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Abstract: There is no reliable failure pressure assessment method for pipe elbows, specifically those
subjected to internal pressure and axial compressive stress, other than time-consuming numerical
methods, which are impractical in time-critical situations. This paper proposes a set of empirical
equations, based on Artificial Neural Networks, for the failure pressure prediction of pipe elbows
subjected to combined loadings. The neural network was trained with data generated using the
Finite Element Method. A parametric analysis was then carried out to study the failure behaviour
of corroded high-strength steel subjected to combined loadings. It was found that defect depth,
length, spacing (longitudinal), and axial compressive stress greatly influenced the failure pressure
of a corroded pipe elbow, especially for defects located at the intrados, with reductions in failure
pressure ranging from 12.56–78.3%. On the contrary, the effects of circumferential defect spacing were
insignificant, with a maximum of 6.78% reduction in the failure pressure of the pipe elbow. This study
enables the failure pressure prediction of corroded pipe elbows subjected to combined loadings using
empirical equations. However, its application is limited to single, longitudinally interacting, and
circumferentially interacting defects with the specified range of parameters mentioned in this study.

Keywords: artificial neural network; corrosion assessment; finite element method; pipe elbow
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1. Introduction

Pipeline networks are a major component of the oil and gas industry that facilitates
the transport of raw and processed hydrocarbons across vast distances. The three main
pipeline types are gathering, transmission, and distribution systems. These pipelines
transport fluids at high temperatures and pressure [1]. Over the years, industries have
developed a preference for pipelines with improved transportation capacity, resulting
in an increased demand for pipelines with larger diameters [2]. To meet this demand,
pipes with enhanced strength, adequate ductility, and toughness were required. The
development of high-strength steel (HSS) was driven by the need for improved pipe
material properties with durability to withstand operations in harsh environments while
maintaining performance [3,4].

1.1. High-Strength Steel Pipelines in the Oil and Gas Industry

As a result of being exposed to harsh conditions and different terrains, pipelines are
subjected to pipe degradation mechanisms and external forces [5]. Among the different
types of external forces a pipe could be subjected to, axial compressive stress is known to
be the most significant [5–9]. Recent studies on the influence of axial compressive stress on
the failure of a straight pipe have shed light on the detrimental effects of the load [10]. The
effects of axial compression on a pipe’s failure pressure are more severe in the presence of
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corrosion. Corrosion is the most common and pernicious form of pipe degradation in steel
pipes. Corrosion may present itself as a single defect (completely isolated from all other
defects) or interacting defects (two or more defects in close proximity) [11].

The presence of corrosion defects in an HSS pipeline subjected to internal pressure and
axial compressive stress results in a drastic drop in the pipe failure pressure. This reduction
in failure pressure is more severe at the pipe bends than in the straight pipe region for a
corrosion defect of the same geometry [12]. This is due to the Bourdon Effect, caused by
the difference in surface area of the pipe elbow at the intrados and extrados, which causes
the component to straighten out [13]. When this occurs, the cross-section of the pipe elbow
is subjected to ovalisation [14]. Due to this, pipe elbows are regarded as the weakest link
in a piping system. As such, the integrity of pipe elbows of a pipeline must be assessed
periodically to prevent failures.

1.2. Pipeline Integrity Assessment Methods

In a pipeline system, the operating pressure depends on the maximum allowable
pressure of the pipeline network. The maximum allowable pressure is determined by the
most critical component in the pipe network. For this reason, pipe integrity assessment
standards and codes have been developed over the years to assess the failure pressure of
straight pipes. For example, the DNV-RP-F101 (known as the most comprehensive code
in the industry), ASME B31G, Modified AMSE B31G, RSTRENG, and PCORRC are the
conventional corrosion assessment codes applicable to straight pipes [2]. The DNV-RP-F101
code incorporates the influence of internal pressure and axial compressive stress acting
on a corroded pipe with a single defect. As for interacting defects, only the influence of
internal pressure is considered. Since these methods were developed for straight pipes,
using them for pipe elbows would result in inaccurate failure pressure predictions.

