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Abstract: High-dynamic-range (HDR) image synthesis is a technology developed to accurately
reproduce the actual scene of an image on a display by extending the dynamic range of an image.
Multi-exposure fusion (MEF) technology, which synthesizes multiple low-dynamic-range (LDR)
images to create an HDR image, has been developed in various ways including pixel-based, patch-
based, and deep learning-based methods. Recently, methods to improve the synthesis quality of
images using deep-learning-based algorithms have mainly been studied in the field of MEF. Despite
the various advantages of deep learning, deep-learning-based methods have a problem in that
numerous multi-exposed and ground-truth images are required for training. In this study, we propose
a self-supervised learning method that generates and learns reference images based on input images
during the training process. In addition, we propose a method to train a deep learning model for an
MEF with multiple tasks using dynamic hyperparameters on the loss functions. It enables effective
network optimization across multiple tasks and high-quality image synthesis while preserving a
simple network architecture. Our learning method applied to the deep learning model shows superior
synthesis results compared to other existing deep-learning-based image synthesis algorithms.

Keywords: high dynamic range; multi exposure fusion; image fusion; deep learning

MSC: 68T45

1. Introduction

In general, the dynamic range of the human visual system is approximately 10,000 nits,
whereas the dynamic range of existing display devices has a range of approximately
100 nits; therefore, there is a limit to realizing realistic images on a display. Moreover,
low-dynamic-range (LDR) images cannot adequately depict a real scene because of the
limited response to the high-dynamic-range (HDR) of natural light. To display HDR images
on standard dynamic range (SDR) devices, such as computer monitors and televisions,
two common techniques are used: tone-mapping operators (TMOs) and multi-exposure
fusion (MEF).

TMOs compress the dynamic range of an HDR image into several visible LDR images,
allowing HDR scenes to be rendered on an LDR display. There are two types of TMOs:
global and local. Global operators use identical nonlinear functions to compress the entire
image, making operators fast to compute. Reinhard et al. [1] developed an automated
method for mapping HDR world images to LDR images based on a zone system. They
used a local averaging logarithmic operator to map the entire image and implemented
an automated dodging and burning algorithm to correct bright and dark regions. Duan
et al. [2] proposed a histogram adjustment method for displaying HDR images, based on a
global TMO, called histogram-adjustment-based linear to equalized quantizer (HALEQ).

However, TMOs can cause a loss of local contrast and detail because they treat the
entire image as a whole without considering differences in brightness and contrast within
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the image [3]. Local operators can reproduce a better quality of the tone-processed image;
however, these algorithms are more complicated than global operators, and the results can
be unrealistic because of artifacts.

The MEF technique was developed to create HDR images from multiple LDR images
with varying exposures and to realize digital images that resemble real eyes [4]. The MEF
technique can implement an image with a wider visual brightness range by appropriately
synthesizing several LDR images, and thus, realistic images can be implemented on the
display device [5,6]. As shown in Figure 1, unlike under- or over-exposed images that may
have saturated areas, the MEF image can depict finer details by combining information
from multiple source images.
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Figure 1. Multiple exposure source images and fusion image: (a) under-exposed image, (b) over-
exposed image, and (c) fused image by DenseFuse [7].

MEF techniques can be divided into traditional and deep-learning-based methods.
Traditional methods include the pixel-based MEF method and the patch-based method.
While researchers have developed various traditional methods, with the rise of deep
learning, deep-learning-based methods have become mainstream. Deep-learning-based
methods have several advantages, such as flexibility and scalability. However, convolu-
tional neural networks (CNNs) have inherent problems in that it is difficult to preserve
extracted features due to the defection in establishing long-range dependencies [8], and
large amounts of datasets are required to train networks. Moreover, owing to the lack of suf-
ficient multi-exposure training data and ground-truth images for HDR, many unsupervised
MEF methods have been proposed.

