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Abstract: Cost-effectiveness analysis (CEA) is used increasingly in medicine to determine whether
the health benefit of an intervention is worth the economic cost. Discrete event simulation (DES) is
playing an increasing role in CEA thanks to several advantages, such as the possibility of modeling
time and heterogeneous populations. It is usually implemented with general-purpose programming
languages or commercial software packages. To our knowledge, no artificial intelligence technique
has been applied to DES for CEA. Our objective is to develop a graphical representation, an algorithm,
and a software tool that allows non-programmers to easily build models and perform CEA. We
present DESnets (discrete event simulation networks) as a new type of probabilistic graphical model
inspired by probabilistic influence diagrams, an algorithm for evaluating and an implementation as
an OpenMarkov plug-in. DESnets are compared qualitatively and empirically with six alternative
tools using as a running example a model about osteoporosis by the British National Institute for
Health and Care Excellence (NICE). In our experiments, the implementation of DESnets allowed
the building of a typical DES model declaratively. Its evaluation process ranked among the most
efficient. DESnets compare favorably with alternative tools in terms of ease of use, expressive power,
transparency, and computational efficiency.

Keywords: cost-effectiveness analysis; discrete event simulation; probabilistic graphical models;
influence diagrams; decision support

MSC: 62H22; 68T37; 62P10; 62P20

1. Introduction

The goal of cost-effectiveness analysis (CEA) is to determine whether the benefit of an
intervention is worth its economic cost. In medicine, effectiveness is measured in clinical
units, such as life years gained or relapses avoided. Cost–utility analysis is a particular
type of economic evaluation in which effectiveness is measured in quality-adjusted life
years (QALYs) [1]. Given that it is usually unfeasible to compare several interventions in
a randomized controlled trial, due to budgetary and ethical constraints, CEA is almost
always based on models; the choice of a modeling framework depends on the nature
of the problem [2–5]. When time must be explicitly represented, state-transition models
are still the most common technique [3,6,7]. In general, they assume that time is discrete
(i.e., transitions can only occur at the limit of fixed-length intervals) and they assume the
Markov hypothesis, which says that the probability of each future state only depends on
the present state, not on past states. However, in some cases these assumptions are not a
good approximation.

Discrete event simulation (DES) has been applied since the 1950s to numerous fields
of which military, logistics, and supply chain management are but a few examples. In the
last two decades DES has also become increasingly popular in health economics, as it is
more suitable than Markov models when many attributes are necessary to represent the
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patient’s state [6,8–11]. Thus, in a heterogeneous population, the evolution of each patient
may depend on sex, age, various risk factors, and, sometimes, on the number and type of
past events (for example, the accumulation of fractures in osteoporosis). State-transition
models are then inappropriate because the number of states grows exponentially with the
number of features. The problem is even harder when some attributes are measured in
continuous scales, because discretizing a numeric variable into a small number of intervals
reduces the precision of the model, which may lead to inaccurate results. In these cases,
DES is more appropriate, as it naturally deals with numeric variables, and patient-level
simulation can easily reflect each individual’s whole history.

To the best of our knowledge, no artificial intelligence (AI) technique has been used
for this purpose, which may be surprising, given that medicine has always been one of
the main fields of AI application. The reason may be that CEA must be based on decision
theory [12], which requires an explicit representation of probabilities and decision makers’
values, integrated in causal models able to predict and compare the outcomes of differ-
ent interventions. Neither rule-based expert systems, which were the most successful AI
technique in the 1970s and 1980s, nor machine learning, which is the dominant paradigm
nowadays, can reason with causality or with probabilities as human experts do. Only one
AI approach is able to combine causal knowledge, probabilities, and values: probabilistic
graphical models (PGMs) [13,14]. Developed in the 1980s, they encompass other types
of models proposed previously in different fields, such as Markov chains [15], genetic
networks [16], the naïve Bayes model [17], Markov decision processes (MDPs) [18], par-
tially observable MDPs (POMDPs) [19], Markov random fields (sometimes called Markov
networks) [20], and influence diagrams [21]. (These influence diagrams, proposed by
Howard and Matheson, are equivalent to decision trees but more compact, and include
numerical parameters for probabilities and utilities. They should not be confused with the
influence diagrams in the book of Caro et al. [22], which are merely qualitative.) New PGMs
proposed in the field of AI are Bayesian networks [23], dynamic Bayesian networks [24],
and factored MDPs [25,26].