Despite being the weakest link in a piping network, the industry lacks a dedicated fail-
ure pressure assessment standard and code for the failure pressure prediction of corroded
HSS pipe elbows subjected to internal pressure and axial compressive stress. In the late 70s,
Goodall developed an equation known as the Goodall Formula to assess the limit pressure
of a thin-walled elbow based on flow stress [15]. However, this equation is only appli-
cable to defect-free pipe elbows. Duan and Shen, in 2006, furthered Goodall’s work and
proposed the Modified Goodall Equation to assess the failure pressure of a corroded pipe
elbow with a single defect subjected to internal pressure only [16]. As real-life scenarios
often require pipe elbow assessment for interacting corrosion defects incorporating axial
compressive stress and internal pressure, numerical methods such as the Finite Element
Method (FEM) are often used. Numerical methods are known to be highly accurate but can
be time-consuming and impractical in time-critical situations.

1.3. Artificial Neural Network as a Failure Pressure Prediction Tool

In recent years, various studies have used Artificial Neural Networks (ANN) in
pipeline corrosion assessment [10,17–19]. An ANN is a machine learning tool comprising
a complex network of artificial neurons that relate the input and output variables. It has
shown promising results in developing new corrosion assessment methods. Tohidi and
Sharifi, in 2016, developed an empirical solution to evaluate the residual strength of the
ultimate bearing capacities of steel girders based on an ANN [17]. The training data for
the ANN was generated using the FEM. The trained ANN was then validated using an
arbitrary dataset also generated using the FEM.

Following this approach, in 2021, Lo et al. [8] and Vijaya Kumar et al. [20] formu-
lated a set of empirical equations for the failure pressure prediction of corroded straight
pipes subjected to internal pressure and axial compressive stress. This was achieved by
developing an ANN that was trained using data generated using the FEM. The resulting
matrix representation of the trained ANN was then utilised as the basis for formulating the
empirical equations. The developed equations could produce highly accurate predictions,
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with an R2 value of 0.99, and an ANN can be used for the failure pressure prediction of
corroded pipes.

Using a similar approach, this paper aims to develop an empirical equation for the
failure pressure prediction of corroded API 5L X70, API 5L X80, and API 5L X100 pipe
elbows subjected to internal pressure and axial compressive stress using data generated by
FEM. The developed ANN will then be used to study the failure behaviour of corroded pipe
elbows for single, longitudinally interacting, and circumferentially interacting corrosion
defects located at the intrados and extrados.

2. Methodology

In this study, the incorporation of an FEM and ANN was used to develop a set of
empirical equations for the failure pressure prediction of corroded pipe elbows subjected
to internal pressure and axial compressive stress. The developed FEM was validated using
burst test data from previous studies. Upon validation of the FEM, ANN training data
was generated and used to develop the ANN. The ANN was validated using regression
analysis, and the validated model was then used to develop a set of empirical equations
for failure pressure prediction of corroded pipe elbows. The overview of the research is
illustrated by the flowchart in Figure 1.
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Figure 1. Overview of research flow.

2.1. Geometric Parameters

This study considers five parameters for investigation: the defect depth, length, spac-
ing in both longitudinal and circumferential directions, and axial compressive stress acting
on the pipe. These parameters are represented as normalised values, as tabulated in Table 1.
The chosen range of parameters was based on critical parameters determined from past
research [12]. The pipe diameter, D, and wall thickness, t, were set to 300 mm and 10 mm,
respectively. The bending radius of the pipe elbow and the width of the corrosion defect



Mathematics 2023, 11, 1615 4 of 16

were fixed at 4.5 D and 100 mm, respectively. The modelled pipe elbows for finite element
analysis (FEA) were designed with endplates of 20 mm.

Table 1. Overview of pipe and defect geometry.

Parameter Value(s)

Diameter of pipe, D 300 mm

Pipe wall thickness, t 10 mm

Normalised pipe elbow bend radius, R/D 4.5

Defect location (θ) −90◦, 90◦

Normalised defect width, w/t 10

Normalised defect depth, d/t 0.0, 0.2, 0.4, 0.6, 0.8

Normalised defect length, l/D 0.0, 0.2, 0.5, 0.8, 1.1, 1.4

Normalised defect longitudinal spacing, sl/
√

Dt 0.0, 0.5, 1.0, 2.0

Normalised defect circumferential spacing, sc/
√

Dt 0.0, 0.5, 1.0, 2.0

Normalised axial compressive stress, σc/σy 0.0, 0.2, 0.4, 0.6, 0.8

2.2. Pipe Material Properties

This study utilised three pipe grades: API 5L X70, API 5l X80, and API 5L X100. These
pipe grades were selected as they are the most common pipe grades used in the industry
recently [2,12,21,22]. During finite element (FE) simulations, the material properties of
these pipe grades were represented as nonlinear true stress-strain curves, as illustrated in
Figure 2. The mechanical properties of the pipe materials and endplate are summarised
in Table 2.
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Table 2. Mechanical properties of pipe materials and endplate [2,3].