In this study, we present a method for training MEF networks by setting up multiple
tasks based on our image features. Although it is difficult to train due to the difficulty
of preserving extracted intricate features with CNNs architectures, it can be overcome by
learning several reference images with well-revealed features. These reference images are
composed of features that provide useful information for fusion by reflecting the charac-
teristics of the multi-exposure images. Moreover, by applying dynamic hyperparameters
to each multitask loss function, the MEF networks can be trained to effectively reproduce
HDR images. The contributions of our study are summarized as follows:

• To train MEF networks that require learning, we present a method for setting up a
customized dataset;

• To generate multiple tasks based on source features, we perform a procedure that
filters unnecessary regions from the source images using multi-exposure image char-
acteristics;

• To reflect the information between multiple tasks, we set dynamic hyperparameters
on the loss functions. This helps the network reproduce better-contrast images;

• To produce a high-quality image with a simple network design, we prove that it is
possible to utilize multiple tasks and dynamic hyperparameters for the loss function.
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The remainder of this paper is organized as follows: Section 2 introduces the existing
methods used in our work. Section 3 describes the implementation of the proposed method.
Section 4 provides the quantitative and qualitative results of the proposed model as well as
other deep-learning-based image fusion algorithms. Finally, we present our conclusions in
Section 5.

2. Related Works
2.1. Multi-Exposure Image Fusion

Among the traditional image synthesis methods, there are two major techniques: pixel-
and patch-based methods. The pixel-based method synthesizes multi-exposed images
according to specific pixel-wise fusion rules. This method selects the best pixels from each
source image based on certain criteria and then generates weight maps to combine these
pixels. The acquisition of pixel weight maps from source images is typically based on
measures of image quality such as sharpness, contrast, and color fidelity. In addition, the
weight maps of source images can be obtained in various ways.

Bruce [9] calculated entropy in a circular area centered on each pixel with a radius
from the source image. They assigned a weight to each pixel based on its information
entropy and merged source images based on these weights. Song et al. [10] proposed
an HDR fusion method using a probabilistic model that preserved the calculated image
luminance levels and suppressed reversals in the image luminance gradients. Lee et al. [11]
calculated the weights for each pixel in the source images by analyzing the relative pixel
intensity and global gradient. The relative pixel intensity determines the brightness of each
pixel in the image, whereas the global gradient measures the contrast between the adjacent
pixels. While these methods have the advantage of obtaining fused images by calculating
accurate pixel weight maps, the main drawback of pixel-based methods is the tendency to
introduce artifacts in the final fused image, such as noise and halos [12]. Moreover, they
cannot properly represent the edge information of images [13].

In the patch-based method, the source images are first divided into small patches or
sub-images. Each patch is then processed independently to produce a fused image. This
approach allows for better handling of the local differences in brightness and contrast.

Huang et al. [14] introduced a patch-based MEF method that divides an image patch
into three independent parts: contrast extraction, structural preservation, and intensity
adjustment. They fused these parts separately and reconstructed the desired patch, which
was then fed back into the fused image. Wang et al. [15] proposed a method that uses
a super-pixel segmentation approach to divide the input images into non-overlapping
patches composed of pixels with similar visual properties. This method has the advantages
of avoiding the blocking effect and preserving the color attributes of source images. The
main advantage of these methods is that the weight map has less noise than pixel-based
MEF methods because it combines the neighborhood information of the pixels. However,
the performance of patch-based methods is sensitive to the choice of patch size and over-
lap as well as the characteristics of the source images, making it challenging to achieve
consistent and reliable results across different images and applications.

2.2. Deep-Learning-Based Multi-Exposure Image Fusion

As shown in Figure 2, deep-learning-based image fusion networks typically consist of
three characteristic stages: feature extraction, feature fusion, and feature reconstruction.
Feature extraction involves the extraction of high-level features from source images using
deep neural networks. These features represent the source images in high-dimensional
space and are used to capture the complex and abstract features of the images. The feature-
fusion stage involves combining the extracted features from each source image to obtain a
fused feature map. This can be performed in different ways such as using element-wise
summation, l1-norm, or other fusion strategies [7]. Finally, in the feature-reconstruction
stage, the fused feature maps are fed into a decoder network to reconstruct the final
fused image.
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The main advantage of deep-learning-based image fusion networks is that they can
learn the optimal feature representations for image fusion directly from the data without
the need for handcrafted features or explicit rules. Additionally, deep-learning-based
approaches can be trained end-to-end, which enables the joint optimization of all stages
of the image fusion process. However, the performance of deep-learning-based image
fusion networks depends on the training dataset’s quality and size and the network archi-
tecture’s complexity.