Our research group has developed CEA algorithms for three types of PGMs: influence
diagrams [27], Markov influence diagrams [28], and decision analysis networks [29,30]. In
this paper, we introduce DESnets (discrete event simulation networks) as a new type of
PGM, designed for DES, especially for health decision analysis when it is not necessary to
model interactions between patients or constraints in the access to clinical resources, as is
usually assumed in CEA [8,22,31,32]. They differ from standard PGMs in several ways. One
difference is that the graph of a DESnet can contain self-loops (links from a node to itself)
and directed cycles. The semantics of nodes and links are also new, and the algorithms
for evaluating them are completely different. Their main advantage with respect to other
modeling frameworks is the possibility of building complex DES models declaratively
and performing CEA with a graphical user interface, without requiring programming
skills. For this purpose we have implemented DESnets and an algorithm for evaluating
them in a plug-in for OpenMarkov [33] , an open source tool for PGMs. The rest of the
paper is structured as follows: Section 2 introduces the definition of DESnets and the
algorithm for CEA. Section 3 compares them with other frameworks for CEA with DES,
first qualitatively and then quantitatively by measuring the effectiveness for seven different
implementations of one model: DESnet, R, VBA, Arena, Simul8, TreeAge Pro, and DICE.
Finally, the discussion in Section 4 summarizes the advantages and disadvantages of
DESnets with respect to alternative tools and Section 5 presents the conclusions and some
lines for future work.

2. DESnets: Definition and Algorithm for CEA

In this paper, we use as a running example a model about osteoporosis provided by the
Decision Support Unit (DSU) of the British National Institute for Health and Care Excellence
(NICE). This was published in [8], a document that provides guidance on patient-level
modeling approaches, addressing the use of DES frameworks.
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2.1. Representation of DESnets

A DESnet is a probabilistic graphical model (PGM) consisting of a directed graph
and several quantitative functions, called potentials. For example, the graph in Figure 1
represents that in the DSU model the patient may suffer from one hip fracture, which may
cause death, and up to two vertebral fractures. These fractures result in an immediate cost
and a life-long reduction in quality of life. The patient may also die from other causes.
There is a treatment, with an annual cost, that may delay the occurrence of hip fracture and
the first vertebral fracture.

The following subsections explain in further detail the components of DESnets.

Figure 1. A DESnet for the osteoporosis model. Rectangles (in blue) represent decisions. Rounded
rectangles represent probabilistic nodes, either chance variables (in yellow) or events (in orange;
initial and final events are colored in dark orange). Hexagons represent payoff nodes, either one-off
costs due to events (in dark green) or values that accumulate over time (in light green).

2.1.1. DESnet Nodes

Every node in the graph of a DESnet represents a variable (a property of the system,
in this case, the patient), so we will use the terms ‘node’ and ‘variable’ interchangeably.
We will denote every variable with a capital letter (X) and its values with lower-case
letters (x). A bold upper-case letter X denotes a set of variables and a bold lower-case
letter x a configuration of them, i.e., the assignment of a value to each variable in X.

DESnets contain three types of nodes: decisions, probabilistic nodes, and payoffs.
A decision node represents a choice made by the decision maker among several options.
These nodes are drawn as rectangles and colored in light blue. For example, the node ‘Treat-
ment’ in Figure 1 represents the decision of whether to apply a treatment for osteoporosis
or not.

Probabilistic nodes, drawn as rounded rectangles, represent properties and events
that are not controlled by the decision maker—at least not directly. Nodes colored in
yellow represent chance variables and those in orange represent events. Chance variables
represent system properties. For example, ‘Hip fracture QoL’ and ‘Vertebral fracture QoL’
are numeric chance variables representing how the quality of life is affected by the two
types of fractures. ‘Die from hip fracture?’ is a Boolean variable that takes the value ‘true’ if,
in case of hip fracture, the patient will die. Numeric variables can also be used, for example,
to count the number of relapses of a disease or to represent continuous biomarkers.

An event represents something that may occur at a point in time and affects the
evolution of the system. A DESnet always has an initial event, called ‘Start’ in Figure 1,
and may also have one or several final events, such as ‘Death by hip fracture’ and ‘Death
by other causes’. Initial and final events are colored in dark orange. The other events are
colored in light orange.

