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Abstract: The class of natural exponential families (NEFs) of distributions having power variance
functions (NEF-PVFs) is huge (uncountable), with enormous applications in various fields. Based on
a characterization property that holds for the cumulants of the members of this class, we developed a
novel goodness-of-fit (gof) test for testing whether a given random sample fits fixed members of this
class. We derived the asymptotic null distribution of the test statistic and developed an appropriate
bootstrap scheme. As the content of the paper is mainly theoretical, we exemplify its applicability to
only a few elements of the NEF-PVF class, specifically, the gamma and modified Bessel-type NEFs. A
Monte Carlo study was executed for examining the performance of both—the asymptotic test and the
bootstrap counterpart—in controlling the type I error rate and evaluating their power performance in
the special case of gamma, while real data examples demonstrate the applicability of the gof test to
the modified Bessel distribution.

Keywords: natural exponential family; goodness-of-fit tests; power variance function; Tweedie scale;
Monte Carlo simulation; asymptotic distribution; bootstrap
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1. Introduction

Let ν be a positive Radon measure on R, L(θ) =
∫
R eθxdν(x) be its Laplace transform

and D = {θ ∈ R : L(θ) < ∞} be its effective domain. Let us assume that Θ .
= intD 6= ∅;

then, the natural exponential family (NEF) generated by ν is the set F = {Fθ : θ ∈ Θ ⊂ R}
of probability distributions defined by

dFθ(x) = exp{θx + c(θ)}dv(x), θ ∈ Θ ⊂ R, (1)

where c(θ) is real, analytic and strictly concave on Θ; and k j(θ) = − djc(θ)
dθ j , j ∈ N, is the j-th

cumulant of Fθ . In particular, the mean and variance of Fθ are given by µ = µ(θ) = k1(θ)
and σ2 = σ2(θ) = k2(θ), respectively. As c(θ) is strictly concave on Θ, the mean domain
Ω = µ(intΘ) of F is an open interval; inverse map θ 7−→ µ(θ) is one to one; and its inverse
function ψ : Ω −→ Θ is well defined. Let us denote V(µ) = σ2(ψ(µ)); then, the pair (V, Ω)
is called the variance function (VF) of F . The VF uniquely determines F within the class of
NEFs (see an appropriate survey in [1]).

An NEF F is said to have a power variance function (hereafter, NEF-PVF) if V has
the form of V(µ) = aµγ, µ ∈ Ω, for some constants a > 0 and power parameter γ ∈ R.
The class of NEF-PVFs has been introduced independently and in different contexts by [2–4].
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In this context, comprehensive details can be found in [5]. Despite the fact that all of the
NEF-PVFs are often referred to as Tweedie class, for the reasons explained in [5] (and
already adopted in [6,7]), we shall henceforth call them the Tweedie, Bar-Lev and Enis
models and use the notation X ∼ TBEγ(µ, a) to indicate that random variable X has a
distribution that belongs to the TBEγ(µ, a) model with mean µ, scale parameter a and
power parameter γ. Finally, argument (µ, a) will be skipped when unnecessary, and we
will write TBEγ.

TBEγ models constitute a huge (uncountable) class, as for each power parameter,
γ ∈ R�(0, 1), there corresponds a natural exponential family member, while for γ ∈ (0, 1),
no NEF exists. Depending on the value of power parameter γ, NEF-PVFs include, as special
cases (see for instance [8]), normal (γ = 0), Poisson-type (γ = 1) and gamma (γ = 2) NEFs;
the family of compound Poisson distributions generated by gamma variates (1 < γ < 2);
NEFs generated by positive stable distributions with stable index in (0, 1) and supported
on R+ (γ > 2); and NEFs generated by extreme stable distributions with stable index in
(1, 2) and supported on R (γ < 0). Among the NEFs with γ > 2, we find the inverse
Gaussian (γ = 3), modified Bessel-type (γ = 2.5) and Whittaker-type (γ = 4) distributions.

Since TBEγ models have been utilized in various fields, such as actuarial studies, assay
analysis, survival analysis, time spent splicing telephone cables, ecology and meteorology
(see [9,10] and the references cited therein), it is important to test the hypothesis that a
given sample stems from a TBEγ model with some γ.

In this paper, we propose a novel goodness-of-fit (gof) test for TBEγ distributions for
any fixed power parameter γ ∈ R�[0, 1). The test is based on a cumulant-based relation-
ship existing among all members of TBEγ models, for γ ∈ R�[0, 1). These cumulant-based
relationships were obtained by [11,12] as a characterization of any member of the TBEγ class
with γ ∈ R�[0, 1). To the best of our knowledge, this is the first attempt to utilize these
characterization properties for developing gof tests that hold for all members of TBEγ with
γ ∈ R�[0, 1). Admittedly, a large number of tests have been proposed for TBE0 (normal),
TBE1 (Poisson), TBE2 (gamma) and TBE3 (inverse Gaussian). On the other hand, we do not
know of any test for TBEγ, where γ < 0 and γ > 2 (except for γ = 3). The latter TBEγ are
generated by either extreme stable distributions (γ < 0) and are supported on R or positive
stable distributions (γ > 2) and are supported on R+. In both cases, the respective densities
are unimodal, leptokurtic and absolutely continuous with respect to the Lebesgue measure.
Therefore, they are suitable candidates for modeling continuous data. Unlike the normal,
gamma and inverse Gaussian NEFs, however, these stable densities cannot be expressed
in terms of elementary functions but rather in terms of series expansion. For instance,
for any fixed γ > 2, the corresponding density of the corresponding TBEγ model is given
by (see [3])

dFθ(x) =
{
− 1

π ∑∞
k=0

(−1)k

k! sin(πρk) (1−ρ)k(1−ρ)Γ(ρk+1)
ρkak(1−ρ)xρk+1

}

× exp
{

θx + 1−ρ
aρ

[
aθ

ρ−1

]ρ}
dx, x > 0, θ < 0, 0 < ρ

.
= 2−γ

1−γ < 1.

(2)

