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Abstract: This work addressed the problem regarding the optimal integration of battery systems (BS)
in grid-connected networks (GCNs) with the purpose of reducing energy losses and CO2 emissions,
for which it formulates a mathematical model that considers the constraints associated with the
operation of GCNs in a distributed generation environment that includes BS and variable power
generation related to photovoltaic (PV) distributed generation (DG) and demand. As solution
strategies, three different master–slave methodologies are employed that are based on sequential
programming methods, with the aim to avoid the implementation of commercial software. In the
master stage, to solve the problem regarding the location and the type of batteries to be used, parallel-
discrete versions of the Montecarlo method (PMC), a genetic algorithm (PDGA), and the search crow
algorithm (PDSCA) are employed. In the slave stage, the particle swarm optimization algortihm
(PSO) is employed to solve the problem pertaining to the operation of the batteries, using a matrix
hourly power flow to assess the impact of each possible solution proposed by the master–slave
methodologies on the objective functions and constraints. As a test scenario, a GCN based on the 33-
bus test systems is used, which considers the generation, power demand, and CO2 emissions behavior
of the city of Medellín (Colombia). Each algorithm is executed 1000 times, with the aim to evaluate
the effectiveness of each solution in terms of its quality, standard deviation, and processing times. The
simulation results obtained in this work demostrate that PMC/PSO is the master–slave methodology
with the best performance in terms of solution quality, repeatability, and processing time.

Keywords: grid connected network; optimization algorithm; master-slave strategy; parallel
processing; photovoltaic generation; battery systems; energy loss; environmental emissions

MSC: 65K05; 90C26; 90C27

1. Introduction
1.1. General Context

In the last decades, the continuous growth of the global population and the wide
implementation of electrical devices have generated an increased energy demand, which is
generally supplied with fossil fuels. This increases CO2 emissions and the energy losses
associated with energy transport, directly affecting the quality of electrical services and
the life conditions of GCN users [1]. With the aim to mitigate this issue, in the last years,
grid operators and researchers have been given the task of integrating environmentally
friendly distributed energy resources, which involves the smart integration and operation
of renewable energy resources, battery systems, capacitor banks, and static compensators,
among others [2,3]. BS have been the most widely installed and studied distributed en-
ergy resources in recent years, as they allow managing the energy of the grid, mitigating
the variability of renewable energy resources, and improving the economic, technical,
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and environmental conditions of the network (i.e., the reduction of energy purchasing costs,
energy losses, and CO2 emissions, as well as voltage profile improvements, among oth-
ers) [4]. In turn, GCNs are the most widely studied electrical grids [5], as they are the most
developed networks around the world and the ones with the most technical problems
(i.e., energy losses, voltage profile limit violations, and line overloadability, among oth-
ers) [6]. Furthermore, since they are located in cities and towns, fossil fuel-based generation
contributes to CO2 emissions in their corresponding regions, affecting the health of their
inhabitants. Based on the above, the authors of this work focus on the problem regarding
the selection, location, and operation of BS in GCNs, with the aim to reduce energy losses
and CO2 emissions.

1.2. State of the Art

Aiming to take advantage of the different benefits associated with the integration of
BS in electrical GCNs, many researchers have proposed different strategies for the correct
integration of BS in this kind of grid [7,8]. A large portion of these works has been oriented
towards developing mathematical models that describe all of the technical and operating
constraints involved in the operation of electrical networks within an environment of
distributed energy resources (DERs) [9,10]. These mathematical models formulate the
objective functions or goals to be achieved through the optimal integration and operation
of BS in GCNs, with two the most studied being the reduction of energy production costs
and energy losses [11,12]. In [13,14], a literature review on the objective functions used
in the optimal integration of BS in electrical systems was carried out, finding that a large
number of works focus on economic and technical indicators. Therefore, objective functions
related to environmental indicators are a topic that requires exploration. By analyzing the
different mathematical formulations reported in the literature to represent the problem
regarding the optimal operation of BS in GCNs [13], it was possible to notice that the set
of constraints that make up the problem under study must include active and reactive
constraints, the power limitations of conventional and renewable generation resources,
the power limitations and state of charge of the batteries, and the current line and voltage
profile limits that represent the operating constraints of the GCN. It is necessary to include
all of these constraints into the mathematical formulation, with the aim to reap the benefits
associated with the studied objective functions, while also including the variations in power
demand and renewable generation that are involved in the real behavior of a GCN.

To solve the problem regarding the optimal integration of BS in GCNs while consider-
ing technical and environmental aspects, many works have been reported in the specialized
literature. An example of this is the work reported in [15], whose authors proposed a
solution methodology for sizing and operating distributed generators and energy storage
systems in an electrical system located in India, with the aim to improve its technical condi-
tions. In this work, the authors considered the variation in power generation and demand,
as well as all of the constraints that represent the analyzed electrical grid. However, this
work considers a mono-nodal electrical system that ignores the complications related to the
transport lines. Furthermore, the authors do not use comparison methods nor analyze the
processing times required by the proposed solution. The work by [16] used the artificial
electric field algorithm to size and operate distributed generators and BS in AC electrical
networks, considering the reduction of CO2 emissions and the improvement of the technical
aspects of the grid as objective functions. In this work, the authors compare the best and
average solutions obtained by means of the proposed methodology against those of other
works reported in the literature. However, they use a mono-nodal grid as a test system and
do not analyze the reported processing times and standard deviation values. In addition,
this work does not analyze the effectiveness of the studied solution methods regarding pro-
cessing times and repeatability. The authors of [17] also locate and size BS in a mono-nodal
grid. In this work, they describe the mathematical formulation for the integration of BS
and other energy resources that compose the electrical grid, (i.e., distributed generators
and loads, among others). This study considers economical and technical indicators as
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objective functions, comparing the results obtained with those of other works reported in
the literature. The main problem with these works is associated with the fact that multi-
nodal GCNs are more widely used in real life, which implies several constraints related to
voltage profiles and line currents in their mathematical formulations, thus increasing the
complexity of the problem. However, the analyzed works offer important information on
the variable power generation and demand of electrical grids, as well as data related to
the implementation of smart optimization methods in the problem regarding the optimal
operation and location of BS in GCNs.

Regarding the integration and operation of BS while considering multi-nodal grids,
different works based on specialized software and sequential programming methods have
been proposed in the last years [8], with the latter being the most used for solving the prob-
lem regarding the integration of BS in GCN, as this kind of solution methodologies avoid
the use of specialized software, which causes an increase in complexity and implementa-
tion costs [15]. Furthermore, exact optimization methods such as convex optimization and
specialized software are not commonly used, since these solution methodologies are often
stuck in local optima. This occurs due to the nonlinearities generated by the discrete vari-
ables that represent the selection of the bus where the battery will be located, as well as the
kind of battery to be used. Based on the above, a large number of solution methodologies
have been reported in the literature which use master–slave strategies based on sequential
programming methods. Here, the master stage is entrusted with solving the location and
selection problem of the BS to be installed in the GCN, while the slave stage deals with the
power operation schedule of the BS, allowing to obtain the best impact on the objective
function. These optimization methods use discrete (master stage) and continuous variables
(slave stage) and complex solution space exploration processes to find the optimal power
configuration for locating and operating batteries in GCNs.