In the MEF field, deep-learning-based image fusion methods are divided into two
categories: supervised learning and unsupervised learning. In supervised learning, a
large number of ground truth images are required for training even though the MEF
ground truth is insufficient. To overcome the lack of dataset images, the generation of
the ground truth was studied together. Kalantari et al. [16] combined three exposed LDR
images to generate a ground-truth HDR image. Subsequently, they trained a deep CNN
model to reproduce the HDR image from a set of images aligned with the optical flow.
However, the generated ground truth images are not real, and their use may reduce the
fusion performance. Therefore, many researchers have attempted to train networks in an
unsupervised manner.

Unsupervised learning MEF methods usually modify network structures to extract
informative features from source images. For example, Xu et al. [17] proposed U2Fusion,
which extracts features with a pre-trained VGGNet-16 and utilizes DenseNet for fusion.
The authors obtained various shapes of feature maps using a convolutional layer before
the max-pooling layer. This could preserve deep-level features such as spatial structures as
well as shallow features such as textures and details.

Qu et al. [8] introduced a transformer-based MEF framework called the TransMEF.
They designed a transformer module in addition to a CNN module for training to ad-
dress the inherent limitations of CNNs. By combining the CNN and transformer modules,
the network can extract both local and global information from a pair of source images.
Although these models have demonstrated good fusion performance and the ability to pro-
duce high-quality fused images, training their complex network architecture still requires
numerous datasets. This can lead to slow training and increased memory use. Hence,
finding the correct balance between network complexity and performance is crucial for
developing effective fusion networks.

3. Proposed Methods
3.1. Framework Overview

As shown in Figure 3a, our network is based on the DenseFuse [7] architecture. We
focused on optimizing the network by setting up multiple informative target images.
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During the training phase, the classified multi-exposed images were resized to
256 × 256 pixels, and only the luminance images of the LDR images entered each
channel in the encoder. At the same time, new target images that contain useful infor-
mation of the input images are generated using the MaskBuilder block. In addition,
ParamTuner creates weight values that are multiplied by Lossun and Lossov to optimize
the network effectively.

As observed in Figure 3a, the encoder consists of two channels. The DenseBlock
contains three ConvLayer blocks, in which the output of each layer is connected to the other
layers, and each ConvLayer of the network contains one reflection padding layer, namely a
convolutional layer with a kernel size of 3 × 3, and a ReLU activation function layer, as
shown in Figure 3a,b. This structure preserves the information of the source images as
much as possible and allows the network to be trained easily. The features of the under-
/over-exposed images are extracted from the encoder block through the above convolution
layers, and they are simply added. The fused feature maps enter the decoder, and the
fused image is finally reconstructed using four ConvLayer blocks. The reconstructed image
learns the correct-exposed image of the pair. In addition, we applied masks generated from
MaskBuilder to the reconstructed image to perform multi-task self-supervised learning.

3.2. Dataset Acquisition

Networks that synthesize multi-exposure images can be trained in a supervised man-
ner using ground truth images or in an unsupervised manner using similarity metric-based
loss functions to retain the features of the source images [18]. Recently, owing to the lack
of sufficient ground truth images in the MEF field, many researchers have investigated
the unsupervised reconstruction of high-quality images [8]. To reconstruct higher-quality
fusion images without reference images, it is important to learn the various features of each
multi-exposure image.
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We categorized multi-exposure images into three groups, i.e., under-exposure, over-
exposure, and correct exposure, and paired these three types of exposure images. As shown
in Figure 4, to acquire large amounts of exposure pairs, we first fixed the appropriate
correct-exposed image from the correct exposure group; second, we set the image that was
captured with less exposure time than the correct-exposed image as an under-exposed
image, and the others that were captured with a higher exposure time than the correct-
exposed image as an over-exposed image. Because the correct-exposed image contains
some information about the under-exposed and over-exposed images as well as its own
information, we initially aimed to converge a reconstructed image of LDR images into a
correct-exposed image.
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3.3. MaskBuilder