For some rational values of ρ ∈ (0, 1) (or γ ∈ (2, ∞)) the corresponding densities in (2) can
be expressed in terms of transcendental functions, e.g., the modified Bessel distribution
(ρ = 1/3 or γ = 2.5) and the Whittaker-type distribution (ρ = 2/3 or γ = 4). Series
expansions similar to (2) are also available for stable densities of TBEγ with ρ ∈ (1, 2) (or
γ ∈ (−∞, 0)), which are supported on R. The complexity of the series expansion form of
the TBEγ models generated by stable densities could be the reason why these have not
been used for any statistical modeling purposes. Fortunately, nowadays, the availability of
powerful software allows the cumbersome calculations of various functionals related to
these densities to be conducted. Indeed, our proposed gof test for TBE models might be an
important step for employing them in the statistical modeling and analysis of continuous
sets of data.
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The paper is organized as follows: Section 2 presents the cumulant-based relationships
existing among TBEγ models, for γ ∈ R�[0, 1), and also some basic tools needed for
constructing the proposed gof test. It should be noted that for any fixed permissible
power parameter γ, the cumulant relation that we use for constructing our proposed
gof tests characterizes the corresponding TBEγ model. Section 3 introduces the proposed
gof test. In particular, it presents the test statistic, its asymptotic null distribution and a
bootstrap approximation. As the goal of the paper is mainly theoretical, i.e., introducing
gof tests for all TBEγ models with γ ∈ R�[0, 1), we exemplify its applicability to only two
models of the TBE class. These two models are the gamma and modified Bessel NEFs.
Specifically, Section 4.1 exemplifies its applicability to the gamma NEF with respect to
various alternatives and existing tests. The performance of the gof test is investigated with
a simulation study. In particular, its performance in terms of controlling the type I error rate
is examined, while its power performance is also evaluated. In Section 4.2, we demonstrate
its applicability to the modified Bessel NEF, and we investigate the nominal level attainment
and compute the respective p-values for two real data sets. Obviously, similar applications
can be executed for all other TBEγ models with γ > 2 or γ < 0. Concluding remarks and
some open problems are introduced in Section 5. All proofs of statements (theorems and
corollaries) in this paper are relegated to Appendix A.

In the sequel, we use the following notation: Let X = (X1, ..., Xn) be a random
sample of size n taken from a population with distribution F, where X1,...,Xn are i.i.d.;
let X̄n be the sample mean and Lj = ∑n

i=1 X j
i , j ∈ N. We also denote, with ki, the i−th

cumulant, i = 1, 2, ..., associated with F. Let us recall that cumulant ki can be obtained by
differentiating the cumulant-generating function K(t) = log E(etX) i times and evaluating
the result at zero.

2. TBE Cumulant Relationships among TBEγ Models and Some Testing Tools

A common approach to constructing gof tests is to utilize a characterization of the
members of the family of distributions being considered. In this frame, the members of the
TBEγ models satisfy the following propositions, some of which characterize these models
(see [11,12]). The proof of Proposition 1 can be found in [11] for γ ≥ 1 and in Section 3
of [12] for γ < 0. The proof of Proposition 2 can be conducted by utilizing tools available
in [11–13]. We omit the proof of Proposition 2, as it is long and entirely not essential for the
development of the results of this paper.

Proposition 1. If X ∼ TBEγ, with γ ∈ R�[0, 1), then

Sr(γ)
.
= kr+2kr − βr(γ)k2

r+1 = 0, r ∈ N, (3)

where k j is the j-th cumulant of the corresponding TBEγ and

βr(γ) =
rγ− (r− 1)

(r− 1)γ− (r− 2)
. (4)

Proposition 2. Let us assume that X is an r.v. of a distribution in the NEF class of distributions.
Then, for any γ ∈ R�[0, 1), property (3) in Proposition 1 holds if and only if X ∼ TBEγ.

Remark 1. Note that γ = 0, representing the normal distribution, is excluded from the statement
of Proposition 1 as it does not satisfy relation (3). Other cumulant-based relations hold for the
normal NEF as kpkq = 0, where q, p ∈ N; q ≤ p; and p ≥ 3. Accordingly, our gof test does not
hold for the normal NEF.
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Proposition 1 implies that if relation (3) does not hold for γ = γ0, then the sample is
not taken from TBEγ0 . For instance, for the gamma distribution with shape parameter α
and rate parameter β, the first three cumulants are given by

k1 = α/β, k2 = α/β2, k3 = 2α/β3,

which results in

S1(γ) = k3k1 − γk2
2 = (2− γ)

α2

β4 . (5)

Thus, S1(γ) is equal to 0 if and only if γ = 2. Moreover, for the inverse Gaussian distribution
with mean µ and shape parameter λ, one has

k1 = µ, k2 = µ3/λ, k3 = 3µ5/λ2,

and thus

S1(γ) = k3k1 − γk2
2 =

(3− γ)µ6

λ2 . (6)

Thus, S1(γ) = 0 if and only if γ = 3. Finally, for the Poisson distribution with parameter λ,
since k1 = k2 = k3 = λ, we have

S1(γ) = k3k1 − γk2
2 = (1− γ)λ2. (7)

Thus, S1(γ) = 0 if and only if γ = 1.
The reverse statement is obviously incorrect if F is not an NEF, i.e., there exist distri-

butions F not in the NEF class for which S1(γ) = 0. For instance, let us consider F to be a
lognormal distribution LN(µ, σ) with p.d.f. of the form

f (x; µ, σ) = exp
(
−(ln(x)− µ)2/(2σ2)

)
/(σx

√
2π), σ > 0, x > 0.

Then (see [14]),

k1 = exp(µ) exp(σ2/2), k2 = exp(2µ) exp(σ2)
(

exp(σ2)− 1
)

and
k3 = exp(3µ) exp(3σ2/2)

(
exp(σ2)− 1

)2(
exp(σ2) + 2

)
,

in which case,

S1(γ) = exp(4µ) exp(2σ2)
(

exp(σ2)− 1
)2(

exp(σ2) + 2− γ
)

. (8)

Therefore, S1(γ) = 0 if γ = eσ2
+ 2. A special case of this situation is when F ∼

LN(µ,
√

ln(2)). Then, S1(4) = 0, while the lognormal family is not an NEF (note that
S1(4) = 0 holds for Whittaker-type NEFs). This example illustrates that if F is not an NEF;
then, the relationship S1(γ) = 0 does not characterize the distribution involved.

As relation (3), r ∈ N, characterizes an NEF within the class of NEFs, a test for a null
hypothesis in which F ∼ TBEγ against a general alternative can be based on any estimator
of Sr(γ), r ∈ N. Nonetheless, as an unbiased estimator of Sr(γ), r > 1, has a cumbersome
form, we shall restrict our study to the case r = 1. For ease of notation, we shall henceforth
denote S1(γ) with S(γ) and its unbiased estimator with Ŝ(γ) .

Indeed, an unbiased estimator Ŝ(γ) of S(γ) = k3k1−γk2
2 has the following polynomial

structure (see [11]):
Ŝ(γ) = T̂1,3 − γT̂2,2, γ ∈ R�[0, 1), (9)
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where
T̂1,3 =

1
n(2)

∑
j 6=k

X3
j Xk −

3
n(3)

∑
j 6=k 6=l

X2
j XkXl +

2
n(4)

∑
j 6=k 6=l 6=m

XjXkXlXm (10)

and
T̂2,2 =

1
n(2)

∑
j 6=k

X2
j X2

k −
2

n(3)
∑

j 6=k 6=l
X2

j XkXl +
1

n(4)
∑

j 6=k 6=l 6=m
XjXkXlXm, (11)

with
n(k) = n(n− 1) · · · (n− (k− 1)), k = 1, 2, ...

Note that the summations in (10) and (11) are taken over all distinct indices j, k, l, m ∈
{1, ..., n}. Here, ∑j 6=k, ∑j 6=k 6=l and ∑j 6=k 6=l 6=m stand for double, triple and fourth summations,
respectively.