Most of works reported in the literature focus on a single objective of the two analyzed
in this research, namely, reducing the energy losses [13]. An example of this is the work
presented in [18], where the authors propose a methodology based on genetic algorithms
to solve the problem concerning the optimal integration of BS in GCNs. The authors
compare their results to those of other methods reported in the literature in terms of the
best solution. However, this work does not include or analyze the standard deviation and
processing times required by the solutions methods. The authors of [19] use the coalition
formation algorithm for solving the problem regarding the optimal integration of BS in
GCN. Their results demonstrate the effectiveness of the proposed solution methodology.
However, they do not analyze the processing times and the standard deviation values
of the solution strategies under study. A methodology based on the coyote optimization
algorithm is proposed in [20] with the purpose of reducing the energy losses in an electrical
network by integrating BS. To assess the performance of this approach, different works in
the literature are used for the sake of comparison. The authors of this work do not evaluate
the repeatability and processing times of the solution methods employed. Another proposal
for reducing energy losses is made in [21], where the authors use a sensitivity indicator
to locate and operate BS in an electrical grid. These methods get stuck in local optima,
as heuristic methods cannot escape from bad solution regions. The authors of [22] propose
a methodology based on a discrete version of a continuous method for solving the problem
regarding the integration of BS in GCNs, aiming to improve the operating conditions of
the electrical system. This work highlights the advantage of using modified conventional
continuous optimization methods (discrete versions) in order to solve problems involving
discrete and binary variables. In the same way, different authors have recently addressed
the problem regarding the selection and location of BS in GCNs [23–25].

The reduction of environmental impacts, however, is still a topic in development,
with a small number of works reported in the literature. The work reported in [26] aimed
to reduce CO2 emissions and energy power losses by using a non-linear mathematical
formulation, which was solved with the GAMS software. Nevertheless, the results obtained
were not compared with those of other works reported in the literature. By using specialized
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software, the authors of [27] obtained the optimal location and operation scheme of BS in
an electrical grid, solving a second-order cone programming model with the MATLAB CVX
tool. This work used different test systems, but comparison methods were not considered.
In [28], a mixed-integer linear programming model was proposed for representing the
problem pertaining to the location and operation of BS in electrical networks, in order to
reduce investments and CO2 emissions from fossil fuel-based power generation. This work
considered different kinds of batteries and load curves, with the aim to analyze the effect of
different devices on the operation of an electrical system. Note that the works reported in
the literature for reducing CO2 emissions with the operation of BS use specialized software
for solving the proposed mathematical models. This is explained by the fact that the
mathematical models used are still being built and validated. Therefore, there is a need to
propose mathematical models that guarantee the correct operation of the grid when this
environmental indicator is used, as well as solutions based on sequential programming
methods that avoid the use of specialized software.

By analyzing the state of the art, it was possible to notice that it is currently necessary
to propose optimization methodologies that address the problem regarding the optimal
location and operation of BS in GCNs with the aim to reduce energy losses and CO2 emis-
sions. Furthermore, these new methodologies must guarantee the best results in terms of
technical and environmental indices, with the aim to obtain resilient strategies that consider
the needs of the GCN and the community while avoiding the implementation of specialized
software, which increases the costs and complexity of the solution methodologies [29].
Furthermore, these methodologies must be compared against other approaches, with the
aim to identify the solution methodology with the best performance in terms of solution
quality, repeatability, and processing times.

1.3. Scope and Main Contributions

Recognizing the advantage of discretizing continuous optimization methods for solv-
ing problems with binary and discrete variables, as well as the current needs to solve
the optimal integration problem of BS in GCNs for reducing the energy losses and CO2
emissions, the authors of this paper propose a complete mathematical formulation of
the problem regarding the selection, location, and operation of BS in GCN for reducing
energy losses and CO2 emissions. All this is conducted while including all constraints
related to the electrical network (global power balance and line current and voltage profile
limits), conventional and distributed generators (power limits), and BS (discharging and
charging power limits and state of charge limits). Furthermore, with the aim to use the
high-performance methodologies reported in the literature for solving electrical problems
similar to that studied herein, three discrete versions of some optimization methods were
used in the master stage. The first of these is the parallel Montecarlo algorithm (PMC) [30],
which employs a random search process to find the solution with the best performance
while taking advantage of parallel processing, using all workers in the computer to reduce
processing times. Moreover, following the suggestions made in the literature, this paper
generated two parallel-discrete versions of two continuous optimization methods: the
genetic (PDGA) and crow search (PDCSA) algorithms. For the slave stage, the particle
optimization algorithm proposed in [31] was adapted. This algorithm was developed for
operating batteries in direct current (DC) grids, with no application or validation in alter-
nating current (AC) networks. By combining the three optimization methods proposed in
master stage and PSO, it was possible to obtain three new master–slave methodologies for
solving the problem under study, namely, PMC/PSO, PDGA/PSO, and PDCSA/PSO (here-
inafter called PMC, PDGA, and PDCSA for the sake of simplicity). In addition, with the
aim to evaluate the objective function and constraints related to each solution offered by
these strategies, aiming for the shortest processing times and the best convergence, this
study used the hourly power flow matrix based on successive approximations, as proposed
in [23], which allows considering variations in distributed generation and power demand.
As a test scenario, an adapted version of the 33-bus test system was used, which repre-
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sents the technical and environmental conditions of the city of Medellín (Colombia), while
considering the operation of three photovoltaic (PV) generators with maximum power
point tracking, which is the traditional way to operate renewable generation technology in
this country. Finally, to evaluate the performance of the proposed solution methodologies,
1000 executions of each one were carried out, with the aim to evaluate the minimum and
average solution, as well as the standard deviation and average processing times. This
analysis allowed selecting the optimization methodology with the best performance for
solving the problem regarding the optimal integration and operation of BS in GCNs.

The main contributions of this paper regarding academic and industrial applications
are described below:

1.3.1. Academic Contributions

• A mathematical model for the optimal integration of BS in GCN whose objective
function is the reduction of energy losses and CO2 emissions, observing all of the
constraints that represent the operation of a GCN in an environment of variable
distributed generation and power demand.

• A discrete codification for the problem regarding the location and selection of BS.
• A continuous codification for the problem regarding the operation of the batteries

located in the GCN.
• Three new master–slave strategies (PMC, PDGA, and PDCSA) for solving the problem

regarding the optimal integration of BS in GCNs.
• The identification of PMC as the master–slave strategy with the best performance

in terms of solution quality and its repeatability and processing times for solving
the problem under study. This optimization methodology could be used in future
works for the sake of comparison, with the aim to obtain methodologies with a
better performance.