Finally, payoff nodes (in PGMs these nodes are called ‘utility nodes’, but in this paper
we call them ‘payoff nodes’ because ‘utility’ might be misunderstood with a particular
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type of CEA) represent decision maker’s values and are drawn as hexagons. Payoffs
can be either one-off costs, such as the upfront expenditure of treating a fracture (nodes
‘C: Hip fracture’ and ‘C: Vertebral fracture’ in our example), or cumulative, such as the
the effectiveness (node ‘E: QoL’) or the cost of a chronic treatment (node ‘C: Treatment’).
It is possible to distinguish them because a one-off cost is always the consequence of an
event. Therefore, payoff nodes having at least one event parent are one-off and the others
are cumulative. They are colored dark green and light green, respectively.

Each DESnet has one or several decision criteria and each payoff node corresponds
to one of them. In our example, the criterion for the node ‘E: QoL’ is ‘effectiveness’ (in
QALYs), while the criterion for the other three payoff nodes is ‘cost’, in monetary units.

2.1.2. DESnet Links

Every links in a DESnet represents causal influence. The type of influence depends
on the types of the two nodes it connects. A link E1 → E2 between two events means that
E1 may cause E2. For example, the event ‘Start’ at the beginning of the simulation makes
possible the occurrence of ‘Hip fracture’ and ‘Vertebral fracture’.

A link X → E, where X is a chance node or a decision and E is an event, means that X
affects the probability that E occurs. For example, ‘Treatment = yes’ delays the occurrence
of ‘Hip fracture’ and ‘Vertebral fracture’.

A link X → Y, where Y is not an event, means that X (which can represent the option
chosen for a decision, the occurrence of an event, or the value of a chance variable) affects
the value of Y. If X and Y are the same chance node, the link means that the future value of
X depends on its previous value.

When an event happens, it affects other parts of the system. In order to determine
which variables of the model need to be updated, we will be using the following definition:

Definition 1. When a directed path from an event node E to another node Y does not contain other
event nodes, we say that E is an event-ancestor of Y and Y is an event-descendant of E.

Links are subject to some constraints, explained in Appendix A, to prevent model
inconsistencies such as infinite loops in the evaluation.

In the following, we will also use these terms: when the graph has a link X → Y, we
say that X is a parent of Y and Y is a child of X. The set of parents of a node X is denoted by
Pa(X), and pa(X) represents a configuration of them. When there is a directed path from
X to Y, we say that X is an ancestor of Y and Y is a descendant of X.

2.1.3. DESnets Potentials

A potential associated with a node is a function that maps each configuration of a
set of nodes onto a probability distribution or a real number. The meaning of a potential
depends on the type of node to which it is assigned.

Every chance variable X has a potential containing a probabilistic distribution for each
configuration of its parents, P(c|pa(C)). For example, P(‘Die From Hip Fracture? = yes’
| ‘Hip fracture’) = 0.05 means that the probability of dying when the event ‘Hip Fracture’
happens is 5%. Some probability functions may be degenerate, i.e., all the values except
one have zero probability, which means that the value of C for the configuration pa(C) is
determined without uncertainty.

Every payoff node U has a potential that assigns a real number to each configuration of
its parents, u(pa(U)). In the osteoporosis model, the value for the node ‘E: QoL’ is 0.7 times
the product of the values of its parents.

Finally, every event E other than ‘Start’ has an associated time-to-event probability
density function pE(t | pa(E)), where pa(E) contains at least one event variable E′; this
density represents the probability that E occurs at time t since the occurrence of E′. In our
example, the potential in Figure 2 represents the probability of a hip fracture after the event
‘Start’, modeled by two Weibull distributions, one for each treatment.
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Figure 2. Potential for the event ‘Hip fracture’. It has one time-to-event Weibull distribution for
each treatment. The scale parameter, λ, is higher for the new treatment because it tends to delay the
occurrence of fractures.

2.2. Algorithm for Evaluating DESnets

The evaluation of a DESnet consists of computing the value for each decision criterion
for a hypothetical set of patients. More specifically, Algorithm 1 is run over K series of
N patients; for each patient a simulation is performed for every configuration d of the set
of decision nodes D. The core of this algorithm is the iterative generation of the successive
events that may occur for each patient, which are put in a queue, called the event calendar,
sorted by ascending time of occurrence. In each iteration the first event is taken out and
triggered. The simulation begins with the ‘Start’ event and ends when an event (for instance,
the patient’s death) ends the simulation, or when the simulation reaches the time horizon.

