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Abstract: We introduce an arithmetic functional equation f (x2 + y2) = f (x2) + f (y2) and then
investigate stability estimates of the functional equation by using the Brzdȩk fixed point theorem on
a non-Archimedean fuzzy metric space and a non-Archimedean fuzzy normed space. To apply the
Brzdȩk fixed point theorem, the proof uses the linear relationship between two variables, x and y.
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1. Introduction

In 1940, Ulam [1] proposed the stability problem of a group homomorphism. In other
words, the question would be generalized as “Under what conditions a mathematical
object satisfying a certain property approximately must be close to an object satisfying
the property exactly?”. In 1941, Hyers [2] gave the first, affirmative, and partial solution
to Ulam’s question with an additive function (Cauchy function) in Banach spaces. The
Hyers stability result was first generalized in the stability involving p-powers of norm by
Aoki [3]. In 1978, Rassias [4] provided a generalization of Hyers’ theorem that allows the
Cauchy difference to become unbounded. For the last few decades, stability problems of
various functional equations have been extensively investigated and generalized by many
mathematicians (see [5–9]).

Baker [10] introduced for the first time the Ulam’s type stability by using the fixed point
method and later applied it in numerous papers (see [11–17]). In fact, fixed point theory
is a powerful resource for the research, study and applications of nonlinear functional
analysis, optimization theory, and variational inequalities (see [18–22]). Many authors
introduced new types of fixed point theorems in different directions. Moreover, Brzdȩk and
Ciepliński [23] introduced the existence theorem of the fixed point for nonlinear operators
in metric spaces:

Theorem 1 ([23]). Let X be a non-empty set, (Y, d) be a complete metric space and Λ : YX → YX

be a non-decreasing operator satisfying the hypothesis

lim
n→∞

Λδn = 0 for every sequence {δn}n∈N with lim
n→∞

δn = 0 .

Suppose that T : YX → YX is an operator satisfying the inequality

d(T ε(x), T µ(x)) ≤ Λ(4(ε, µ))(x), ε, µ ∈ YX , x ∈ X

where4 : (YX)2 → RX
+ is a mapping, which is defined by

4(ε, µ)(x) := d(ε(x), µ(x)), ε, µ ∈ YX , x ∈ X .
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If there exist functions ε : X → R+ and φ : X → Y such that

d(T φ(x), φ(x)) ≤ ε(x)

and
ε∗(x) := ∑

n∈N0

(Λnε)(x) < ∞

for all x ∈ X , then the limit
lim

n→∞
(T nφ)(x)

exists for each x ∈ X . Moreover, the function φ ∈ YX defined by

ψ(x) := lim
n→∞

(T nφ)(x)

is a fixed point of T with
d(φ(x), ψ(x)) ≤ ε∗(x)

for all x ∈ X .

Brzdȩk and Ciepliński [23] used this result to prove the stability problem of functional
equations in non-Archimedean metric spaces and obtained the fixed point results in arbi-
trary metric spaces. In particular, the Brzdȩk’s fixed point method was also obtained from
Theorem 1 (see [24]).

Theorem 2 ([24]). Let X be a non-empty set, (Y, d) be a complete metric space and f1 , f2 : X → X
be the given mappings. Suppose that T : YX → YX and Λ : RX

+ → RX
+ are two operators satisfying

the following conditions:

d(T ξ(x), T µ(x)) ≤ d(ξ( f1(x)), µ( f1(x))) + d(ξ( f2(x)), µ( f2(x))) (1)

and
Λδ(x) := δ( f1(x)) + δ( f2(x)) (2)

for all ξ, µ ∈ YX , δ ∈ RX
+ and x ∈ X . If there exist ε : X → R+ and φ : X → Y such that

d(T φ(x), φ(x)) ≤ ε(x) and ε∗(x) :=
∞

∑
n=0

(Λnε)(x) < ∞ (3)

for all x ∈ X , then the limit limn→∞(T nφ)(x) exists for each x ∈ X . Moreover, the function
ψ(x) := limn→∞(T nφ)(x) is a fixed point of T with

d(φ(x), ψ(x)) ≤ ε∗(x)

for all x ∈ X .

The theory of fuzzy sets was introduced by Zadeh [25] in 1965. George and Veera-
mani [26] in 1994, introduced a fuzzy metric space by considering points in the crisp
set and a fuzzy distance between them. Mirmostafaee and Moslehian [27] introduced a
non-Archimedean fuzzy norm on a linear space over a non-Archimedean field. Many
mathematicians considered the fuzzy normed spaces in different branches of pure and
applied mathematics. In particular, Moslehian and Rassias [28] studied the stability prob-
lem of functional equations in non-Archimedean spaces. Moreover, Aiemsomboon and
Sintunavarat [29,30] studied the stability problem due to Brzdȩk’s fixed point theorem.