1.3.2. Industrial Applications

• A mathematical formulation that allows the grid operators to quantify energy losses
and CO2 emissions before and after considering the integration of BS in GCNs.

• An effective and fast optimization method based on sequential programming, which
allows determining the location and operation scheme of multiple batteries within
the grid, with the purpose of reducing the energy losses and CO2 emissions while
observing all operating constraints.

1.4. Paper Organization

The remainder of this paper is organized as follows. Section 2 describes the mathemat-
ical formulation of the problem regarding the optimal selection, location, and operation
of BS in GCNs. Section 3 presents the proposed master–slave methodologies. Section 4
describes the GCN used as a test scenario and explains the PV generation and demand
curves, as well as the technical and operating parameters of the electrical systems located
in Medellín. Finally, Sections 5 and 6, respectively, present the simulation results obtained
by the proposed methodologies, as well as the conclusions and future works derived from
this research.

2. Mathematical Formulation

In this mathematical formulation, two objective functions are employed which aim for
reducing the energy losses and CO2 emissions in GCNs. Furthermore, this section describes
all of the constraints related to the technical limitations of the devices that make up the
grid, as well as the operation limits associated with voltage profiles and line currents.

FO1 = min Eloss = min

(
∑

h∈ΩH
∑

i∈ΩN
∑

j∈ΩN
Yijvi,hvj,hcos

(
θi,h − θj,h − ϕij

)
∆t

)
(1)
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The first objective function used in this paper corresponds to the reduction of the
energy losses related to energy transport in the GCN, which is presented in Equation (1).
Here, ΩH and ΩN represent the periods of time contained in the horizon under study
and the total of nodes that make up the GCN, respectively. Furthermore, Yij and ϕij are
the magnitude and angle of the admittance of the line that interconnects nodes i and j,
respectively. vj,h and vi,h are the voltage profile magnitudes of buses i and j, while θi,h and
θj,h are their angles, respectively. Finally, ∆t is associated with the duration of each period
of time (1 h for this work).

As it could be appreciated in Equation (1), this mathematical formulation does not
implicitly include the variables associated with the power supplied by the BS. However,
the effect of the location and operation of these devices is considered in the nodal voltage
profiles included in the equation.

FO2 = min CO2 emissions = min

(
∑

h∈ΩH
∑

i∈ΩN

Xcg
i Pcg

i,hCEcg
i ∆t + Xgd

i Pgd
i Cgd

h CEgd
i ∆t

)
(2)

Equation (2) describes the mathematical formulation proposed to represent the second
objective function, i.e., the reduction of CO2 emissions generated by the power supplied
by the conventional and distributed generators located in the grid. In this equation, Xcg

i

and Xgd
i are the binary variables, which take a value of 1 if a conventional or distributed

generator is located at bus i, respectively; otherwise, they take a value of 0. Pcg
i,h and Pgd

i,h are
the power supplied by the conventional and distributed generators at bus i in the hour h.
CEcg

i and CEgd
i are the emissions factors for the two generation technologies considered

in this work. Cgd
h is a variable that represents the behavior of the distributed generator

installed at bus i in the hour h. This factor is in p.u. and changes every hour as a function
of the technology used and the potential of the renewable energy in the region where
the DG is located. In this objective function, the variables associated with the problem of
integrating BS in the GCN are implicit.

The BS optimal integration problem is composed of multiple technical and operating
constraints, which apply for all buses in the GCN and the period considered in the time
horizon analyzed.

Xcg
i pcg

i,h + Xcg
i Cgd

h pgd
i,h ± XB

i PB
i,h − pd

i,h = vi,h ∑
j∈ΩN

Yijvj,hcos
(

θi,h − θj,h − ϕij

)
(3)

The first constraint is associated with the the active power balance in the electrical
network. In this equation, XB

i is a binary variable that takes the value of 1 or 0 if a battery
is located or not at bus i, respectively, while pB

i,h is the active power supplied or demanded
by the BS located at bus i in the hour h.

qcg
i,h −Qd

i,h = vi,h ∑
j∈ΩN

Yijvi,hsin
(

θi,h − θj,h − ϕij

)
(4)

Equation (4) ensures the reactive power balance in the grid. In this equation, qcg
i,h and

Qd
i,h are, respectively, the reactive power generated and demanded by the conventional

generators and loads located at bus i in the hour h. By analyzing this equation, it can be
noted that this work does not consider the injection of reactive power by the distributed
generator and batteries located in the GCN.

Pcg,min
i ≤ pcg

i,h ≤ Pcg,max
i (5)
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The maximum (Pcg,min
i ) and minimum (Pcg,max

i ) power to be supplied by the conven-
tional generator located at bus i are modeled in Equation (5).

Qcg,min
i ≤ qcg

i,h ≤ Qcg,max
i (6)

The reactive power limits associated with the conventional generators are presented
in (6), where Qcg,min

i and Qcg,max
i denote the minimum and maximum reactive power to be

supplied by these generators, respectively.

Pgd,min
i ≤ pgd

i ≤ Pgd,max
i (7)

Equation (7) represents the power limits of the distributed generator located at bus
i in the hour h. In this equation, Pgd,min

i and Pgd,max
i denote the minimum and maximum

power, respectively, which are a function of the technology and renewable potential in the
region where the generator is located.

Pchargmax
B,i ≤ pB

i,h ≤ Pdischmax
B,i (8)

Pdischmax
B,i =

CB
i

tdB
i

(9)

Pchargmax
B,i = −

CB
i

tcB
i

(10)

The power in the batteries of the electrical system is controlled by Equation (8).
The maximum charge and discharge powers are limited by Pchargmax

B,i and Pdischmax
B,i . To calcu-

late these values, Equation (9) and (10) are used, where CB
i is the nominal power capacity

of the BS located at bus i, while tci and tci are the charge and discharge times, respectively,
required by the battery type, which is related to the BS technology.

SOCB
i,h = SOCB

i,h−1 − φB
i PB

i,h∆t (11)

Equation (11) allows calculating the state of charge at the hour h of the battery located
at bus i (SOCB

i,h). This equation requires the state of charge of the previous hour (h− 1),
the charging coefficient of the battery located at bus i (φB

i ), the power supplied or stored by
the same battery at the hour h (PB

i,h), and its time of charge or discharge, (∆t). To calculate
φB

i , Equation (12) is calculated, which is expressed in terms of the previously described
parameters. On the other hand, Equations (13) and (14) define the initial (SOC0

i ) and final
(SOC f

i ) state of charge of the battery located at bus i.