An alternative form of (9) in terms of Lj, j ∈ N, is the following [11]:

Ŝ(γ) =
1

n(4)

{
(n2 + n + 4)L3L1 − (n2 + n)L4 − 3(n + 1)L2L2

1

+ 3(n− 1)L2
2 + 2L4

1

− γ
[
(n2 − 3n + 3)L2

2 − (n2 − n)L4 − 2nL2L2
1 + 4(n− 1)L3L1 + L4

1

]
}

Based on the above, the following theorem, which follows from [9] and [4], provides an
unbiased estimator of S(γ) as well as a characterization for TBEγ models with γ ∈ R/[0, 1).

Theorem 1. Let us assume that a distribution F possesses a finite third moment and let (X1, ..., Xn)
be a random sample of size n ≥ 4 taken from F. Then, for any fixed γ ∈ R/[0, 1), the following two
properties hold:

(i) The polynomial statistic Ŝ(γ) given in (9) is an unbiased estimator of S(γ).
(ii) Ŝ(γ) has zero regression on L1 iff F is a TBEγ model.

Remark 2. Part (ii) of Theorem 4 provides equivalent conditions under which a general family
of distributions F is a TBE model. If, however, one confines F to be an NEF, then for any fixed
γ ∈ R/[0, 1), F is a TBEγ iff S(γ) = 0 (this can be proved by using the tools in [11–13]).

In the next section, we utilize the properties of Ŝ(γ) for constructing a gof test for
TBE models.

3. The Proposed Gof Test: Test Statistic, Asymptotic Null Distribution and
Bootstrap Approximation

In this section, we propose and study a novel gof test for TBEγ distributions for any
fixed γ ∈ R�[0, 1).

In this frame, let X1,...,Xn be a sample of size n, n ≥ 4 from a distribution with c.d.f.
F with finite third moment and positive mean (first cumulant). We propose a general
method for testing the null hypothesis that the sample is stemming from a TBEγ, with fixed
γ = γ0 ∈ R�[0, 1), versus the alternative that the sample is not taken from a TBEγ0 , i.e.,

H0 : F = TBEγ0 (12)

versus the alternative
H1 : F 6= TBEγ0 . (13)

Clearly, various gof tests for γ0 = 1, 2, 3 (i.e., Poisson, gamma and inverse Gaussian,
respectively) are available in the literature, whereas none exist for any TBEγ with γ ∈
R�([0, 1) ∪ {1, 2, 3}).

As [15] pointed out, characterization theorems or properties can be natural and effec-
tive starting points for constructing gof tests and are essential for assessing the validity
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of distributional models. It seems that the first idea of constructing gof tests based on a
characterization of a distribution in the realm of the null hypotheses is due to [16] (see [17]).
However, the earliest explicit use of a characterization theorem for constructing a gof test
was presented by [18], who used Shannon’s maximum entropy characterization to construct
a test for a composite hypothesis of normality. Now, there are extensive literature studies
dealing with gof tests based on various types of characterizations. We will mention only a
few relevant papers; for example, see [15,19–25] and the references therein.

3.1. Test Statistic

Here, we utilize relation (3) and the characterization properties given in Theorem 1 to
construct a gof test. The test deals with a composite TBEγ0 hypothesis. More specifically,
if X ∼ TBEγ0 , then for testing (12) versus (13), we expect that the values of Ŝ(γ0) of S(γ0)
should be close to 0. Accordingly, one should reject (12) for large absolute values of Ŝ(γ0)
or for large values of

Sn(γ0)
.
= Ŝ2(γ0). (14)

The justification of such a criterion is demonstrated in the next subsection.

3.2. Asymptotic Behavior of the Test Statistic

Here, we investigate the asymptotic behavior of test statistic Sn(γ0), as n→ ∞.

Theorem 2. Let X be a random variable with finite third moment and positive first cumulant
and X1, · · · , Xn be n independent copies of X. Then,

Sn(γ0)
a.s.−→ S2(γ0) (15)

where a.s.−→ denotes the almost sure convergence.

Note that Sn(γ0) ≥ 0, so under the null hypothesis, we have the following:

Corollary 1. Let X1, · · · , Xn be i.i.d. r.v.s taken from TBEγ0 , then

Sn(γ0)
a.s.−→ 0. (16)

Hence, the null hypothesis that F is TBEγ0 should be rejected for large values of Sn(γ0).
As the exact distribution of Sn(γ0) is rather intricate, we derive its asymptotic distribution.
The next theorem determines the asymptotic null distribution of nSn(γ0).

Theorem 3. Suppose that F has finite sixth moments. Then, under the null hypothesis (12),

n Sn(γ0)
d−→ Mχ2

1, (17)

where d−→ denotes a convergence in distribution, χ2
1 denotes a chi-squared distribution with one

degree of freedom and

M =µ2
1µ6 + 2(2γ0 − 3)µ3

1µ5 − 4γ0µ1µ2µ5 + (2γ0 − 5)2µ4
1µ4

− 4(γ0 − 1)(2γ0 − 3)µ2
1µ2µ4 + 4γ2

0µ2
2µ4 + 2µ1µ3µ4

+ (1− 4γ0)µ2µ2
3 − 4(4γ2

0 − 10γ0 + 3)µ1µ2
2µ3

+ 32(γ0 − 1)(γ0 − 2)µ3
1µ2µ3 + 2(2γ0 − 5)µ2

1µ2
3

+ 8(2− γ0)(2γ0 − 3)µ5
1µ3 + 12(γ0 − 1)(2γ0 − 3)µ2

1µ3
2

+ (35− 18γ0)(2γ0 − 3)µ4
1µ2

2 − 4γ2
0µ4

2 + 16(2− γ0)
2µ6

1µ2,

(18)

with µi = E(Xi), i = 1, ..., 6.
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The power of the test depends on the value of S(γ0), which in turn depends on the
particular combination of the true F and the value γ0 of the null hypothesis. If the null
hypothesis is true, i.e., if F ∼ TBEγ0 , then S(γ0) = 0. If it is not true and F is still an
NEF distribution, then S(γ0) is strictly positive, implying that the test is consistent (see
Proposition 2). This particularly holds in the special case where F ∼ TBEγ for some γ 6= γ0.
However, if F is not an NEF, then S(γ) may still be zero in some specific combinations of
truth and null hypothesis.

Some examples representing different scenarios are explicitly derived in Section 2
following Propositions 1 and 2. For F corresponding to a Poisson, gamma or inverse
Gaussian distribution (which are all in TBE), it is shown that the only γ whereby S(γ) = 0
is given by γ = 1, γ = 2 or γ = 3, respectively. In the case where F is a lognormal (which
is not in TBE), it is shown that S(eσ2

+ 2) = 0. Hence, in the first three cases, the test
is consistent, but it is not for the lognormal with parameters µ and

√
ln 2, as the latter

would result in a low-power test when testing H0 : γ0 = 4 (the Whittaker-type NEF), since
S(4) = 0.