MaskBuilder is designed to create multi-task images because only the correct-exposed
image is not sufficient to learn sufficient multi-exposure image features. The under-exposed
image contains meaningful information in a relatively bright area, as the dark portion of
the image is saturated; conversely, the over-exposed image contains useful information on
a relatively dark area, as the bright portion of the image is saturated, as shown in Figure 5.
Based on this characteristic, we devised masks that filter unnecessary information from the
input LDR images.
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Figure 5. Multi-exposure images and histograms: (a) under-exposure image; (b) correct-exposure
image; (c) over-exposure image; (d) histogram of under-exposure image; (e) histogram of correct-
exposure image; (f) histogram of over-exposure image.
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To determine whether the regions of the inputs are instructive, we blurred the images
of each input image as follows:

G(x, y) =
1

2πσ2 exp
(
− x2 + y2

2σ2

)
(1)

Ig(i, j) =
m

∑
y=−m

m

∑
x=−m

I(i + x, j + y)G(x, y) (2)

where G(·) represents a two-dimensional Gaussian function, I(i, j) represents the pixel
value of the input image at (i, j), σ is the standard deviation, m represents the kernel size
of the Gaussian filter, and Ig is the blurred image. The higher the σ values that blur over a
wider radius, the greater the amount of regions of the input images that can be removed.
Thus, it is required to find an appropriate σ value. In Section 4, we arbitrarily set the σ
value to 10, 20, and 50 and compared the results to determine the most suitable σ value.
Lastly, the kernel size was conventionally set using Equation (3),

m = 6σ + 1 (3)

Since the final mask should remove saturated areas from incorrect-exposed images, it
should have a value of 0 for saturated areas and a value of 1 for unsaturated areas. Thus,
min-max normalization was utilized to generate the final mask Îg using Equation (4),

Îg(i, j) =
Ig(i, j)−minIg

maxIg −minIg

(4)

where maxIg and minIg are the maximum value of Ig and the minimum values of Ig, respec-
tively.

The generated mask eliminates dark regions of the inputs or outputs through multipli-
cation. However, in the case of over-exposed images, the mask eliminates bright regions of
the images because there is useful information in the dark region. Thus, we obtained the
other filter mask Î′g for the over-exposed images using Equation (5).

Î′g(i, j) = 1−
I′g(i, j)−minI′g

maxI′g −minI′g
(5)

where I′g indicates the blurred over-exposed image in Equation (5), and maxI′g and minI′g
indicate the maximum value of I′g and the minimum values of I′g, respectively. A diagram
of the mask building is shown in Figure 6.
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For the generated masks Îg and Î′g in Figure 6, grayscale-normalized images were used
because it is difficult to visually examine the original images.

3.4. Loss Function

The proposed model has three different types of target images. To learn each feature
of the targets, multi-loss functions were designed, and Losstotal is defined as follows:

Losstotal = λ1Lossun + λ2Lossov + Lossco (6)

where Lossun, Lossov, and Lossco are the losses between the different multiexposed images
and outputs, and λ1 and λ2 are the hyperparameters that control the ratio of Lossun and
Lossov, respectively.

Each loss consists of two loss functions that can preserve the salient information of the
target image as follows:

Loss = Lossmse + αLossms–ssim (7)

Lossmse = ‖Iout − Itarget‖2 (8)

Lossssim = 1−MS-SSIM
(

Iout, Itarget
)

(9)

where Lossmse denotes the mean square error (MSE) loss, Lossms–ssim denotes the multi-
scale structural similarity (MS-SSIM) loss [19], MS-SSIM(·) denotes the MS-SSIM operator
between the output and target, and α is a hyperparameter used to match the magnitude of
the MSE and MS-SSIM losses. The α was experimentally set to 1000 according to [7].

3.5. ParamTuner

Although we classified multi-exposure datasets into under-exposed, over-exposed,
and correct-exposed images, we realized that the exposure value (EV) difference be-
tween the under-exposed and correct-exposed images and the difference between the
over-exposed and correct-exposed images are not consistent. This is because LDR images
have different exposure times even though they belong to the same category. Thus, we
assumed that it is necessary to set the dynamic λ1 and λ2 values for each multi-exposed
image pair. For example, let us assume that five multi-exposed images, which consist of 0
EV, ±1 EV, and ±2 EV, can be paired, as shown in Figure 7.