The purpose of this paper is to introduce an arithmetic functional equation(see [31]) of
the following form:

f (x2 + y2) = f (x2) + f (y2) (4)



Mathematics 2023, 11, 1611 3 of 10

and also to investigate the stability problem by using the Brzdȩk’s fixed point theorem
on a non-Archimedean fuzzy normed space. In fact, for each real number c , a function
f (x) = cx satisfies the functional Equation (4). Chung [31] characterized the Equation (4)
for all positive integers x and y . In terms of the stability problem, it is also important
whether the equation still remains true in the range of real numbers.

In this paper, N ,N0 ,R and R+ denote the set of positive integers, the set of non-negative
integers, the set of real numbers and the set of non-negative real numbers, respectively.

2. Stability of Arithmetic Functional Equations

In this section, we will investigate the stability problem for the arithmetic functional
Equation (4) by using the Brzdȩk fixed point method; see Theorem 3. Before proceeding,
we will first reproduce the following definitions due to Mirmostafaee and Moslehian [27]
and George and Veeramani [26].

Definition 1. A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is a continuous t-norm if it satisfies
the following conditions:

1. ∗ is associative and commutative;
2. ∗ is continuous;
3. a ∗ 1 = a for all a ∈ [0, 1];
4. a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d , and a, b, c, d ∈ [0, 1] .

Obviously, a ∗ b = a× b and a ∗ b = min{a, b} are common examples of continuous
t-norms.

Definition 2. Let X be an arbitrary set. A fuzzy subset M of M×M× [0, ∞] is called a fuzzy
metric on X if it satisfies the following conditions for all x, y ∈ X and t ∈ R .

1. If t ≤ 0 , then M(x, y, t) = 0;
2. For all t > 0 , M(x, y, t) = 1 if and only if x = y;
3. For all t > 0 , M(x, y, t) = M(y, x, t);
4. For all s, t ∈ R , M(x, z, s + t) ≥ M(x, y, s) ∗M(y, z, t);
5. M(x, y, ·) is a non-decreasing function on R and limt→∞ M(x, y, t) = 1 .

The pair (X, M, ∗) is called a fuzzy metric space. If we replace (4) by

6. M(x, z, max{s, t}) ≥ M(x, y, s) ∗M(y, z, t) ,

then we call the triple (X, M, ∗) a non-Archimedean fuzzy metric space.

Definition 3. Let V be a real linear space. A function N : X × [0, ∞] → [0, 1] is said to be a
fuzzy norm on X if, for all x, y ∈ X and all t, s > 0 , if it satisfies the following conditions:

1. N(x, 0) = 0;
2. x = 0 if and only if N(x, t) = 1 for all t > 0;
3. N(kx, t) = N(x, t

|k| ) for all k ∈ R , k 6= 0;

4. N(x + y, s + t) ≥ N(x, t) ∗ N(y, s);
5. N(x, ·) is a non decreasing function on R and limt→∞ N(x, t) = 1 .

The pair (X, N, ∗) is called a fuzzy normed space. If we replace (4) by

6. N(x + y, max{s, t}) ≥ N(x, s) ∗ N(y, t) ,

then we call the triple (X, N, ∗) a non-Archimedean fuzzy normed space.

Throughout this paper, we assume that

a ∗ b = min{a, b}

for the continuous t-norm.
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Example 1. Let X = [0, ∞) be a metric space with the usual metric d and the usual norm || · || . Let
a ∗ b ≤ a× b for all a, b ∈ [0, 1] . For each t ∈ (0, ∞) , define M : X× X× [0, ∞]→ [0, 1] by

M(x, y, t) = e−
d(x,y)

t

for all x, y ∈ X and t > 0 . Then, (X, M, ∗) is a non-Archimedean fuzzy metric space.
Additionally, for each t ∈ (0, ∞) , define N : X× [0, ∞]→ [0, 1] by

N(x, t) = e−
||x||

t

for all x ∈ X and t > 0 . Then, (X, N, ∗) is a non-Archimedean fuzzy normed space.
There are some more examples such as: M(x, y, t) = (1− e−t)d(x,y) , M(x, y, t) = ( t

t+1 )
d(x,y) .