Remark 3. Theorem 3 presents the general result concerning the asymptotic null distribution
of n Sn(γ0) for testing the goodness-of-fit when the random sample is from a TBEγ0 . Note that
the limiting distribution depends on M, given in (18), where M depends on γ0 and the first six
moments of TBEγ0 . The latter moments depend on ν—the vector of unknown parameters of TBEγ0 .
Hence, we write M = M(ν, γ0). Special cases of M(ν, γ0) can easily be obtained for each of the
specific values of γ0. For example, for γ0 = 2, TBEγ0 is the family of gamma distributions with
shape parameter a and rate parameter b, in which case, ν = (a, b), µi = Γ(i + a)b−iΓ(a)−1; thus,

M(a, b, γ0 = 2) =
2a3(a + 1)(3a + 10)

b8 . (19)

The computation of µ = (µ1, ..., µ6) and thus of M given in (18) can be simply conducted for
any TBEγ model as follows: For simplicity, let us assume γ > 2 (i.e., the corresponding TBE is an
NEF-PVF generated by a positive stable distribution with VF V(µ) = aµγ, a > 0, γ > 2). Thus,
for any fixed γ > 2, such TBEγ depends on ν= (a, µ). Let X ∼ TBEγ; then, the moment-generating
function of X is derived (as shown in [3] (Equation 2.4)) as

G(t) = E(etX) = exp
{

1
a(2− γ)

{
[a(1− γ)(θ − t)]

(2−γ)
(1−γ) − [a(1− γ)θ]

(2−γ)
(1−γ)

}}
,

where a > 0, θ = µ(1−γ)

a(1−γ)
< 0, γ > 2 and µ ≡ µ1. The components µi of µ can now be computed

using µi = diG(t)/dti|t=0
.
= gi(ν), i = 1, ..., 6, where ν = (a, µ) and gi is some R2 → Rmapping.

The use of the asymptotic null distribution given in Theorem 3 for testing purposes
requires a consistent estimator of M (see Remark 3). Such an estimator can be obtained
by estimating µ = (g1(ν), ..., g6(ν)) with the maximum likelihood estimators (MLEs) of ν.
We denote such MLEs with ν̂, µ̂ and M̂ = M(ν̂, γ0). Of course, alternatively, M could be
estimated using its consistent moment estimator. However, based on a small simulation
conducted, we found that this moment estimator is unstable and lacks efficiency, due to the
use of six empirical moments. Therefore, in what follows, we only consider the MLE as an
estimator of M.

Based on observed sample data X1,...,Xn, the previous asymptotic results can be used
to obtain p-values for the proposed test as is outlined by the following procedure:

1. Use relations (14) and (9) to compute test statistic Sn(γ0). Denote its observed value
with Sobs

n (γ0).
2. Under the null hypothesis of TBEγ0 , compute the MLEs ν̂ and M̂ = M(ν̂, γ0) of ν

and M(ν, γ0), respectively.
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3. Approximate the p-value of the test using the relation

p̂ = 1− Fχ2
1

(
nM̂−1Sobs

n (γ0)
)

,

where Fχ2
1

denotes the cumulative distribution function of the chi-squared distribution
with one degree of freedom.

3.3. Bootstrap Approximation

One can also approximate the p-value and the critical points using a parametric bootstrap
approach. More specifically, we shall apply this approach with the following procedure:

1. Follow steps 1 and 2 of the pervious procedure.
2. For some large integer B, repeat the following steps for every b ∈ {1, ..., B}:

(a) Generate a bootstrap sample X∗b1 ,...,X∗bn from X∗ ∼ TBEγ0 with parameter ν̂.
(b) Based on the bootstrap sample, calculate the bootstrap Sn(γ0)

∗b version of test
statistic Sn(γ0).

3. Approximate the p-value with p̂ = 1
B ∑B

b=1 I
{
Sn(γ0)

∗b ≥ Sobs
n (γ0)

}
and the critical

point with Sc:B,n(γ0)
∗, where c = d(1− α)Be and d · e is the ceiling function.

4. Numerical Studies of Gamma and Modified Bessel-Type NEFs

While the goal of the paper is mainly theoretical, i.e., introducing gof tests for TBEγ

models, we illustrate, in this section, its applicability to two models of the TBE class: the
gamma (γ = 2) and modified Bessel-type (γ = 2.5) NEFs. This is dealt with in the next two
subsections. Applications to other TBE members will be discussed in a future study.

4.1. A Simulation Study of the Gamma NEF

Obviously, many various gof tests have been carried out for the well-used gamma
distribution. In this subsection, we assess the performance of our proposed gof test and
compare it with some other existing tests. The comparison is made in terms of type I error
rate and test power. For this, we executed simulations using statistical computing environ-
ment R, while the respective analysis was conducted at a 5% nominal level. Appropriate
alternative distributions and competitive tests are outlined in the sequel.

The density of gamma distribution Gamma(α, β), with shape parameter α > 0 and
rate parameter β > 0, is

f (x; α, β) =
1

Γ(α)
βαxα−1e−βx, x > 0,

with mean µ = α/β and variance σ2 = α/β2.
Based on the previous section, we considered the test statistic obtained with Sn(γ0)

using relations (14) and (9) in the case of γ0 = 2, while M, determined with relation (19),
was unknown and estimated using the MLE.

In order to assess the performance of our proposed gof test in terms of type I error rate,
10, 000 samples, each of size n = 50, 100, were drawn from a Gamma(α, β) distribution.
The chosen parameter values were (α, β) = (2, 3), (2, 2), (2, 1), (0.5, 1), (0.5,2), (2, 5). The
power performance of the test was investigated by generating 10, 000 samples, each of size
n = 50, 100, from the following alternatives:

• The inverse Gaussian distribution, denoted with IG(µ, λ), with density

f (x; µ, λ) =

(
λ

2πx3

) 1
2

exp
(
−λ(x− µ)2

2µ2x

)
, x > 0,

where µ > 0, λ > 0 and µ3/λ are the mean, shape parameter and variance, respectively.
The IG(µ, λ) distribution is extensively used for modeling non-negative, right-skewed
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data in different fields of applied research (see, for instance, Refs [26,27] and references
therein). In this frame, data from IG(1, λ), for λ = 0.5, 1, 2, 4, 8, 10, were considered.

• Lognormal distribution LN(µ, φ) with density

f (x; µ, φ) = exp
(
−(ln(x)− µ)2/(2φ2)

)
/(φx

√
2π), µ ∈ R, φ > 0, x > 0,

Data from LN(µ, φ) with (µ, φ) = (0, 0.5), (0, 0.6), (0, 1), (0, 1.4), (0, 2), (0, 3), (0, 5),
(0.5, 1) were considered, where the last setting corresponds to the lognormal distribu-
tion with mean e and variance e3 − e2.

• Half-Cauchy distribution HC(0, 1) with density

f (x) =
2
π

1
1 + x2 , x > 0.

• Beta distribution Beta(a, b) with density

f (x; a, b) =
xa−1(1− x)b−1

B(a, b)
, 0 < x < 1, a > 0, b > 0,

for parameter values (a, b) ∈ {(2, 0.5), (2, 2)}.
• Pareto distribution Pa(a, b) with density

f (x; a, b) = abax−(a+1), b > 0, a > 0, x > 0,

for parameter values (a, b) ∈ {(1, 1), (2, 1)}.
• Shifted-Pareto distribution SP(ν) with density ν/(1 + x)1+ν.