There is an identical EV difference between the correct-exposed and incorrect-exposed
images in Figure 7a. However, in Figure 7b,c, the difference between the correct-exposed
and under-exposed images is larger than that between the correct-exposed and over-
exposed images or vice versa. We expected that the larger EV difference between the
correct-exposed and incorrect-exposed images means that the incorrect-exposed image has
more significant information than the other incorrect-exposed image; thus, the network
can be trained more effectively by setting a higher lambda value on the incorrect-exposed
image loss.

However, because of the challenge of measuring the relative exposure value difference
between the correct-exposed image and the under-exposed or over-exposed image, we
employed an adaptive gamma value inspired by adaptive gamma correction (AGC) [20].
The AGC method can adequately evaluate the gamma value of an image by classifying the
image’s contrast as follows:

g(I) =
{

$1, D ≤ 1/τ
$2, otherwise

(10)

where I is an input image, and $1 and $2 are low-contrast class and high- (or moderate-)
contrast class, respectively. D is defined as di f f ((µ + 2σ), (µ− 2σ)), τ is a parameter used
to define the contrast of an image, and σ and µ are the standard deviation and mean of the
image intensity, respectively. The input image can be categorized differently based on the
τ, and we determined τ = 3 to be the appropriate value by referring to [20].
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After classifying the constant class, the gamma value of the image was calculated
according to its group. Equations (11) and (12) show γ of the image belonging to $1 group
and belonging to $2, respectively.

γ = − log2(σ) (11)

γ = exp[
1− (µ + σ)

2
] (12)

In ParamTuner, each adaptive gamma value of the multi-exposed images was cal-
culated using the AGC algorithm. Next, the difference in gamma values between the
correct-exposed image and the under-exposed or over-exposed image was computed sepa-
rately. Finally, λ1 and λ2 were determined using the normalized ratio function. A diagram
of this strategy is shown in Figure 8.

In Figure 8, Iun, Ico, and, Iov are under-exposed, correct-exposed, and over-exposed
images, respectively. γov, γco, and γov are the gamma values of the multi-exposed images,
and D1 and D2 are defined as di f f (γun, γco) and di f f (γov, γco), respectively. The final
value of λi(i = 1, 2) was calculated using Equation (13).

λi = β
Di

∑k
j=1 Dj

(13)

where β is a hyperparameter that controls the ratio of each incorrect-exposed image, and
k = 2 indicates the number of lambda. The value of β was set to two to account for the
entire loss ratio.
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3.6. Image Fusion Process

When two images with different exposures are captured with a single sensor camera,
the boundaries of the two images may not match because of changes in the shooting
conditions, such as movement of the subject, which may cause blending problems (e.g.,
ghost, double boundary, blurring, etc.). Therefore, we aligned two LDR images using scale-
invariant feature transform (SIFT) [21] and homography [22] before image fusion. The SIFT
algorithm is a widely adopted technique for feature extraction, and it can extract distinctive
invariant features between two LDR images, which can be aligned by homography based
on the extracted features.

In image processing, homography matching involves matching two images with
different viewpoints to obtain the same viewpoint through homography conversion. Ho-
mography transformation refers to a series of processes for obtaining a transformation
matrix that maps points on a two-dimensional plane to another plane in a three-dimensional
space and transforms the points.x′

y′

1

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

×
x

y
1

 (14)

Equation (14) shows the equation for homographic transformation that maps a point
(x, y, 1) in a three-dimensional space to (x′, y′, 1). The h11 through h33 3× 3 matrices
denote a homography matrix. To homographically match two images from different
viewpoints, a process of finding keypoints of each image and matching these keypoints
through a descriptor is required, which can be performed using the SIFT algorithm [21].
The SIFT algorithm mainly consists of four parts: scale-space extrema detection, keypoint
localization, orientation assignment, and keypoints and descriptors [23]. After calculating
each keypoint and descriptor in two different images, keypoint pairs with the highest
similarity were obtained by feature mapping. The final aligned image was computed by a
homography matrix using these keypoint pairs.