φB
i =

1

tdB
i Pdischargmax

B,i

=
1

tcB
i Pchargmax

B,i

, {∀i ∈ ΩB, ∀h ∈ ΩH} (12)

SOCB
i,h=0= SOC0

i , {∀i ∈ ΩB} (13)

SOCB
i,h=24= SOCf

i , {∀i ∈ ΩB} (14)

Finally, with the aim to integrate the operating constraints of the electrical distribution
system, the mathematical formulation includes Equations (15) and (16), which ensure that
the voltage profiles and the current that flows through the lines are within the technical
limits set by the electrical operator and the manufacturer. In these equations, Vmin

i and
Vmin

i correspond to the minimum and maximum nodal voltage at bus i, respectively, while
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Iij,h and Imax
ij are the current flowing through the line that interconnects nodes i and j,

respectively, whose maximum level is set during the design of the electrical network.

Vmin
i ≤ vi,h ≤ Vmax

i ,
{
∀i ∈ ΩN , ∀h ∈ ΩH

}
(15)

Iij,h ≤ Imax
ij
{
∀ij ∈ ΩN , ∀h ∈ ΩH

}
(16)

3. Proposed Solution Methodologies
3.1. Master–Slave Methodology and Codifications Used

To solve the problem regarding the optimal selection, location, and operation of BS in
GCNs, this paper proposes the master–slave methodology illustrated in Figure 1.

 

Selection and 
location of BS 

 

operation of BS 
Evaluation of 

objective function and 
constraints 

Send information 

Receive information 
Master stage 

Slave stage 

Matrix power flow 

Figure 1. Proposed master–slave methodology.

The master stage is entrusted with the selection and location of the batteries, a discrete
problem that requires identifying the buses and battery types to be installed in the grid.
For its codification, a vector of size 1x6 was used, where the number of columns corresponds
to the three locations and types of batteries be to installed (Section 4). Figure 2 is presented
as an example, where three A-, B-, and C-type batteries were located at buses 33, 12,
and 3, respectively.

33 12 3 A B C 
 Bus location of batteries 

Kind of batteries 

Figure 2. Codification proposed for selecting and locating batteries in the GCN.

The slave stage is responsible for finding a battery power dispatch that allows for
the maximum possible reduction of the objective function, using the location and type of
batteries provided by the master stage. To this effect, the codification proposed in Figure 3
is employed. This codification includes a vector of size 1 × 72, in whose columns are
24 variables associated with the states of charge of each battery in the different periods of
the time horizon analyzed.

0.5 0.7 …. 0.3 0.5 0.5 0.35 … 0.7 0.5 0.5 0.2 … 0.4 0.5 
 Battery 3 

h=1    h=2    .…   h=23  h=24     

Battery 1 Battery 2 

h=1    h=2    .…   h=23  h=24     h=1    h=2    .…   h=23  h=24     

Figure 3. Codification used to find the operation scheme of the batteries selected and located by the
master stage.

Due to the nature of electrical systems, in order to evaluate the impact on energy losses
and CO2 emissions, as well as the constraints that make up the problem, it is necessary to
determine the power flow for the different periods, with the aim to analyze the effect of the
power generated and demanded by the loads, PV generators, and batteries installed in the
GCN. After evaluating each period of time and obtaining the values associated with the
objective function and constraints, this information is summarized with the aim to evaluate
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the effect of the batteries on the grid during an average day of operation. A power flow
evaluation within a multi-hour scenario is known as an hourly power flow. In this work,
a matrix hourly power flow based on successive approximations (MHPF) was selected,
given the excellent results reported in [23]. Algorithm 1 describes this method:

Algorithm 1: Algorithm proposed for the matrix hourly power flow based on
successive approximations

Data: Load the electrical system data;
Load the BS information provided by the master–slave strategy: types of BS,
location, and operation;

Load Vt
dh (with t = 0), ε, and tmax data;

for t = 0 : tmax do
Evaluate the MHPF using Equation (17);

if max
(∣∣∣Vt+1

dh −Vt
dh

∣∣∣) ≤ ε then
Solution achieved;
Result: Vdh = Vt+1

dh .
break;

else
Vt

dh = Vt+1
dh ;

Summarize the objective functions obtained in each period of time;
Penalize the objective function if a constraint is violated;
Return the objective function to the slave stage;

In the first step, the MHPF loads the electrical system data described in Section 4.
Then, the information provided by the master–slave strategy is loaded (i.e., regarding the
selection, location, and operation of the batteries during an average day. Next, these data
on the BS are integrated into the hourly power flow, and the voltage profiles for all buses in
the 24 h of operation are loaded as 1 < 0 by using Vt+1

dh , which is a matrix of size |d|x|H|,
with |d| being the number of demand buses and |H| the entirety of the time period analyzed
(24). Furthermore, to control the iterative process, a maximum number of iterations (tmax)
for the MHPF of 10,000 and a convergence error (ε) of 1e−10 were set. These values allow
for a fast convergence and were heuristically selected.

Vt+1
dh = −Y−1

dd

[
(ones�Vt,∗

dh ) ◦ (Sdh − Spvh)
∗ + YdsVsh

]
(17)

After setting the initial parameters of the algorithm, the iterative process to solve the
hourly power flow begins. In each iteration, the hourly power flow is simultaneously
evaluated in all periods of time by using Equation (17). This is made possible by the fact
that this power flow method uses the Hadamard product (◦) and division (�). In this
equation, Vt+1

dh and Vt
dh represent the demand bus voltages in all periods considered in the

current and previous iteration. These matrices are of size |d|x|H|, where |d| is the number
of demand buses and |H| the total of periods in the time horizon analyzed. Furthermore,
in this equation, ones is a matrix of ones, and Sdh and Spvh correspond to a matrix composed
of the power demand and the PV power generated in all periods. These matrices have
the same size as Vt

dh. Finally, in this equation, Ydd and Yds denote the components of the
admittance matrix generated between the demand (d) and slack buses (s), with Vsh being
the voltage in the slack buses, which are composed of (1 < 0) at all times (i.e., the nominal
voltage of the GCN). In each iteration of the MHPF, this equation is evaluated by using the
hourly voltage profiles of the current and previous iteration.

Then, in order to evaluate the hourly power flow via Equation (17), the MHPF eval-
uates the stopping criterion (convergence error). To this effect, the current and previous
voltage profiles are compared. If ε is achieved, the iterative process ends; otherwise, it con-
tinues. When ε or tmax is achieved, the objective function values obtained for the different
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periods are summarized, obtaining the objective function related to the whole operation
day. Furthermore, the constraints associated with each period of time are analyzed. If any
of them is violated, a high value is added to the objective function, with the aim to discard
the solution from the master–slave strategy. This strategy allows obtaining a solution of
good quality that satisfies all of the constraints involved in the studied problem. Finally,
the MHPF returns the objective function to the slave stage, with the aim to continue with
the iterative process of the master–slave strategy proposed in this work.