The competitiveness of our proposed gof test was compared with the following
existing test statistics:

• Test statistic Gn,a, where n is the sample size and a > 0 is a tuning parameter. This
test statistic was recently proposed by [28]. The corresponding test belongs to a class
of weighted L2-type tests of fit to the gamma distribution. They are based on a fixed
point property of a transformation connected to a Steinian characterization of the
family of gamma distributions.

• Test statistics T(1)
n,a and T(2)

n,a , where n is the sample size and a > 0 is a tuning parameter,
proposed by [29]. The corresponding tests belong to a class of gof tests for the gamma
distribution that utilizes the empirical Laplace transform.

• The test statistic proposed by [30], which is based on the ratio of two variance estima-
tors. It is denoted in the sequel with Vn.

By taking into account the recommendations given by [28,29], we chose Gn,a=0.5, T(1)
n,1

and T(2)
n,4 as representatives for the simulation study, where the test proposed by [30] was im-

plemented using the function gamma_test in the R package goft. Finally, each of the tests un-
der discussion was implemented using parametric bootstrap with B = 1000 bootstrap samples.

The results are listed in Tables 1 and 2, where the best performing tests with respect
to the power—for each distribution and sample size—are highlighted in bold face for
easy reference. Graphical representations of these results are provided in Figures 1 and 2.
In these tables and graphs, we use the abbreviations Asym and Btstr for asymptotic and
bootstrap, respectively.
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Table 1. Percentage of 10,000 Monte Carlo samples declared to be significant by various tests for the
gamma distribution (n = 50, α = 0.05). MLE ν̂ was used.

Alternative Asym Btstr Gn,0.5 T(1)
n,1 T(2)

n,4 Goft

Gamma(2, 3) 3.15 4.00 5.12 5.28 4.84 1.56
Gamma(2, 2) 3.28 4.28 5.34 5.33 5.24 1.46
Gamma(2, 1) 3.23 4.17 5.12 5.31 5.31 1.80

Gamma(0.5, 1) 1.78 2.90 4.56 5.37 4.69 1.27
Gamma(0.5, 2) 1.57 2.82 4.21 5.05 4.56 1.12
Gamma(2, 5) 3.16 4.04 5.64 5.52 5.56 1.62
Gamma(1, 1) 2.57 3.59 5.00 5.50 5.31 1.32

IG(1, 0.5) 30.80 35.29 83.47 88.62 84.22 49.31
IG(1, 1) 27.18 30.89 64.42 66.77 64.51 34.00
IG(1, 2) 23.40 26.31 41.09 42.08 32.27 22.32
IG(1, 4) 19.15 20.69 20.85 22.40 6.68 13.19
IG(1, 8) 15.05 15.73 7.76 12.75 0.04 8.07
IG(1, 10) 13.87 14.21 5.05 10.54 0.01 6.76

LN(0, 0.5) 22.45 24.10 21.82 24.18 8.14 16.03
LN(0, 0.6) 25.48 27.98 31.16 32.31 19.24 21.47
LN(0, 1) 33.39 37.68 61.40 64.00 62.02 40.58

LN(0, 1.4) 35.75 40.74 76.55 82.31 78.36 53.79
LN(0, 2) 37.94 43.83 72.60 92.81 88.46 63.86
LN(0, 3) 77.09 80.80 1.24 95.38 91.10 66.60
LN(0, 5) 93.02 94.62 0.00 94.43 89.16 56.50

LN(0.5, 1) 33.51 37.93 61.50 63.96 62.18 40.60
Beta(2, 0.5) 78.96 81.64 99.63 99.82 48.00 99.72
Beta(2, 2) 0.00 0.01 64.88 64.49 45.64 44.75
Pa(1, 1) 81.80 84.91 96.43 99.98 70.99 98.43
Pa(1, 2) 95.97 96.44 99.94 99.89 6.60 98.17
HC(0, 1) 57.89 63.01 83.22 90.19 87.04 79.14

SP(1) 51.95 57.19 77.58 92.49 91.34 76.93
SP(2) 33.99 38.51 58.67 59.07 59.05 44.37

For all alternatives (i.e., except the gamma), the best performing result in each row is given in bold face.

Table 2. Percentage of 10,000 Monte Carlo samples declared to be significant by various tests for the
gamma distribution (n = 100, α = 0.05). MLE ν̂ was used.

Alternative Asym Btstr Gn,0.5 T(1)
n,1 T(2)

n,4 Goft

Gamma(2, 3) 3.54 4.31 5.14 5.03 4.94 2.06
Gamma(2, 2) 3.73 4.62 4.96 5.11 5.47 2.04
Gamma(2, 1) 4.17 5.18 5.21 5.16 5.11 2.33

Gamma(0.5, 1) 2.25 3.69 4.84 5.38 5.24 1.97
Gamma(0.5, 2) 2.62 4.15 4.52 5.04 4.68 2.07
Gamma(2, 5) 4.05 4.74 5.53 5.50 5.53 2.31
Gamma(1, 1) 3.07 4.18 4.78 5.34 5.48 2.01

IG(1, 0.5) 47.21 52.27 99.01 99.67 92.70 84.76
IG(1, 1) 41.67 46.02 92.50 94.77 84.11 67.27
IG(1, 2) 37.00 40.15 71.20 74.37 50.81 47.06
IG(1, 4) 30.66 32.73 41.35 45.33 5.08 29.07
IG(1, 8) 23.39 24.15 17.39 23.86 0.01 16.69

IG(1, 10) 21.10 21.68 12.27 19.75 0.00 13.89
LN(0, 0.5) 35.94 38.17 40.71 45.37 6.72 33.24
LN(0, 0.6) 42.02 44.92 55.53 59.12 27.88 44.23
LN(0, 1) 54.04 57.73 89.24 91.49 77.23 73.54

LN(0, 1.4) 57.54 62.26 97.10 98.49 87.61 86.47
LN(0, 2) 58.01 64.14 77.64 99.77 91.71 93.12
LN(0, 3) 92.18 93.59 0.05 99.97 99.51 95.82
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Table 2. Cont.

Alternative Asym Btstr Gn,0.5 T(1)
n,1 T(2)

n,4 Goft

LN(0, 5) 98.36 98.77 0.00 99.96 99.61 93.74
LN(0.5, 1) 54.00 58.51 89.12 91.41 77.58 73.87
Beta(2, 0.5) 99.03 99.25 100.00 100.00 54.70 100.00
Beta(2, 2) 0.63 5.42 92.12 92.43 78.20 90.08
Pa(1, 1) 95.05 95.93 94.74 100.00 44.17 100.00
Pa(1, 2) 99.91 99.92 100.00 100.00 0.49 100.00
HC(0, 1) 81.95 84.71 88.58 99.31 71.40 98.00

SP(1) 75.69 79.69 78.12 99.77 80.91 97.55
SP(2) 57.81 62.56 85.02 84.67 72.94 76.30

For all alternatives (i.e., except the gamma), the best performing result in each row is given in bold face.