However, it is sometimes difficult to extract features between under-exposed and
over-exposed images because of the dissimilarity in the exposure values. Thus, we applied
AGC [20] to correct the image dissimilarity. A diagram of the proposed image-fusion
scheme is shown in Figure 9.
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After aligning the LDR images, the color space of the images was converted from
RGB to CIELAB. Because CIELAB has excellent color separation based on human vision,
it preserves the color components of each input image. In Figure 9, lun and lov denote the
luminance channels of the under-exposed and over-exposed images, respectively. C11,
C12, C2, C3, C4, and C5 are the trained ConvLayers. DB11 and DB12 are the trained
DenseBlocks. l f used is determined from lun and lov by trained neural networks; a f used and
b f used are simply calculated by adding half of aun and aov or bun and bov, which are the color
channels of the under-exposed and over-exposed images. Finally, the fused image was
obtained by converting the color space into an RGB space.

4. Experimental Results

In this section, we analyze our approach and compare it with other deep-learning-
based image fusion methods. A total of 460 image pairs (under-/over-/correct-exposed
images) from the open dataset [24,25] and our acquired dataset were used as the training
datasets. All training images were resized to 256 × 256. The network was trained for
40 epochs with a batch size of 1 and a learning rate of 1 × 10-4. The training networks
and all experiments were implemented with an NVIDIA RTX 2060 GPU and Intel Core
i5-6500 CPU.

To confirm the effect of the sigma value of the Gaussian filter in MaskBuilder, we
compared each Losstotal as shown in Figure 10. As observed, a larger value of sigma leads
to a relatively unstable convergence loss, and the best loss is also the lowest when the sigma
value is 10. Therefore, our method set the sigma value to 10.
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We compared the fusion results of our method with those of three deep-learning-based
image fusion methods [7,8,17]. Fourteen under-/over-exposed image pairs were selected
from the previous available dataset [26,27] for the experiment, and the fused images
of each method were evaluated using 10 image-quality metrics: average gradient (AG),
edge intensity (EI), feature mutual information (FMI), LPC-SI, S3, spatial frequency (SF),
perceptual image quality evaluator (PIQE), MS SSIM, Qabf, and visual information fidelity
for fusion (VIFF). The AG metric computes the gradient, which contains details and texture
information in the image [28]. EI is a metric that represents the image quality and sharpness
based on the edge intensity value [29]. FMI determines the mutual feature information
between the source and fused images [30]. LPC-SI can detect the sharpness of visual images
in the complex wavelet transform domain [31]. S3 shows how images have sharper areas
considering human cognitive characteristics [32]. SF reflects the distribution of gradients to
compute the amount of detail and texture in the fused image [33]. PIQE calculates image
quality using a spatial mask, with a smaller score indicating better perceptual quality [34].
The MS SSIM is a structural similarity index measure combined with multiscale information
of the source image [19]. The Qabf metric reflects the quality of visual information from
source images, and a larger score indicates a better fusion effect [35]. The VIFF uses VIF
models to assemble visual information from the source and fused images and measure the
effective visual information of fusion [36].

As shown in Table 1, our method achieved the best performance and showed excellent
results, particularly in terms of image sharpness and human perception-based quality metrics.
The proposed method has an average improvement of about 32.8% over the existing synthesis
methods in the image sharpness matrix (AG, EI, LPC-SI, S3, SF) and an average improvement
of about 27.35% in the image-quality evaluation metrics (PIQE, Qabf, VIFF).

Table 1. Comparison of image-quality metrics score with existing image fusion methods: HyperP_MB
denotes a deep learning model that applies our training methods.