3.2. Master Stage

This work used three discrete optimization methods for the master stage: a parallel
version of the Montecarlo method (PMC) and two parallel-discrete versions of traditional
continuous optimization methods, i.e., the genetic and crow search algorithms. The selec-
tion of these methods was based on the excellent results reported in the literature with
regard to the solution of similar electrical engineering problems [18,29,32,33]. This subsec-
tion outlines the iterative process of each of these algorithms. For a whole description of
each algorithm, please refer to the cited papers.

3.2.1. Parallel Montecarlo Method (PMC)

The PMC is a random optimization method that evaluates multiple randomly pro-
posed scenarios, thus allowing for a good-quality solution in a previously defined number
of iterations. In each iteration, the PMC generates a population that contains different
individuals, each of which represents a possible solution to the problem. After evaluating
the objective function of each individual and confirming that it satisfies all constraints,
the individual with the best solution (incumbent) is included in an elite list. This, in order
to select the best solution from this list at the end of the iterative process. The random
exploration of the algorithm allows covering the solution space in reduced processing times
with low standard deviation values. The original PMC was proposed in [30]. However,
with the aim to obtain the best performance, this paper used a PSO to tune the PMC
parameters, as per the suggestions made by [29], obtaining 10 as the maximum number of
iterations (itermax). In each iteration, a population of 8 individuals was used, as this is the
maximum number of workers in the workstation used. This limitation is explained by the
fact that, in parallel processing, a population size higher than the number of workers is not
recommended, as this does not ensure a single parallel process. This limitation applies to
all solution algorithms used in this work. The iterative process of the PMC is presented in
Algorithm 2 and described below.

Algorithm 2: Algorithm proposed for the PMC
Data: Read PMC parameters
for t = 1 : itermax do

Randomly generate the first population;
Evaluate the objective function of the population by using the slave stage
(parallel process);

Include the best solution of the population in the elite list;

Select the best solution of the elite list as the solution to the problem;
Print the solution;

The PMC employs an iterative process that generates a random population by using
the discrete codification proposed in Figure 2. After that, using the location and battery
type proposed by each individual, the slave stage is used to evaluate the objective function.
This stage uses PSO and the MHPF to find the power schedule (supply or storage) of the
batteries in the GCN. This also includes the aim to obtain the minimum possible objective
function (energy losses or CO2 emissions), satisfying the set of constraints that compose
the problem under study. Therefore, each individual of the population must be processed
by the slave stage, which implies long processing times. This is addressed by using parallel
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processing, with the aim to evaluate multiple individuals at the same time. After evaluating
the objective function values of the population, the best solution is included in the elite list,
a process that is repeated iteration to iteration until the maximum number of iterations is
reached. When this occurs, the best solution of the elite list is selected as the solution to the
problem. This solution contains the location, selection, and operation of the batteries for a
day which yields the lowest objective function value.

3.2.2. Parallel-Discrete Genetic Algorithm (PDGA)

The parallel-discrete version of the genetic algorithm performs the selection, recombi-
nation, and mutation steps of traditional genetic algorithms (GA). However, this discrete
version of the GA uses the codification proposed in Figure 2 and adapts the recombination
and mutation steps to work with discrete variables, but the nature of the process is the
same [23]. Algorithm 3 describes the iterative process of the PDGA.

Algorithm 3: Iterative process of the PDGA
Data: Read PDGA parameters
for t = 1 : itermax do

if iter == 1 then
Randomly generate the first population;

Evaluate the objective function of the population by using the slave stage
(parallel process);

Select the best solution as the incumbent;
else

Update the population by performing selection, recombination,
and mutation;

Evaluate the objective function of the population by using the slave stage
(parallel process);

Update the best solution;
if Has the stopping criterion been met? then

End the iterative process and select the incumbent as the solution to
the problem;

Break;
else

Continue;

The PDGA starts by reading all of its parameters. In the particular case of this work,
a population size of 8 individuals was used, as well as a recombination of 1 point and the
mutation of 1 individual, and, as a stopping criterion, an itermax of 1000 was employed.
The tuning process of this algorithm was carried out with the same PSO used for PMC.
This algorithm generates the first population by using the codification in Figure 2 and a
random process. Subsequently, the objective function of each individual is evaluated by
using the slave stage and the MHPF. With this information, the individual with the lowest
objective function value is selected as the incumbent of the problem.

From the second iteration until the iterative process ends, the PDGA updates the
population via selection, recombination, and mutation. Then, the objective function and
constraints of each individual are calculated. Based on this information, the incumbent
of the problem is updated (the best solution). After that, the stopping criterion (itermax)
is evaluated. If it is met, the iterative process ends, and the incumbent is selected as the
solution to the problem; otherwise, the algorithm continues. It is important to highlight
that, as in the PMC, the incumbent contains the location, types, and operation scheme of
the batteries that allow obtaining the lowest possible objective functions.
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3.2.3. Parallel-Discrete Crow Search Algorithm (PDCSA)

The parallel-discrete version of the crow search algorithm uses the hunting strategies
of crows and takes advantage of parallel processing to evaluate the objective function
in each iteration of the algorithm. The iterative process of the PDCSA is presented in
Algorithm 4 and described below.

Algorithm 4: Iterative process of the PDCSA
Data: Read PDCSA parameters
for t = 1 : itermax do

if iter == 1 then
Randomly generate the first population of crows;

Evaluate the objective function of the population by using the slave stage
(parallel process);

Store all individuals in the population (current position of the crows);
Select the crow with the best solution as the incumbent;

else
Update the population by using the information of the incumbent,

the population, and random values;
Evaluate the objective function of the population by using the slave stage
(parallel process);

Store all individuals in the population (current position of the crows);
Update the incumbent;
if Has the stopping criterion been met? then

End the iterative process and print the incumbent as the solution;
Break;

else
Continue;

The conventional CSA works with a population of crows that, iteration to iteration,
take the decision to follow the leader or go their own way [34,35]. In the first iteration,
the PDCSA reads the parameters and randomly generates the initial population by using
the discrete codification proposed in Figure 2. Then, as with the PMC and the PDGA, this
optimization algorithm evaluates the objective function of the population via the slave
stage and a parallel process. Subsequently, the information of all individuals is stored,
and the crow with the best solution is selected as the incumbent, i.e., the leader.

From the second iteration until the iterative process ends, the position of all crows
is updated. In other words, the information of the population is renewed. To this effect,
each individual decides to follow the leader or take a different path. This is made possible
by using a random value. In this case, if the random value is higher than 0.5, the crow
follows the leader; otherwise, its position is updated by using random values between the
maximum and minimum ones allowed (number of buses and battery types). After up-
dating the position of the crows, these values are stored and the incumbent is updated.
Subsequently, it is verified whether the maximum number of iterations has been met. If this
is true, the iterative process ends, and the incumbent is printed as the solution; otherwise,
the algorithm continues.