Property
Value

API 5L X70 API 5L X80 API 5L X100 Endplate

Modulus of elasticity, E 210 MPa 210 MPa 210 MPa 210 TPa

Poisson’s ratio, v 0.3

True ultimate tensile
strength, UTS∗ (MPa) 606.72 754.56 890.88 -

Yield stress, σy (MPa) 516.48 570.8 652.8 -

2.3. Validation of the Finite Element Method

The FEM employed in this study was validated using burst test results from past
literature. The results of the validation study are summarised in Table 3.

Table 3. Results of the FEM validation study.

Author, Year Shuai et al., 2022 [12] Duan and Shen, 2006 [16]

Pipe type Elbow Elbow

Analysis type FEM Burst test

Material X80 Based on published
material properties

Specimen Convergence test model Model 1

Burst Pressure (MPa) 30.60 29.64

FEA failure pressure (MPa) 29.74 28.86

Percentage Difference (%) −2.81 −2.63

Based on the results in Table 3, the maximum failure pressure difference observed
was −2.81%. Hence, it is evident that the employed FEM is capable of producing highly
accurate failure pressure results.

2.4. Generation of Training Data Using Finite Element Method

The training data for the development of the ANN was generated using the FEM. A
total of 1601 datasets were generated. During the FE simulations, quarter models (Figure 3)
were utilised to minimise computation time without compromising the accuracy of results.
A 500-mm straight pipe section was added to the pipe bend section to prevent endcap
effects. A rectangular-shaped defect idealisation was used in this study [11].

A mesh convergence test was conducted to optimise the number of elements the
models were discretised into. A finer mesh was used at the defect region while the mesh size
was increased with an aspect ratio of 0.5, moving away from the defect region. Symmetry
boundary conditions were applied at appropriate axes to ensure that the quarter model
was represented as a whole. The model was constrained from translation and rotation in
the x, y, and z directions at the outer surface of the endplate to prevent unwanted rigid
body movement.

A direct nonlinear transient analysis utilising a time-dependent dynamic load was
considered. During the FE analysis, internal pressure and axial compressive stress were
applied to the model simultaneously in one timestep. A constant force was applied to the
outer surface of the endplate representing axial compressive stress, while pressure was
applied incrementally to the inner surface of the pipe representing internal pressure, as
illustrated in Figure 4. The pipe was assumed to be isotropic and homogenous, and the
numerical analysis was conducted at isothermal conditions.
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The failure of the pipe was analysed based on the von Mises stress criterion, where
the pipe was assumed to have failed when the stress at the region of interest exceeded
the true ultimate tensile strength of the material. The red contour region, as depicted in
Figure 5, represents the region of failure. The failure pressure is recorded when the red
contour region completely penetrates the wall thickness.
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2.5. Development of Artificial Neural Network

This study utilised the structure and dataflow of feed-forward neural networks (FFNN)
with the Levenberg–Marquardt backpropagation algorithm (supervised learning) [17]. This
algorithm minimises the cost function (Equation (1)) by tuning the weights and biases of
an ANN. In Equation (1), s denotes the predicted output of the ANN, while y denotes the
expected output of the ANN. Data travels from the input nodes in the input layer to the
output node in the output layer passing through artificial neural nodes in the hidden layers
between the input and output layers. A hyperbolic tangent activation function was utilised
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at the neurons in the hidden layers, while a linear activation function was applied at the
output neuron.

C = cost(s, y) (1)

A total of 70% of the training dataset was introduced to the ANN for training, while
the remaining data was reserved as validation (15%) and testing (15%) data. The validation
dataset was used to obtain an unbiased assessment of the neural network to fit the training
parameters while the hyperparameters of the network were being tuned. Meanwhile, the
testing dataset was used to obtain an unbiased assessment of the final model fit on the
training data. To tune the ANN parameters, the algorithm computes the lowest possible
gradient that can be achieved using Equation (2). The ANN was developed with the
optimum number of hidden layers and neurons by analysing the regression plots of the
ANN. It was ensured that the developed ANN achieved an R2 value of 0.99 or greater.