It is easy to see that each (X, M, ∗) is a non-Archimedean fuzzy metric space.

Now, we will investigate stability estimates for an arithmetic functional equation by
using Brzdȩk’s on a non-Archimedean fuzzy metric space and non-Archimedean fuzzy
normed space.

Theorem 3. Let (R+, M, ∗) be a non-Archimedean fuzzy metric space, which is invariant (i.e.,
M(x + z, y + z, t) = M(x, y, t) for x, y, z ∈ R+ and t ∈ R), and (R, N, ∗) be a non-Archimedean
fuzzy normed space. Let h : R+ → R+ be a function such that

L0 := {m ∈ N | s(m2) + s(1 + m2) < 1} 6= ∅ , (5)

where
s(m) := inf {t ∈ R+ | h(mx) ≤ t h(x) for all x ∈ R+} .

Assume that
N(h(nx) + h(my), s) ≥ N(s(n)h(x) + s(m)h(y), s) , (6)

for all x, y ∈ R+ , n, m ∈ N and s > 0 . Suppose a function f : R+ → R satisfies the inequality

M( f (x2 + y2), f (x2) + f (y2), t) ≥ N(h(x) + h(y), t) (7)

for all x, y ∈ R+ and t > 0 . Then, there exists a unique solution T : R+ → R to the Equation (4)
such that

M( f (x), T(x), t) ≥ N(s0h(x), t) (8)

for x ∈ R+ and t > 0 , where

s0 := inf { 1 + s(m)

1− s(m2)− s(1 + m2)
|m ∈ L0} . (9)

Proof. Let m ∈ L0 . By letting y = mx in the inequality (7), the inequality (6) implies the
following inequality:

M
(

f ((1 + m2)x2), f (x2) + f (m2x2), t
)
≥ N(cm(x), t) (10)

for t > 0 , where cm(x) := (1 + s(m))h(x) for x ∈ R+ . To apply to the Brzdȩk fixed point
method, we need to define two operators as in Theorem 2:

1. Tm : RR+ → RR+ by

Tmξ(x) := ξ((1 + m2)x)− ξ(m2x) (11)

2. Λm : RR+
+ → RR+

+ by

Λmµ(x) := µ((1 + m2)x) + µ(m2x) (12)
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for all x ∈ R+ and ξ ∈ RR+ , µ ∈ RR+
+ . Additionally, we have

M(Tmξ(x), Tmµ(x), t)

= M(ξ((1 + m2)x)− ξ(m2x), µ((1 + m2)x)− µ(m2x), t)

≥ min{M(ξ((1 + m2)x)− ξ(m2x), µ((1 + m2)x)− ξ(m2x), t),

M(µ((1 + m2)x)− ξ(m2x), µ((1 + m2)x)− µ(m2x), t)}
= min{M(ξ((1 + m2)x), µ((1 + m2)x), t), M(ξ(m2x), µ(m2x), t)}

for x ∈ R+ and t > 0 . If we may let f1(x) = (1 + m2)x and f2(x) = m2x , then for each
m ∈ L0 , two operators Tm and Λm satisfy the inequalities (1) and (2) in Theorem 2. To
check the condition (3) in Theorem 2, we note that the inequality (10) implies

M(Tm f (x2), f (x2), t) = M( f ((1 + m2)x2)− f (m2x2), f (x2), t)

= M( f ((1 + m2)x2), f (x2) + f (m2x2), t)

≥ N((1 + s(m))h(x), t) = N((1 + s(m))h(x), t)

for x ∈ R+ and t > 0 . Also, we note that

Λmcm(x) = (1 + s(m))(h((1 + m2)x) + h(m2x))

≤ (1 + s(m))(s(1 + m2) + s(m2))h(x)

for all x ∈ R+ . Using the mathematical induction, for each k ∈ N , we obtain

Λk
mcm(x) = (1 + s(m))[s(1 + m2) + s(m2)]kh(x)

for all x ∈ R+ and m ∈ L0 . For each m ∈ L0 and x ∈ R+ , we have the following condition:

c∗m(x) :=
∞

∑
j=0

Λj
mcm(x) =

1 + s(m)

1− s(1 + m2)− s(m2)
h(x)

where Λ0
mcm(x) = cm(x) .