Figure 1. Power curves of the test statistic for 21 alternative distributions, where the null distribution
is gamma. The variance M was estimated using the MLE. This figure corresponds to Table 1 in the
main text (n = 50; α = 0.05).
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Figure 2. Power curves of the test statistic for 21 alternative distributions, where the null distribution
is gamma. The variance M was estimated using the MLE. This figure corresponds to Table 2 in the
main text (n = 100; α = 0.05).

According to the results, we conclude the following:

• The empirical size of the test proposed in this paper got closer to the nominal level of
0.05 as the sample size increased.

• The empirical power of the tests increased, as expected, as the sample size increased.
• No test yielded the highest power against all alternatives analyzed, i.e., no test showed

uniform superiority over the others, as indeed was expected according to the theoreti-
cal results in [31].

• For the IG(1, λ) model, the larger λ was, the better the performance of our gof test was
with respect to the other tests considered in the simulation study. However, for the
remaining alternative distributions, tests Gn,0.5 and T(1)

n,1 performed better than the
proposed test.

4.2. Numerical Examples for the Modified Bessel-Type NEF

In this subsection, we consider some numerical studies in which we applied the gof
test to the modified Bessel NEF. These include a simulation study to assess nominal level
attainment as well as the analysis of two real data sets. We re-emphasize the point that to
the best of our knowledge, it is the first time that a gof test is proposed for such an NEF.

The modified Bessel densities can be either expressed with the modified Bessel function
of the second kind of order 1/3 or with the series expansion given in (2).
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Its density series expansion is given by

f (x; a, θ) = − exp

{
θx +

2
a

[
−3

2
aθ

]1/3
}

× 1
π

∞

∑
k=0

(−1)k

k!
sin
(

πk
3

)
3

k
3

(
2
a

) 2k
3 1

xk/3+1 Γ
(

k
3
+ 1
)

,

x > 0, θ < 0, a > 0,

where its log-likelihood based on a random sample (x1, ..., xn) of size n has the form

L(a, θ) = θ
n

∑
i=1

xi + n
2
a

[
−3

2
aθ

]1/3

+
n

∑
i=1

log

{
− 1

π

∞

∑
k=0

(−1)k

k!
sin
(

πk
3

)
3

k
3

(
2
a

) 2k
3 1

xk/3+1
i

Γ
(

k
3
+ 1
)}

.

The maximum likelihood estimators of parameters θ and a are obtained as the solution
of a system of two equations based on the partial derivatives of the log-likelihood function,

∂L(a, θ)

∂θ
= 0 and

∂L(a, θ)

∂θ
= 0,

where

∂L(a, θ)

∂θ
=

n

∑
i=1

xi − n
[
−3

2
aθ

]− 2
3
,

∂L(a, θ)

∂a
=− 2n

a2

[
−3

2
aθ

] 1
3
− nθ

a

[
−3

2
aθ

]− 2
3

−
n

∑
i=1

∑∞
k=0

(−1)k

k! sin
(

πk
3

)
3

k
3 2

2k
3 2k

3

(
1
a

) 2k
3 +1 1

xk/3+1 Γ
(

k
3 + 1

)
∑∞

k=0
(−1)k

k! sin
(

πk
3

)
3

k
3
( 2

a
) 2k

3 1
xk/3+1 Γ

(
k
3 + 1

) .

For references on this density, see p. 155 in [32] and [33]. Surprisingly enough, this density
has various applications in diffusion and queuing theories (c.f., [34]).

We begin with a small-scale simulation study to assess type 1 error attainment (for
nominal level α = 0.05) under the modified Bessel distribution. We considered six different
choices of Bessel(µ, φ), where µ is the mean and φ is the dispersion. In the bootstrap setting,
B = 1000 Monte Carlo samples were generated. The results are provided in Table 3. We
observed that the nominal level attainment improved as n increased and was better for the
bootstrap version than for the asymptotic version. We leave a detailed assessment of the
test power to further research and turn instead to real data examples.

Table 3. Percentage of 10,000 Monte Carlo samples declared to be significant by various tests for the
modified Bessel distribution Bessel(µ, φ). MLE ν̂ was used, and α = 0.05.

Alternative
Asym Btstr

n = 20 n = 50 n = 20 n = 50

Bessel(1, 1) 1.15 2.70 2.10 3.70
Bessel(2, 1) 0.61 1.71 1.10 2.70

Bessel(0.5, 1) 1.63 2.64 2.50 3.20
Bessel(1, 2) 0.35 3.26 0.40 3.70

Bessel(0.5, 2) 0.66 2.09 1.20 3.10
Bessel(1, 0.5) 2.30 3.28 3.60 4.10



Mathematics 2023, 11, 1603 14 of 20

The first considered data set represents the marks of slow-pace students in mathemat-
ics in the final 2003 examination at IIT Kanpur [35]. The second data set, used by [36], is the
vinyl chloride data obtained from clean-up gradient-monitoring wells in mg/L. The data
sets, which were recently analyzed by [37], are displayed in Table 4. Some basic summary
statistics are provided in Table 5, indicating considerable skewness to the right.

Table 4. IIT Kanpur and vinyl chloride data sets investigated in Section 4.2.

IIT Kanpur Data Vinyl Chloride Data

29 25 50 15 13 5.1 1.2 1.3 0.6 0.5
27 15 18 7 7 2.4 0.5 1.1 8 0.8
8 19 12 18 5 0.4 0.6 0.9 0.4 2

21 15 86 21 15 0.5 5.3 3.2 2.7 2.9
14 39 15 14 70 2.5 2.3 1 0.2 0.1
44 6 23 58 19 0.1 1.8 0.9 2 4
50 23 11 6 34 6.8 1.2 0.4 0.2
18 28 34 12 37
4 60 20 23 40

65 19 31

Table 5. Summary statistics for IIT Kanpur and vinyl chloride data sets.

IIT Kanpur Data Vinyl Chloride Data

Sample size 48 34
Mean 25.90 1.88

Median 19.5 1.15
Standard deviation 18.60 1.95
Inter-quartile range 20 1.98

The p-values for the test statistic in the special case of γ0 = 2.5 for these two data sets
are given in Table 6. These p-values indicate that for these data sets, the null hypothesis of
the modified Bessel distribution should not be rejected.

Table 6. Results of p-values for the test statistic in the special case of γ0 = 2.5 for the two data sets.

