t)(A ◦ B))
follow the extremality conditions of |λ(t)| for t ≥ 0.

2. The spectrum of (A ◦ B)∆(t) and ((A ◦ B)T∆(t) + ∆(t)(A ◦ B)) remains smooth
and possesses monotonically increasing behavior after differentiation.



Mathematics 2023, 11, 1622 16 of 17

3. The spectrum of (A ◦ B)∆(t) and ((A ◦ B)T∆(t) + ∆(t)(A ◦ B)) does contain nega-
tive values before making use of the eigenvalue perturbation results of differentiation for
all t ≥ 0.

4. The spectrum of (A ◦ B)∆(t) and ((A ◦ B)T∆(t) + ∆(t)(A ◦ B)) becomes non-
negative after differentiation for all t ≥ 0.
The computation of upper bounds of M-matrices corresponding to dynamical systems via
a low-rank ordinary differential-equations-based technique is the focus of future work.
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