Hence, the Brzdȩk fixed point theorem implies that

Tm(x) := lim
k→∞
T k

m f (x)

exists for each m ∈ L0 and x ∈ R+ , and we have

M( f (x), Tm(x), t) ≥ N(c∗m(x), t)

for all m ∈ L0 , x ∈ R+ and t > 0 (see Theorem 2). Now, we will prove that Tm satisfies the
Equation (4) for each m ∈ L0 . Hence, we may conclude that the solution of the Equation (4)
is uniquely determined. First, we will inductively check that for k ∈ N0

M(T k
m f (x2 + y2), T k

m f (x2) + T k
m f (y2), t)

≥ N
(
(s(1 + m2) + s(m2))k(h(x) + h(y)), t

)
for x ∈ R+ and t > 0 . If k = 0 , we note that T 0

m f (x2) = f (x2) and hence the base case
follows from the inequality (10). Then,
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M(T k+1
m f (x2 + y2), T k+1

m f (x2) + T k+1
m f (y2), t)

= M(T k
m f ((1 + m2)(x2 + y2))− T k

m f (m2(x2 + y2)),

T k
m f ((1 + m2)x2)− T k

m f (m2x2) + T k
m f ((1 + m2)y2)− T k

m f (m2y2), t)

≥ min{M(T k
m f ((1 + m2)(x2 + y2)), T k

m f ((1 + m2)x2) + T k
m f ((1 + m2)y2), t),

M(T k
m f (m2(x2 + y2)), T k

m f (m2x2) + T k
m f (m2y2), t)}

≥ min{N(s(1 + m2)k(h((1 + m2)x) + h((1 + m2)y)), t),

N(s(m2)k(h(m2x) + h(m2y)), t)}

≥ min
{

N
(

h(x) + h(y),
t

s(1 + m2)k+1

)
, N
(

h(x) + h(y),
t

s(m2)k+1

)}
We note that

0 < s(m2) < s(1 + m2) + s(m2) < 1 and 0 < s(1 + m2) < s(1 + m2) + s(m2) < 1 .

Since N(x, ·) is a non-decreasing, we have

M(T k+1
m f (x2 + y2), T k+1

m f (x2) + T k+1
m f (y2), t)

≥ N
(

h(x) + h(y),
1

(s(1 + m2) + s(m2))k+1 t
)

for t > 0 . As k→ ∞ , we have

N
(

h(x) + h(y),
1

(s(1 + m2) + s(m2))k+1 t
)
→ 1 ,

where 0 < s(1 + m2) + s(m2) < 1 .
Hence, we obtain

Tm(x2 + y2) = Tm(x2) + Tm(y2) (13)

for all x, y ∈ R+ and m ∈ L0 . That is, for each m ∈ L0 , Tm is a solution of the Equation (4).
Now, assume that a mapping T : R+ → R satisfies the Equation (4) such that

M( f (x), T(x), t) ≥ N(L h(x), t)

for L > 0 constant. Let
T(x2 + y2) = T(x2) + T(y2) (14)

for all x, y ∈ R+ . Then, we will show that T = Tm for each m ∈ L0 . By letting y = mx in
the inequality (14), we have

T(x2) = T((1 + m2)x2)− T(m2x2)

for x ∈ R+ and t > 0 . Let m0 ∈ L0 . Then,

M(T(x2), Tm0(x2), t) ≥ min {M(T(x2), f (x2), t), M( f (x2), Tm0(x2), t)}

≥ min

{
N(L h(x), t), N

(
1 + s(m0)

1− s(1 + m2
0)− s(m2

0)
h(x), t

)}
.

By letting S0 = ((1 + s(m0)) + (1− s(1 + m2
0)− s(m2

0))L) , we have

1 + s(m0)

1− s(1 + m2
0)− s(m2

0)
+ L = S0 ·

∞

∑
k=0

(s(1 + m2
0) + s(m2

0))
k
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Since N(s, ·) is non-decreasing, we note

min

{
N(L h(x), t), N

(
1 + s(m0)

1− s(1 + m2
0)− s(m2

0)
h(x), t

)}

≥ N

h(x),
1

1+ s(m0)

1−s(1+m2
0)−s(m2

0)
+ L

t


= N

(
S0 ·

∞

∑
k=0

(s(1 + m2
0) + s(m2

0))
kh(x), t

)

Hence, we obtain

M(T(x2), Tm0(x2), t) ≥ N

(
S0 ·

∞

∑
k=0

(s(1 + m2
0) + s(m2

0))
kh(x), t

)
(15)

for x ∈ R+ and t > 0 . For l ∈ N0 , assume that

M(T(x2), Tm0(x2), t) ≥ N

(
S0 ·

∞

∑
k=l

(s(1 + m2
0) + s(m2

0))
kh(x), t

)

for x ∈ R+ and t > 0 . We will check it by using mathematical induction on l . If l = 0 , it
follows from the inequality (15). Then,