As with the other solution methodologies employed in the master stage, the PDCSA
was tuned via the PSO suggested in [29]. Thus, a population size of 8 individuals and a
maximum number of iterations of 1000 were obtained.

3.3. Slave Stage

For solving the problem regarding the optimal operation of BS in GCN, this paper
uses the PSO proposed in [31], given the excellent results reported by the authors. Fur-
thermore, as the Montercalo method and the genetic and crow search algorithms have
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been traditionally used the in the literature for solving continuous problems, as is the case
of the one studied herein, these optimization methods were validated in this research,
with a low performance in comparison with PSO. Additionally, to obtain these results, it
is necessary to present a lot of information that does not contribute to the state of the art.
For this reason, only PSO was used in the slave stage, which is presented in Algorithm 5
and described below.

Algorithm 5: Iterative process proposed for the PSO used in the slave stage
Data: Read PSO parameters
for t = 1 : itermax do

if iter == 1 then
Randomly generate the position of the particles (initial population);

Evaluate the objective function of all particles by using the MHPF;
Select the initial position of the particles as the best solution and store all of
the objective functions obtained;

Select the particle with the best objective function value and its position as
the incumbent;

else
Update the position of the swarm by using the information of the

particles and the incumbent;
Evaluate the objective function of all particles by using the MHPF;
Update the best particle position and its objective function;
Select the particle with the best objective function and its position as the
incumbent;

if Has the stopping criterion been met? then
End the iterative process and print the incumbent as the solution;

Break;
else

Continue;

The PSO used to solve the problem under study starts by reading the optimizer param-
eters. Using the same methodology as the master stage, the following values were obtained:
a population of 60 individuals, a maximum number of iterations of 971, a cognitive con-
stant of 1.5922, a social constant of 2, and an initial and final inertia of 0.0022 and 0.0477,
respectively. Note that the PSO does not consider the population size as the maximum
number of workers; it does not employ parallel processing.

In order to read the initial parameters, the PSO generates the initial population by
randomly spreading the particles throughout the solution space. This step is carried out
by using the codification presented in Figure 3, which assigns the state of charge for
each period of operation for the three batteries located by the master stage. After that,
the objective functions of all particles are evaluated by using the MHPF and observing all
constraints. If any constraint is violated, the objective function is penalized with a value
of 100,000. This value was heuristically obtained for both objective functions under study.
With the values of the objective functions, the first iteration selects the initial position of
the particles as the best solution and stores all of these values as the best ones found by
each particle. Furthermore, it selects the particle with the best objective function as the
incumbent, storing its location and objective function value.

From the second iteration until the end of the iterative process, the location of the
particle swarms is updated by using the information on the best particle position and
the incumbent. Then, the objective function of the swarms is calculated by analyzing the
constraints in order to penalize any solution that violates the technical and operating limits.
With the objective function values, the best position and objective function of the particles
are updated, as well as the incumbent of the problem. Subsequently, it is verified whether
the stopping criterion has been met. If this is true, the iterative process ends, and the
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incumbent returns to the master stage with the power dispatch of the BS located in the
GCN; otherwise, the iterative process continues until the maximum number of iterations is
reached, sending the information of the last incumbent to the master stage.

4. Test Scenarios and Considerations

Figure 4 presents the electrical diagram of the GCN used in this work.

Grid
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Figure 4. Electrical diagram of the GCN.

Table 1 describes the electrical parameters of the test system regarding line and power
demand capacity. This table presents, from left to right, the line number l, the sending bus
i, the receiving bus j, the resistance and reactance of the line that interconnects buses i and
j, the active and nominal power demanded at bus j, and the maximum current allowed
by each line considered. Furthermore, for the voltage profile limits, this paper follows the
Colombian electrical regulations for electrical distribution networks, which stipulates a
bus voltage variation of +/− 10% of the main generator’s nominal voltage [36]. In this
particular case, the nominal and base voltage is 12.66 kV, with a base power of 100 kW.

In this figure, it can be noted that this work proposes a modified version of the
33-bus test system, which is highly used in the literature to validate planing and operation
strategies in electrical distribution networks [37–39]. The test scenario employed considers
the power energy solar production, power demand, and CO2 emissions from conventional
generators (electrical grid) of the city of Medellín (Colombia), as well as PV-DGs and three
different kinds of lithium-ion batteries (types A, B, and C), with different power capacities
and charge and discharge times [27]. Lithium-ion batteries are a type of rechargeable
battery which uses the reversible reduction of lithium ions to store energy. They are highly
used in the literature because they have a higher energy density, a higher efficiency, and a
longer useful life. Traditional lead acid batteries allow 1500 life-cycles, while lithium battery
technology offers a duration of up to 2500 [40].

In the test system used, the PV-DGs were located at buses 13, 25, and 36, with nominal
power capacities of 1.125, 1.320, and 0.999 MW, respectively [29]. The behavior of the solar
energy production and power demand of Medellín was taken from [23]. In the particular
case of PV generation, the temperature and solar radiation data reported by NASA [41]
were used, as well as technical data on the polycrystalline PV panels, in order obtain a curve
that represents the average behavior of the solar production in an average operation day
(see Figure 5a). Furthermore, this study obtained a power demand curve that represents
the average behavior of the users in Medellín by using power demand data reported by the
local operator, Empresas Públicas de Medellín, [42] (see Figure 5b). All of the data used to
elaborate these curves correspond to 2019. This year was selected with the aim to eliminate
the effect of the COVID-19 pandemic on power consumption.
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Table 1. Technical parameters of the 33-node test system (urban network).

Line l Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kVAr) Imax
ij (A)

1 1 2 0.0922 0.0477 100 60 385
2 2 3 0.4930 0.2511 90 40 355
3 3 4 0.3660 0.1864 120 80 240
4 4 5 0.3811 0.1941 60 30 240
5 5 6 0.8190 0.7070 60 20 240
6 6 7 0.1872 0.6188 200 100 110
7 7 8 1.7114 1.2351 200 100 85
8 8 9 1.0300 0.7400 60 20 70
9 9 10 1.0400 0.7400 60 20 70

10 10 11 0.1966 0.0650 45 30 55
11 11 12 0.3744 0.1238 60 35 55
12 12 13 1.4680 1.1550 60 35 55
13 13 14 0.5416 0.7129 120 80 40
14 14 15 0.5910 0.5260 60 10 25
15 15 16 0.7463 0.5450 60 20 20
16 16 17 1.2890 1.7210 60 20 20
17 17 18 0.7320 0.5740 90 40 20
18 2 19 0.1640 0.1565 90 40 40
19 19 20 1.5042 1.3554 90 40 25
20 20 21 0.4095 0.4784 90 40 20
21 21 22 0.7089 0.9373 90 40 20
22 3 23 0.4512 0.3083 90 50 85
23 23 24 0.8980 0.7091 420 200 85
24 24 25 0.8960 0.7011 420 200 40
25 6 26 0.2030 0.1034 60 25 125
26 26 27 0.2842 0.1447 60 25 110
27 27 28 1.0590 0.9337 60 20 110
28 28 29 0.8042 0.7006 120 70 110
29 29 30 0.5075 0.2585 200 600 95
30 30 31 0.9744 0.9630 150 70 55
31 31 32 0.3105 0.3619 210 100 30
32 32 33 0.3410 0.5302 60 40 20
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Figure 5. Average daily PV power generation power demand in the city of Medellín (Colombia).