IIT Kanpur Data Vinyl Chloride Data

Asym 0.767 0.849
Btstr 0.493 0.431

5. Conclusions

In this manuscript, we were interested in testing the hypothesis that a given dis-
tribution corresponds to a specific TBEγ model, for fixed γ ∈ R�[0, 1) and unspecified
population parameters. Goodness-of-fit tests are typically based on characterization prop-
erties. In our developments, the property Sr(γ) = 0, as displayed in Propositions 1 and 2,
is based on existing relations among the first three cumulants (when using r = 1) of the
null distribution. We demonstrate how S(γ) ≡ S1(γ) can be estimated and that its squared
value produces a statistic that asymptotically approximates 0 under the null hypothesis
and whose null distribution is a (scaled) chi-squared distribution with one degree of free-
dom. The scaling factor depends on distributional moments of the true distribution and
needs to be estimated using the data at hand, for instance, with maximum likelihood. While
the asymptotic chi-squared property allows the computation of theoretical critical values
for the test problem of interest to be performed, we also developed a bootstrap version of
the test and demonstrated in our simulation study that this leads to better power and nom-
inal level attainment than those obtained with its theoretical counterpart. Under all of the
scenarios, the nominal level attainments and powers increased as the sample size increased.
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When the null distribution was gamma, we found that the empirical size of the test
proposed in this paper got closer to the nominal level of 0.05 as the sample size increased,
while the empirical power of the test increased, as expected, as the sample size increased.
Compared with existing gof tests, it is concluded that for the IG(1, λ) alternative, the test
proposed in this paper performs better as the value of λ gets larger. However, for the
remaining alternative distributions considered, the existing tests perform better than the
test proposed here. Finally, a detailed simulation study for the special case of modified
Bessel and Whittaker distribution, i.e., when γ0 = 2.5, 4, is a problem to be investigated in
further research.

It is entirely not our claim that our proposed gof test performs uniformly better than
any other test—an impossible mission that cannot be claimed or accomplished by any other
test. Our gof test, however, is applicable to any member of the huge and uncountable
class of the TBEγ models—the vast majority of which have not even been considered in the
literature for any statistical modeling. The gamma distribution example considered in this
paper is only presented to demonstrate the wide applicability of our proposed gof test.

It is our deep belief that TBEγ models will be well utilized in the near future for
various statistical modeling purposes. Our proposed gof test establishes at least one step in
this direction.
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Appendix A. Proofs

Proof of Theorem 2. By (9)–(11), we have that

Ŝ(γ0) =
1

n(2)
∑
j 6=k

X3
j Xk −

γ0

n(2)
∑
j 6=k

X2
j X2

k

+
2γ0 − 3

n(3)
∑

j 6=k 6=l
X2

j XkXl +
2− γ0

n(4)
∑

j 6=k 6=l 6=m
XjXkXlXm.



Mathematics 2023, 11, 1603 16 of 20

Let

h1(X1, X2, X3, X4) =X3
1X2 + X3

1X3 + X3
1X4 + X3

2X1 + X3
2X3 + X3

2X4

+ X3
3X1 + X3

3X2 + X3
3X4 + X3

4X1 + X3
4X2 + X3

4X3,

h2(X1, X2, X3, X4) =X2
1X2

2 + X2
1X2

3 + X2
1X2

4 + X2
2X2

3 + X2
2X2

4 + X2
3X2

4 ,

h3(X1, X2, X3, X4) =X2
1X2X3 + X2

1X2X4 + X2
1X3X4 + X2

2X1X3

+ X2
2X1X4 + X2

2X3X4 + X2
3X1X2 + X2

3X1X4

+ X2
3X2X4 + X2

4X1X2 + X2
4X1X3 + X2

4X2X3,

h4(X1, X2, X3, X4) =X1X2X3X4.

Then, Ŝ(γ0) can be rewritten as

Ŝ(γ0) =
1

n(2)
∑

I

2h1(Xi1 , Xi2 , Xi3 , Xi4)

(n− 2)(2)
− γ0

n(2)
∑

I

4h2(Xi1 , Xi2 , Xi3 , Xi4)

(n− 2)(2)

+
2γ0 − 3

n(3)
∑

I

2h3(Xi1 , Xi2 , Xi3 , Xi4)

n− 3
+

2− γ0

n(4)
∑

I
24h4(Xi1 , Xi2 , Xi3 , Xi4)

=
24

n(4)
∑

I

(
h1(Xi1 , Xi2 , Xi3 , Xi4)

12
−

γ0h2(Xi1 , Xi2 , Xi3 , Xi4)

6

)
+

24
n(4)

∑
I

(
(2γ0 − 3)h3(Xi1 , Xi2 , Xi3 , Xi4)

12
+ (2− γ0)h4(Xi1 , Xi2 , Xi3 , Xi4)

)
≡ 24

n(4)
∑

I
h(Xi1 , Xi2 , Xi3 , Xi4).

where I is the set of all combinations of quadruplets selected from n elements and (i1, i2, i3, i4)
takes all the combinations of I.

Since h1(Xi1 , Xi2 , Xi3 , Xi4), h2(Xi1 , Xi2 , Xi3 , Xi4), h3(Xi1 , Xi2 , Xi3 , Xi4) and h4(Xi1 , Xi2 ,
Xi3 , Xi4) are all symmetric functions of Xi1 , Xi2 , Xi3 and Xi4 , we have that h(Xi1 , Xi2 , Xi3 , Xi4)

is also symmetric. Thus, Ŝ(γ0) = 24
n(4)

∑I h(Xi1 , Xi2 , Xi3 , Xi4) is a U-statistic. By the as-

sumption that variable X has finite third moment, we have E(|X|) ≤ C1, E(|X|2) ≤ C2
and E(|X|3) ≤ C3, where C1, C2 and C3 are all finite constants.

It is straightforward that

E(|h1(X1, X2, X3, X4)|) ≤ 12C1C3 < ∞,

E(|h2(X1, X2, X3, X4)|) ≤ 6C2
2 < ∞,

E(|h3(X1, X2, X3, X4)|) ≤ 12C2
1C2 < ∞,

E(|h4(X1, X2, X3, X4)|) ≤ C4
1 < ∞,

which implies that E(|h(X1, X2, X3, X4)|) < ∞. Let us assume that E(Xi) = µi, i = 1, 2, 3.
We have

E(h(X1, X2, X3, X4)) =
1

12
E(h1(X1, X2, X3, X4)− 2γ0h2(X1, X2, X3, X4))

+
(2γ0 − 3)

12
E(h3(X1, X2, X3, X4))

+ (2− γ0)E(h4(X1, X2, X3, X4))

=
1

12
12µ1µ3 −

γ0

6
6µ2

2 +
2γ0 − 3

12
12µ2

1µ2 + (2− γ0)µ
4
1

=µ1µ3 − γ0µ2
2 + (2γ0 − 3)µ2

1µ2 + (2− γ0)µ
4
1.
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According to the law of large numbers for U-statistics [38], we have

Ŝ(γ0) =
24

n(4)
∑

I
h(Xi1 , Xi2 , Xi3 , Xi4)

a.s.−→ E(h(X1, X2, X3, X4))

= µ1µ3 − γ0µ2
2 + (2γ0 − 3)µ2

1µ2 + (2− γ0)µ
4
1.

By Theorem 1, we have E(Ŝ(γ0)) = S(γ0), which, together with E(Ŝ(γ0)) = µ1µ3 −
γ0µ2

2 + (2γ0 − 3)µ2
1µ2 + (2− γ0)µ

4
1, implies that

Ŝ(γ0)
a.s.−→ S(γ0).