∂C
∂x

=

[
∂C
∂x1

,
∂C
∂x2

, . . .
∂C

∂xm

]
(2)

3. Results and Discussion

The results and discussion section of this study is divided into three subsections
covering the development of the ANN, followed by the development of the empirical
equations, and the failure behaviour analysis of corroded HSS pipe elbows.

3.1. Development of Artificial Neural Network

The input parameters of the ANN were the normalised defect depth, length, longi-
tudinal and circumferential spacing, normalised axial compressive stress, the ultimate
tensile strength of the material, and the location of the corrosion defect. The ANN was
therefore developed with seven neurons in the input layer. The output layer consisted of
one neuron, which output the corresponding normalised failure pressure of the corroded
pipe. The ANN consisted of three hidden layers with eight neurons in the first hidden
layer, six neurons in the second hidden layer, and three neurons in the third hidden layer,
as illustrated in Figure 6.
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A total of 1601 datasets were used to train the FFNN. The training parameters of the
ANN are summarised in Table 4. A regression analysis was conducted to measure the
capability of the neural network to produce results close to the training data. The result of
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the regression analysis is summarised in Table 5. Based on the regression analysis, it was
observed that the developed ANN was highly capable of producing results highly similar
to those of the training data.

Table 4. ANN training parameters.

Parameter Value

Epoch 2000

Minimum gradient 1.023 × 10−10

Validation checks 1500

Table 5. Regression analysis of the developed ANN.

Phase Training Validation Test

R2 0.99 0.99 0.99

MSE 0.0005 0.0004 0.0003

In addition to the regression analysis, the developed ANN was validated against
an arbitrary dataset that was also generated using the FEM. A total of 30 datasets each
for defects located at the intrados and extrados, respectively, were used to validate the
ANN. The probability distribution of the percentage difference in failure pressure obtained
using the FEM and the developed ANN is represented in Figure 7. The maximum and
minimum percentage difference obtained was 2.26% and −6.42%, respectively, while the
standard deviation was measured to be 1.82. Based on Figure 6, it was observed that
the percentage differences fell within four standard deviations of the mean. As such,
the probability of obtaining a percentage error of more than 7.28% is 1 in 15787. A small
amount of overestimation was found in only 6.67% of the validation data, and the maximum
overestimation was only 2.26%.
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Figure 7. Validation results of the developed ANN against the FEM.

The developed ANN is applicable for the failure pressure prediction of corroded pipe
elbows with single, longitudinally, or circumferentially interacting corrosion defects sub-
jected to internal pressure and axial compressive stress. The ANN is capable of producing
reliable results for pipe elbows of true ultimate tensile strength that range from 606.72 MPa
to 890.88 MPa, with normalised defect depths of 0.0 to 0.8, normalised defect lengths of
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0.0 to 1.4, normalised defect spacing (longitudinal and circumferential) of 0.0 to 2.0, and
the normalised axial compressive stress of 0.0 to 0.8 for defects located at the intrados
and extrados.

3.2. Development of Empirical Equation

An empirical equation to predict the failure pressure of an HSS corroded pipe elbow
subjected to internal pressure, and axial compressive stress was developed based on the
matrix representation of the ANN. Equations (3)–(6) are used to evaluate the failure pressure
of a corroded pipe elbow. Equation (5) represents the activation function used for the ANN,
while Equations (6)–(14) are used for the normalisation of the input parameters.

h1
h2
h3
h4
h5
h6
h7
h8


=



−0.32 0.65 −0.60 0.30 0.03 4.10 0.001
0.20 −0.46 0.25 0.001 0.02 0.07 −0.002
−0.20 0.29 −0.22 −0.001 −0.02 −0.07 0.003
0.25 −0.33 −4.39 5.75 −1.34 1.60 0.02
−0.35 0.88 −0.13 −0.005 −0.05 −0.38 0.01
0.28 −0.24 −0.10 0.008 0.005 −0.23 −0.02
−0.09 0.11 0.02 −0.01 −1.02 0.39 0.009
0.24 −0.75 0.57 −0.19 0.04 −1.01 −0.001





in1
in2
in3
in4
in5
in6
in7


+



5.49
−0.61
1.08
2.53
−0.30
0.65
0.41
−2.08


(3)