This work considered three kinds of lithium-ion batteries, denoted with types A, B,
and C. Table 2 describes the technical parameters of the BS employed. It presents, from left
to right, the type of BSS, the nominal capacity in kWh, and the charge and discharge time
in hours. With these values and the equations presented in Section 2 of this manuscript, it
is possible to obtain all parameters for the operation of the batteries [18]. As the maximum
and minimum SOC for these batteries, the following limits were set for the lithium-ion
batteries [17]: 0.1 (10%) and 0.9 (90%), respectively. Finally, to obtain the best performance
out of the BS, an initial and final state of charge of 0.5 (50%) was used, following the
suggestions made in [31].

Table 2. Parameters of the batteries.

Type Capacity (kWh) Charge Time (h) Discharge Time (h)

A 1000 4 4

B 1500 4 4

C 2000 5 5

Finally, in order to calculate the CO2 emissions associated with the generators located
in the grid, this work considered 0.1644 kg of CO2 per kWh as the emissions factor for the
conventional generators, as well as a value of 0 kg of CO2 per kWh for the PV-DGs, as this
kind of generator does not emit greenhouse gases or release carbon-based pollutants when
producing energy [43]. The authors of this paper acknowledge the environmental impact
of constructing PV modules, just as well as the fact that this technology does not affect
environmental conditions when used for generating energy.

5. Simulation Results

This section presents the simulation results obtained after evaluating the master–slave
methodologies proposed for solving the problem regarding the optimal integration of BS
in GCNs with the aim to reduce energy losses and CO2 emissions. All simulations were
carried out in the Matlab 2023 software, on a Dell Workstation with an Intel(R) Xeon(R)
E5-1660 v3 3.0 GHz processor, 16 GB DDR4 RAM, and a 480 GB 2.5” solid state hard drive,
with 8 workers running on Windows 11 Pro. All simulations were executed 1000 times
in order to evaluate performance in terms of the average solution and processing times,
as well as regarding the standard deviation.

Table 3 presents the minimum solutions (i.e., the highest reduction in the objective
function) and the average reductions achieved by the three different master–slave method-
ologies, as well as the standard deviation and the average processing times.
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Table 3. Simulation results obtained by the proposed master–slave methodologies

Minimum Solution Average Solution

Method Eloss (kWh) Emissions (Ton CO2) Eloss (kWh) Emissions (Ton CO2)
PMC 2350.8270 9864.5471 2358.9454 9866.72854

PDGA 2336.0684 9862.8580 2347.9000 9865.1420

PDCA 2354.5459 9864.7264 2367.0639 9867.1920

Standard deviation (%) Processing time (s)

Method Eloss Emissions Eloss Emissions

PMC 0.2391 0.0112 75.0580 75.4806

PDGA 0.3829 0.0147 7477.4304 7338.0373

PDCA 0.4592 0.0143 6792.9205 7440.9693

To analyze the impact of the master–slave strategies on the GNC, the energy losses
and CO2 emissions were analyzed without considering the BS installed in the grid. Thus,
the base scenario involved variable power demand and the PV distributed generators
operating in maximum power point tracking (MPPT) mode (Figure 5). This scenario
obtained values of 2484.5746 kWh for energy losses and 9887.4082 kg of CO2 (9.88 Ton) for
the CO2 emissions.

Figure 6a compares these values against those of the PMC, PDGA, and PDCSA. This
figure presents the minimum and average reductions obtained by the solution methodolo-
gies for both objective functions with regard to the base case. Note that all solution methods
reduce the objective functions. In the particular case of Eloss, a minimum reduction of
130.0287 kWh was obtained, while the average reduction was 117.5107 kWh (5.2334% and
4.72961%, respectively). These reductions are significant for the GCN; in order to highlight
their importance, note that they imply a reduction of 42.8914 MWh for a year of operation.
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Figure 6. Reductions obtained by the proposed master–slave methodologies regarding the base case:
(a) minimum and average reductions of the objective function and (b) standard deviation (percentage)
and processing times.

The obtained emissions reductions are presented in Figure 6a. In the particular case
of the minimum emissions, the master–slave strategies obtained an average a value of
22.6818 kg of CO2. The average reduction in this environmental index (after 100 executions)
was 20.2162 kg of CO2. With respect to the base case, these values correspond to reductions
of 0.2294% and 0.2044%, respectively. As in the case of the Eloss, considering a year of
operation, the optimization methods would achieve a total reduction of 7.37 Ton of CO2
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on average, thus demonstrating the environmental importance and effectiveness of the
integration, selection, and smart operation of BS in GCNs.

Finally, Figure 6b presents the standard deviation and the processing times required
by the solution methodologies. In terms of the former, average values of 0.3220% and
0.0112% were obtained for Eloss and Emissions, respectively. These values demonstrate the
repeatability of the methodologies under study. In terms of the processing times, average
times of 6792.9204 (Eloss) and 7440.969347 s (Emissions) were obtained. These processing
times are short given the complexity of the problem and its large solution space, and these
values show the importance of the matrix hourly power flow used for calculating the
objective functions and constraints in all evaluated scenarios.

Figure 6 highlights, in blue and red, the methods with the best and worst performance,
respectively. By analyzing this figure, it is possible to appreciate that, in all indicators,
the PMC achieved the best results, which makes it the best solution method among those
analyzed in this study. Figure 7 illustrates the improvements obtained by the PMC when
compared to the other solution methods.
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Figure 7. Percent reductions obtained by the PMC with regard to the other comparison methods:
(a) in the minimum and average objective function values, (b) in the standard deviation and process-
ing times.

Figure 7a presents the reductions obtained by the PMC with regard to the minimum
objective function values, i.e., 5.8054% and 5.8977% when compared to the other solution
methodologies. Furthermore, the PMC achieved reductions of 6.8467% and 3.4328% in
the average Eloss and Emissions, respectively. By analyzing the standard deviation, it is
possible to calculate average reductions of 36.8430% and 21.2350% in Eloss and Emissions.
Finally, the PMC is the fastest solution method, as its processing times for calculating the
Eloss and Emissions were reduced by 99.3982% and 99.4618%, respectively, thus demon-
strating the superiority of the PMC with respect to the PDGA and the PDCSA.