M(T(x2), Tm0(x2), t)

= M(T((1 + m2
0)x2)− T(m2

0x2), Tm0((1 + m2
0)x2)− Tm0(m

2
0x2), t)

≥ min {M(T((1 + m2
0)x2), Tm0((1 + m2

0)x2), t), M(T(m2
0x2), Tm0(m

2
0x2), t)}

≥ min {N

(
s(1 + m2

0)S0h(x) ·
∞

∑
k=l

(s(1 + m2
0) + s(m2

0))
k, t

)
,

N

(
s(m2

0)S0h(x) ·
∞

∑
k=l

(s(1 + m2
0) + s(m2

0))
k, t

)
}

≥ N(S0h(x) ·
∞

∑
k=l+1

(s(1 + m2
0) + s(m2

0))
k, t)

for x ∈ R+ and t > 0 . Hence, it holds whenever l ∈ N0 .
As l → ∞ , we have

N

(
S0h(x) ·

∞

∑
k=l+1

(s(1 + m2
0) + s(m2

0))
k, t

)
→ 1

Hence, we have T = Tm0 , for m0 ∈ L0 . Thus, for each m0 ∈ L0 ,

Tm = Tm0

as desired.

Example 2. Let p < 0 be a real number and a function h : R+ → R+ is defined by

h(x) = A(x)p , x ∈ R+

where the map A : R+ → R+ is additive. Then, it is easily seen that the set L0 is not empty as in
Theorem 3. Hence, the Equation (5) is valid.



Mathematics 2023, 11, 1611 8 of 10

Corollary 1. Let h : R+ → (0, ∞) be a mapping such that

lim
n→∞

inf supx∈R+

h((1 + n2)x) + h(n2x) + h(nx)
h(x)

= 0 (16)

Suppose f : R+ → R satisfies

M( f (x2 + y2), f (x2) + f (y2), t) ≥ N(h(x) + h(y), t) (17)

for all x, y ∈ R+ and t > 0 . Then, there exists a unique arithmetic functional equation T : R+ →
R such that

M( f (x), T(x), t) ≥ N(h(x), t) (18)

for all x ∈ R+ and t > 0 .

Proof. For each n ∈ N , let

an = supx∈R+

h((1 + n2)x) + h(n2x) + h(nx)
h(x)

.

By the definition s(n) as in Theorem 3, we will see that

s(1 + n2) = supx∈R+

h((1 + n2)x)
h(x)

≤ an ,

s(n2) = supx∈R+

h(n2x)
h(x)

≤ an

and

s(n) = supx∈R+

h(nx)
h(x)

≤ an

These inequalities imply that

s(1 + n2) + s(n2) + s(n) ≤ 3an (19)

for all x ∈ R+ . By our assumption, the sequence {an} has a subsequence {ank} such that
limk→∞ ank = 0, that is,

lim
k→∞

supx∈R+

h((1 + nk
2)x) + h(nk

2x) + h(nkx)
h(x)

= 0 . (20)

The inequalities (19) and (20) imply that

lim
k→∞

s(1 + nk
2) + s(nk

2) + s(nk) = 0 ,

that is, limk→∞ s(1 + nk
2) = 0 , limk→∞ s(nk

2) = 0 and limk→∞ s(nk) = 0 . Thus, we have

lim
k→∞

1 + s(nk)

1− s(1 + nk
2)− s(nk

2)
= 1 .

On letting s0 = 1 as in Theorem 3, the inequality (18) follows from the inequality (8).

Remark 1. From the main result of the stability estimates in the Brzdȩk fixed point method, the
method requires the non-Archimedean fuzzy metric has the invariant property, i.e., M(x + z, y +
z, t) = M(x, y, t) for all x, y, z ∈ R+ and t ∈ R . In fact, this property is not required in the
different stability methods. Additionally, the use of y = mx in the Brzdȩk fixed point method should
be remarked. This linear relationship between two variables x and y makes it possible to prove the
result and hence obtains the very nice stability approach. Some fixed point approaches required
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strictly contractive mapping and scaling processes. One of the main purposes of this paper is whether
the Brzdȩk fixed point method can be applied in various spaces such as a non-Archimedean fuzzy
normed space. We would like to propose open problems : (1) Can the Brzdȩk fixed point method be
applied in various fuzzy normed spaces? (2) Can the Brzdȩk fixed point method be applied without
the linear relationship between two variables x and y?
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