h9
h10
h11
h12
h13
h14

 =



−0.54 5.55 8.77 0.04 0.50 0.61 0.02 0.15
−6.16 7.00 21.77 1.19 1.42 3.62 −0.59 −3.01
−1.78 6.31 9.78 0.04 0.26 −0.07 0.04 −0.96
−11.63 −1.76 −3.18 1.24 −1.23 −3.34 2.32 −9.58
−0.44 −0.79 −1.65 −0.02 −0.07 0.24 0.18 −0.80
−0.41 2.21 5.13 0.03 0.02 −0.63 −0.39 0.12





a(h1)
a(h2)
a(h3)
a(h4)
a(h5)
a(h6)
a(h7)
a(h8)


+



−3.75
−13.33
−4.06
3.53
0.13
−1.60

 (4)

h15
h16
h17

 =

 5.64 5.61 −6.60 −17.60 −13.80 −10.96
−7.40 −0.31 4.41 0.04 −15.68 −7.50
11.04 −0.70 −7.54 0.08 8.29 4.42




a(h9)
a(h10)
a(h11)
a(h12)
a(h13)
a(h14)

+

−14.91
−3.33
2.63

 (5)

[
Pf

]
= Pi

0.405

[−0.12 −1.08 0.89
]a(h18)

a(h19)
a(h20)

+ [−0.17]

− 0.54

 (6)

where

a(x) =
e2x − 1
e2x + 1

(7)

in1 = 2.5(d/t)− 1 (8)

in2 =
2(l/D)

1.4
− 1 (9)

in3 =
(

sl/
√

Dt
)
− 1 (10)

in4 =
(

sc/
√

Dt
)
− 1 (11)

in5 = 2.5
(
σc/σy

)
− 1 (12)
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in6 =
2(UTS∗)

284.16
− 1 (13)

in7 =
θ

90
− 1 (14)

3.3. Failure Behaviour of Corroded High-Strength Steel Pipe Elbow

The developed empirical equation was used to carry out parametric studies to inves-
tigate the failure behaviour of corroded HSS pipe elbows subjected to internal pressure
and axial compressive stress. Previous studies have looked into the influence of internal
pressure on corroded pipe elbows. However, the incorporation of axial compressive stress
has proven to be more detrimental to the failure pressure of a pipe elbow. In this study,
the failure behaviours of three HSS materials were investigated. Based on the analysis, it
was found that the trends in the failure behaviour of a corroded pipe elbow were similar
regardless of the material’s true ultimate tensile strength. It should be noted that despite
having the same trend, the significance of the drop in failure pressure was higher for
materials with lower true ultimate tensile strength, as illustrated in Figure 8.
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Figure 8. Normalised failure pressure of a corroded pipe elbow with a single defect of normalised
defect length of 0.2 and subjected to a normalised axial compressive stress of 0.2.

In general, the incorporation of axial compressive stress in the analysis resulted in a
significant drop in failure pressure for all cases investigated in this study. The magnitude
of reduction in failure pressure increases as the defect depth and length increase. For
shallow depths (d/t < 0.5) with a normalised defect length of 0.2 to 0.8, it was observed
that the reduction in failure pressure was less significant (12.56–24.65%) as opposed to deep
defects (d/t > 0.5). On average, the incorporation of axial compressive stress resulted in a
(30.0–40.0%) drop in failure pressure. Evidently, axial compressive stress is a significant
parameter that influences the failure pressure of a corroded pipe elbow and should be
considered during corroded pipeline failure pressure assessments.

For all three materials, there was a significant reduction in failure pressure as the defect
depth was increased with a maximum decrease of 78.3% observed for a corroded pipe
elbow with longitudinally aligned interacting corrosion defects (normalised spacing of 0.0)
of normalised defect depth of 0.8 located at the intrados subjected to internal pressure
and a normalised axial compressive stress of 0.8. In all cases, the reduction in failure
pressure was linear. Similar trends were observed in a study by Shuai et al. [12]. Based on
Figure 9, this reduction in failure pressure is more significant at the intrados due to the
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stress concentrations in pipe elbow due to their geometry. Stress concentrations exist at the
intrados, even when a pipe elbow is defect-free.
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Figure 9. Normalised failure pressures of corroded API 5L X80 pipe elbow with a normalised defect
length of 0.5 and subjected to a normalised axial compressive stress of 0.2 for a single defect located
at the (a) intrados and (b) extrados.