Method AG EI FMI LPC-SI S3 SF PIQE MS-SSIM Qabf VIFF

DenseFuse 4.1796 41.3714 0.3366 0.9369 0.1830 13.7378 26.0896 0.8781 0.4208 0.4285

U2Fusion 4.7719 48.9770 0.2891 0.9438 0.1798 15.3116 35.4318 0.8468 0.3898 0.4181

TransMEF 3.9983 40.3294 0.2910 0.9360 0.1627 13.1360 37.8373 0.8636 0.3520 0.4084

HyperP_MB 6.1319 61.6277 0.3447 0.9543 0.2369 19.7974 25.8651 0.8916 0.5059 0.5477

Figures 11–16 show the results of each fusion method. Overall, the proposed method
has better contrast and clarity than other methods. Whereas our method has detailed
features from source images in the highlighted region, the other fusion methods have low
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distinctness. Because our method preserves useful information of under-/over-exposed
images, the boundaries of the object and texture are distinguishable.
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Figure 14. Input and result images (4): (a) Under-exposed image, (b) Over-exposed image,
(c) DenseFuse, (d) U2Fusion, (e) TransMEF, (f) Proposed model.
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Fuse, (d) U2Fusion, (e) TransMEF, (f) Proposed model. 
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Figure 15. Input and result images (5): (a) Under-exposed image, (b) Over-exposed image,
(c) DenseFuse, (d) U2Fusion, (e) TransMEF, (f) Proposed model.
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Figure 16. Input and result images (6): (a) Under-exposed image, (b) Over-exposed image, (c) Dense-
Fuse, (d) U2Fusion, (e) TransMEF, (f) Proposed model. 
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Figure 16. Input and result images (6): (a) Under-exposed image, (b) Over-exposed image,
(c) DenseFuse, (d) U2Fusion, (e) TransMEF, (f) Proposed model.
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The proposed model was trained using a correct-exposed image from incorrectly
exposed inputs. However, it does not reflect useful information from under-or over-
exposed images. Thus, we added the MaskBuilder and ParamTuner to robustly learn the
information from the inputs. To verify the effectiveness of the MaskBuilder and ParamTuner,
we trained and evaluated the networks by ablating our blocks, as listed in Table 2.

Table 2. Comparison of image-quality metrics score between the proposed methods: Co-target
denotes correct-exposed image target, and MB and PT denote the MaskBuilder and the Param-
Tuner, respectively.

Co-
Target MB PT AG EI FMI LPC-SI S3 SF PIQE MS-SSIM Qabf VIFF

4 4.8802 49.2164 0.3491 0.9526 0.2021 16.0696 27.4676 0.8809 0.4622 0.4604

4 4 5.9602 60.0486 0.3459 0.9549 0.2294 19.3997 27.9720 0.8962 0.5184 0.5421

4 4 4 6.1319 61.6277 0.3447 0.9543 0.2369 19.7974 25.8651 0.8916 0.5059 0.5477

As we observed, the network with MaskBuilder and ParamTuner had superior scores,
which indicate image sharpness and human perceptual quality. However, in terms of
the quality of fusion with the source images, it showed slightly lower quality scores than
networks without ParamTuner. We speculate that this is because the features of the source
images are not synthesized equally, allowing the dynamic hyperparameter to learn more
information from a more useful source image. As a result, the outcome of the network
with ParamTuner can be considered effective because the objective of our approach is to
synthesize a better quality HDR image using useful details from the LDR images.

5. Conclusions

In this paper, we propose a novel training method for MEF using multi-task learning.
First, we classified the multi-exposure images into three categories: under-exposure, over-
exposure, and correct exposure. The images that belong to the under-exposure or over-
exposure category were used as source images and as reference images. This allowed the
MEF networks to compensate for the saturated regions of the LDR images. Moreover,
we suggest MaskBuilder to reproduce advanced reference images that contain useful
information from source images. Thus, the ground truth of the LDR images is not necessary.
Finally, our ParamTuner has the effect of fusing high-quality images by applying dynamic
hyperparameters to the incorrect-exposed image losses. The quantitative and qualitative
experimental results demonstrate that the proposed method can produce images with
sharper and enhanced quality as perceived by humans. However, since this study only
tested the learning method of the proposed approach on one CNNs model, it is necessary
to evaluate the validity of the proposed method on various networks in future studies. In
addition, future research should explore how to optimize a deep-learning-based fusion
model by applying our proposed learning method so that it can be used in practical
applications such as surveillance systems or autonomous driving, which require diverse
types of image information.
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