By the continuous mapping theorem, we have

Sn(γ0) = Ŝ2(γ0)
a.s.−→ S2(γ0),

which concludes the proof.

Proof of Corollary 1. Since X1,...,Xn are i.i.d. from a TBEγ0 distribution, we have S(γ0) = 0.
Therefore, the result is directly derived from Theorem 2.

Before we proceed to the proof of Theorem 3, we state the following lemma.

Lemma A1. Let us assume that F possesses finite sixth moment. Let E(Xi) = µi, i = 1, 2, ..., 6,
with all µi being finite constants. Let us define φ(x1) = E(h(X1, X2, X3, X4)|X1 = x1) and
η1 = Var(φ(X1)). Then, under the null hypothesis,

η1 =
M
16

where M is as in Theorem 3.

Proof. Firstly, we find that

φ(x1) =E(h(X1, X2, X3, X4)|X1 = x1)

=E(
1

12
h1(X1, X2, X3, X4)−

γ0

6
h2(X1, X2, X3, X4)|X1 = x1)

+ E(
2γ0 − 3

12
h3(X1, X2, X3, X4) + (2− γ0)h4(X1, X2, X3, X4)|X1 = x1)

=
1
12

(3x3
1µ1 + 3x1µ3 + 6µ1µ3)−

γ0

6
(3x2

1µ2 + 3µ2
2)

+
2γ0 − 3

12
(3x2

1µ2
1 + 6x1µ1µ2 + 3µ2

1µ2) + (2− γ0)x1µ3
1

=
1
4

µ1x3
1 + (

2γ0 − 3
4

µ2
1 −

γ0

2
µ2)x2

1 + (
1
4

µ3 +
2γ0 − 3

2
µ1µ2 + (2− γ0)µ

3
1)x1

+
1
2

µ1µ3 −
γ0

2
µ2

2 +
2γ0 − 3

4
µ2

1µ2

=
µ1

4
x3

1 +
(2γ0 − 3)µ2

1 − 2γ0µ2

4
x2

1 +
µ3 + 2(2γ0 − 3)µ2µ1 + 4(2− γ0)µ

3
1

4
x1

+
1
2

µ1µ3 −
γ0

2
µ2

2 +
2γ0 − 3

4
µ2

1µ2,

that is,

E
{

µ1X3
1 + [(2γ0 − 3)µ2

1 − 2γ0µ2]X2
1 + [µ3 + 2(2γ0 − 3)µ2µ1 + 4(2− γ0)µ

3
1]X1

}
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equals
2γ0µ2

2 − 2µ1µ3 − (2γ0 − 3)µ2
1µ2. (A1)

Therefore, we have

η1 = Var

[
µ1

4
X3

1 +
(2γ0 − 3)µ2

1 − 2γ0µ2

4
X2

1 +
µ3 + 2(2γ0 − 3)µ2µ1 + 4(2− γ0)µ

3
1

4
X1

]

=
1

16
Var

{
µ1X3

1 +
[
(2γ0 − 3)µ2

1 − 2γ0µ2

]
X2

1 +
[
µ3 + 2(2γ0 − 3)µ2µ1 + 4(2− γ0)µ

3
1

]
X1

}
=

1
16

E
{

µ1X3
1 + [(2γ0 − 3)µ2

1 − 2γ0µ2]X2
1 + [µ3 + 2(2γ0 − 3)µ2µ1 + 4(2− γ0)µ

3
1]X1

}2

− 1
16

[
E
{

µ1X3
1 + [(2γ0 − 3)µ2

1 − 2γ0µ2]X2
1 + [µ3 + 2(2γ0 − 3)µ2µ1 + 4(2− γ0)µ

3
1]X1

}]2

or equivalently, using relation (A1),

η1 =
1

16

{
µ2

1µ6 + [(2γ0 − 3)µ2
1 − 2γ0µ2]

2µ4 + [µ3 + 2(2γ0 − 3)µ2µ1 + 4(2− γ0)µ
3
1]

2µ2

}
+

1
16

{
2µ1[(2γ0 − 3)µ2

1 − 2γ0µ2]µ5 + 2µ1[µ3 + 2(2γ0 − 3)µ2µ1 + 4(2− γ0)µ
3
1]µ4

}
+

1
16

{
2[(2γ0 − 3)µ2

1 − 2γ0µ2][µ3 + 2(2γ0 − 3)µ2µ1 + 4(2− γ0)µ
3
1]µ3

}
− 1

16

{
2γ0µ2

2 − 2µ1µ3 − (2γ0 − 3)µ2
1µ2

}2
.

Thus,

η1 =
1

16
[µ2

1µ6 + 2(2γ0 − 3)µ3
1µ5 − 4γ0µ1µ2µ5]

+
1

16
[(2γ0 − 5)2µ4

1µ4 − 4(γ0 − 1)(2γ0 − 3)µ2
1µ2µ4 + 4γ2

0µ2
2µ4 + 2µ1µ3µ4]

+
1

16
[(1− 4γ0)µ2µ2

3 − 4(4γ2
0 − 10γ0 + 3)µ1µ2

2µ3 + 32(γ0 − 1)(γ0 − 2)µ3
1µ2µ3]

+
1

16
[2(2γ0 − 5)µ2

1µ2
3 + 8(2− γ0)(2γ0 − 3)µ5

1µ3 + 12(γ0 − 1)(2γ0 − 3)µ2
1µ3

2]

+
1

16
[(35− 18γ0)(2γ0 − 3)µ4

1µ2
2 − 4γ2

0µ4
2 + 16(2− γ0)

2µ6
1µ2]

=
1

16
M. (A2)

Proof of Theorem 3. From the proof of Theorem 2, we obtain that

Ŝ(γ0) =
24

n(4)
∑

I
h(Xi1 , Xi2 , Xi3 , Xi4)

is a U-statistic, where

h(X1, X2, X3, X4) =
1

12
h1(X1, X2, X3, X4)−

γ0

6
h2(X1, X2, X3, X4)

+
2γ0 − 3

12
h3(X1, X2, X3, X4) + (2− γ0)h4(X1, X2, X3, X4).

Under the null hypothesis, it is straightforward that E(h(X1, X2, X3, X4)) = S(γ0) = 0.
By the fact that E(h2) = E( 1

12 h1 − γ0
6 h2 +

2γ0−3
12 h3 + (2− γ0)h4)

2, then by taking every
term apart and assuming that F has finite sixth moment, we obtain, after some algebra, that
E(h(X1, X2, X3, X4)

2) < ∞.
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With φ(x1) = E(h(X1, X2, X3, X4)|X1 = x1) and η1 = Var(φ(X1)), Lemma A1 implies
that η1 = 1

16 M, and because X1 is not a constant almost everywhere, η1 > 0. Therefore,
by Theorem 4.2.1 of [38], we have

√
nŜ(γ0)

d−→ N(0, 42η1) = N(0, M),

that is, √
nM−1/2Ŝ(γ0)

d−→ N(0, 1).

Thus, we conclude the result of this Theorem by noting that

nM−1Sn(γ0) = nM−1Ŝ2(γ0)
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