Not only the defect depth significantly influences the failure pressure of a corroded
pipe elbow, but also the defect length. The defect length significantly influences the failure
pressure until the critical defect length is reached. Beyond the critical length, the failure
pressure plateaus. This scenario is illustrated in Figure 10. In this study, the critical
defect length was observed at a normalised defect length of 1.1. The maximum drop in
failure pressure was observed to be 66.73% observed for a corroded API 5L X70 pipe with
longitudinally aligned interacting corrosion defects with a normalised defect spacing of
0.0 (two defects adjacent to each other) located at the intrados with a normalised defect
depth of 0.8, and a normalised defect length of 1.4. Beyond this point, the failure pressure
remains constant, with a maximum change of only 2.3%.
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Figure 10. Normalised failure pressures of corroded API 5L X80 pipe elbow subjected to a normalised
axial compressive stress of 0.2 for a single defect located at the intrados.

Although not as significant as the defect depth and length, defect spacing also signifi-
cantly influences the failure pressure of a corroded pipe elbow. As the longitudinal defect
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spacing increased from 0.0 to 2.0, it was observed that the failure pressure of a corroded
pipe elbow increased, as illustrated in Figure 11. This is because when two corrosion defects
are in close proximity, an overlap region of stress concentration is created. As the spacing
between these defects is increased, this overlap region reduces in size. As a result, the
failure pressure of the pipe elbow increases. On the contrary, the circumferential defect
spacing has an insignificant influence on the failure pressure of a corroded pipe elbow, as
shown in Figure 12.
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Figure 11. Normalised failure pressures of corroded (defect at the intrados) API 5L X80 pipe elbow
with a normalised defect spacing (longitudinal) of 0.5 subjected to a normalised axial compressive
stress of 0.2.
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Figure 12. Normalised failure pressures of corroded (defect at the intrados) API 5L X80 pipe elbow
with a normalised defect spacing (circumferential) of 0.5 subjected to a normalised axial compressive
stress of 0.2.

4. Conclusions

In conclusion, the industry lacks a failure pressure assessment method for corroded
HSS pipe elbows subjected to combined loadings. Using the FEM and an ANN, this
study has put forward a set of empirical equations for the failure pressure prediction of
corroded pipe elbows with true ultimate tensile strength values ranging from 606.72 MPa
to 890.88 MPa subjected to internal pressure and axial compressive stress. The developed
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model results in failure pressure predictions that are reliable, with a maximum percentage
difference of 6.42%. Based on the failure behaviour analysis of corroded HSS pipes, it was
found that defect depth, length, spacing (longitudinal), and axial compressive stress greatly
influenced the failure pressure of a corroded pipe elbow, especially for defects located at
the intrados with reductions in failure pressure ranging from 12.56–78.3%. On the contrary,
the effects of circumferential defect spacing were insignificant, with a maximum of only a
6.78% reduction of failure pressure. The failure pressure trend for all three materials used
in this study was similar. However, pipes with higher true ultimate tensile strength proved
to have a comparatively less significant reduction in failure pressure.

5. Recommendations for Future Work

In this study, only single, longitudinally interacting, and circumferentially interacting
defects are considered. Future work could consider the incorporation of more than two
defects in close proximity to one another. Corrosion does not necessarily occur in pairs
only. They may form clusters that interact in both the longitudinal and circumferential
directions, generally categorised as complex defects.
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Nomenclature

C Cost function of an ANN using backpropagation algorithm
D Diameter of pipe
d Depth of defect
h Hidden neuron of artificial neural network
i Input variable of artificial neural network
in Normalised input variable of artificial neural network
l Length of defect
o Output variable of artificial neural network
Pf Failure pressure of a corroded pipe elbow
Pi Intact pressure of a pipe elbow
R Bend radius of pipe elbow
s Predicted output of an ANN
sc Circumferential defect spacing
sl Longitudinal defect spacing
t Pipe wall thickness
UTS Ultimate tensile strength
w Defect width
y Expected output of an ANN
UTS∗ True ultimate tensile strength
σc Axial compressive stress
σy Yield stress
θ Location of defect
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Abbreviations

ANN Artificial Neural Network
FE Finite Element
FEA Finite Element Analysis
FEM Finite Element Method
FFNN Feed Forward Neural Networks
HSS High-strength Steel
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