Finally, with the purpose of demonstrating that the PMC satisfies all technical and
operating limits set for the GCN located in Medellín, Figures 8–10 are presented. It is
important to highlight that all master–slave strategies in this paper satisfy the technical
and operating constraints associated with a GCN in an environment of DERs. However,
this article only describes and analyzes the technical and operating behavior of the PMC,
as explaining the performance of the other methods would require a lot of unnecessary
information. Furthermore, in future works, comparisons should only be made with the
most efficient method, which is the PMC.
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Figure 8. State of charge set by the PMC: reductions in (a) energy losses and (b) CO2 emissions.
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Figure 9. Values obtained by the PMC regarding energy loss reductions: (a) line current (A),
(b) bus voltage (p.u.).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Number of line

0

100

200

300

400

(a
) 

L
in

e 
cu

rr
en

ts
 (

A
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Number of bus

0.9

0.95

1

1.05

(b
) 

B
u
s 

v
o
lt

ag
e 

(p
.u

)

- - - Maximum line current

Maximum voltage

Minimum voltage

Figure 10. Values obtained by the PMC regarding CO2 emissions reductions: (a) line current (A),
(b) bus voltage (p.u.).

Figure 8 describes the dynamics of the state of charge of the three BS integrated into
the GCN, considering an average day of power demand and PV generation in Medellín. It
is important to highlight that, following the suggestions made in [31] for obtaining the best
performance of the batteries, all BS start and finish with 0.5 (50%) of the SOC. Figure 8a
illustrates that, for Eloss, BS were installed at buses 12, 13, and 29 (types B, A, and C,
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respectively). Note that the behavior of the power supplied is similar for all three batteries,
with low dynamics in the first hours, complete charging before hour 17—when the power
demand of the system increases—and maximum demand on hour 20. The battery installed
at bus 12 supplies energy until it achieves the final state of charge (50%), the battery at bus
13 achieves the final SOC on hour 24, and the one at bus 29 supplies energy until hour 23,
starting its charging process until the last hour of the horizon, when it achieves the final
SOC. Note that, according to this figure, all BS satisfy their maximum and minimum SOC
of lithium-ion batteries: 0.1 (10%) and 0.9 (90%), respectively.

The operation of the BS regarding the reduction of CO2 emissions is illustrated in
Figure 8b. In this case, the BS were located at buses 25, 30, and 10 (all of them type A). The
batteries follow the same dynamics: they start at 50% SOC, discharging all batteries until
hour 9. They start the charging process from this hour until hour 16, and they discharge
until hour 24, achieving the final SOC (50%). The batteries satisfy the state-of-charge limits
at all times.

Finally, Figures 9 and 10 present the line currents and voltage profiles for the different
operation hours. By analyzing the current limits, it is possible to note that the maximum
line current limits are satisfied at all times. In the same way, all voltage profiles are within
the voltage limits set for the GCN (+/− 10% of the nominal voltage: 1 p.u.).

The above demonstrates that the solution obtained by the PMC with regard to the
objective functions satisfies all operating and technical constraints of the mathematical
model for the problem studied herein.

6. Conclusions and Future Work

This work formulated the problem regarding the optimal integration and operation
of BS in GCN in order to reduce energy losses and CO2 emissions. As solution methods,
three different master–slave methodologies were proposed. In the master stage, the PMC,
PDGA, and PDCSA were employed for selecting and locating three different BS types in a
GCN. Furthermore, the slave stage used PSO for the operation of the batteries, as well as a
matrix hourly power flow to calculate the objective functions and evaluate the technical
and operating constraints involved in the mathematical formulation. Finally, with the
aim to identify the solution methodology with the best performance, each algorithm was
executed 1000 times, analyzing the best and average solutions, the standard deviation,
and the processing times. The 33-bus test system was used for validation, which was
adapted to represent the power demand and PV power generation of the city of Medellín
(Colombia). This city constitutes an excellent test scenario, given its high energy losses
and CO2 emissions levels, as well as its excellent conditions for PV generation (this kind of
renewable energy is widely used in the city). In this paper, the PV-DGs were considered
to operate in maximum power point tracking mode, with the aim to make the best out of
this resource.

All methods achieved excellent results in terms of solution quality and processing
times. The master–slave strategies obtained average reductions of 4.72% and 0.20% regard-
ing energy losses and CO2 emissions for an average operation day, respectively. These
reductions are equivalent to 42.89 MWh and 7.37 Ton of CO2 in a year of operation. These
values are significant for the operation of grid-connected electrical distribution systems,
as they imply commercial and environmental benefits. In addition, the proposed solution
methodologies reported a low standard deviation, with average values of 0.3220% and
0.01124% for energy losses and CO2 emissions, respectively. Moreover, in a problem as
demanding as the integration of BS in GCN, the implementation of a matrix hourly power
flow based on successive approximations allowed reducing the processing times by about
68%, with values of 6792.92 and 7440.969347 s regarding energy losses and CO2 emissions.
With this information, it can be concluded that these strategies allow solving the problem
regarding the selection, location, and operation of multiple BS in a GCN in about 2 h,
which allows electrical operators to evaluate multiple generation and demand scenarios,
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as well as different electrical systems, in reduced times, which is very important for public
bidding processes.

The above demonstrates that all master–slave strategies are suitable for solving the
problem under study. However, the PMC was the best solution methodology in terms of
solution quality, repeatability, and processing time, for which it obtained average reductions
of 5.13%, 29.03%, and 99.42%, respectively.

The main limitation associated with the proposed methodology corresponds to the
implementation of single-objective optimization algorithms, which is why a multi-objective
analysis is not possible. However, the proposed methodologies obtained the best results
regarding the reduction of energy losses and CO2 emissions.

Future work could consider the implementation of new optimization methods that
allow improving the results reported in this paper. Furthermore, it is possible to include
variations in the power supplied by the PV generators, with the aim to achieve the best
solution quality. This, while allowing for the relocation of PV generators in the GCN. In ad-
dition, other kinds of distributed energy resources could be included, such as capacitors
and reactive static compensators, among others, with the aim to increase the reductions
in energy losses and CO2 emissions. Finally, the mathematical formulation could include
economical indicators with regard to the cost of the BS, by using multi-objective functions
that consider the improvement of technical, economical, and environmental indicators.
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Abbreviations

BS Battery systems.
GCN Grid-connected network.
PV Photovoltaic.
DG Distributed generator.
PMC Parallel-discrete version of the Montecarlo method.
PDGA Parallel-discrete version of the genetic algorithm.
PDSCA Parallel-discrete version of the search crow algorihm.
PSO Particle swarm optimization algorithm.
CO2 Carbon dioxide.
GAMS General Algebraic Modeling System.
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