When an event happens, the variables of the system that depend causally on it are
updated using Algorithm 2 and other events may enter the event calendar, in accordance
with the time-to-event probabilistic distributions. Payoffs are accrued depending on their
type. If an event occurring at time t produces a one-off cost v, the discounted value
accrued is

vdisc(v, t, γ) =
1

(1 + γ)t v , (1)

where γ is the discount rate. If a cumulative payoff has the value v along the interval
(t1, t2), then the value accrued by the corresponding criterion is

accruedValueU(v, t1, t2, γ) =

t2ˆ

t1

vdisc(v, t, γ) dt = v
1

ln(1 + γ)

[
1

(1 + γ)t1
− 1

(1 + γ)t2

]
, (2)

If we define

δ = ln(1 + γ) , (3)

these equations can be rewritten as

vdisc(v, t, γ) = e−δt v, (4)

and

accruedValueU(v, t1, t2, γ) =

t2ˆ

t1

vdisc(v, t, γ) dt =

t2ˆ

t1

v e−δt dt = v
e−δt1 − e−δt2

δ
, (5)

which are sometimes used in the literature.
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Algorithm 1: Evaluation of a DESnet for a single patient
input : DESnet, d (a configuration of the decisions), timeHorizon, γ (discount rate)
output :accrued payoff of each decision criterion

1 set to 0 the (instantaneous) value for all the cumulative-payoff nodes
2 set to 0 the accrued value for all the payoff nodes
3 assign a value to each node (other than a decision) having no event-ancestor
4 latestAccrualTime← 0
5 initialEvent.occurenceTime← 0
6 eventCalendar.add(initialEvent)
7 while eventCalendar is not empty do
8 event←eventCalendar.extractFirstEvent()
9 clock←min(event.occurrenceTime, timeHorizon)

10 if (clock > latestAccrualTime) then
11 accrue the cumulative payoffs for the interval (latestAccrualTime, clock) with

Equation (5)
12 latestAccrualTime← clock

13 if (event.occurrenceTime≤ timeHorizon) then
14 updateEventDescendants(DESnet, event) // invocation of Algorithm 2
15 accrue the immediate-payoff children of event with Equation (1)

16 if (event is final) or (event.occurrenceTime > timeHorizon) then
17 empty eventCalendar
18 else
19 add child-events of event to eventCalendar and sort it by ascending time of

occurrence

20 compute the accrued payoff for each decision criterion
21 return accrued payoffs

Algorithm 2: Update event-descendants when an event E happens
input :DESnet, event E

1 let SG be the subgraph of DESnet consisting of the event-descendants of E
2 mark all nodes in SG as not updated
3 mark E as updated
4 mark any chance parents of any node in SG which is not an event-descendant of E

as updated
// update the event-descendants in ancestral order

5 while SG is not empty do
6 extract from SG a node X whose parents are already updated

// sample a value for X from its potential, given the values of
its parents

7 x← sample ψ(x | pa(X))
8 mark X as updated

We can illustrate the execution of Algorithm 1 for the DESnet in Figure 1 with a time
horizon of 50 years and an annual discount rate γ = 0.035. In our model there is only one
decision node, ‘Treatment’, with two values: ‘new’ and ‘standard’; in this example, we
consider first the configuration d = {new}.

The initialization of the algorithm consists of several steps. First, the value and the
accrued value of each of the four payoff nodes is set to 0 (lines 1 and 2). Then, every node
that is not a decision and has no event-ancestor is assigned a value (line 3) according to its
potential. In this example, ‘C: Treatment’ is set to GBP 500/year, the cost of the new therapy.
The variable latestAccrualTime, which indicates when the cumulative payoffs have been
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accrued, is set to 0 (line 4). The initial event is ‘Start’; after setting its time of occurrence
to 0, it is added to the calendar (lines 5 and 6).

When entering the ‘while’ loop, the first event in the calendar, ‘Start’, is extracted
and assigned to event. Its occurrence time is 0, which is smaller than the time horizon, so
clock is set to 0 (line 9). As clock = latestAccrualTime, the algorithm proceeds to line 13 and
updates the event-descendants (see Definition 1) of ‘Start’ in ancestral order, according
to Algorithm 2; i.e., ‘Hip fracture QoL’ and ‘Vertebral fracture QoL’ are updated first and
then ‘E: QoL’, as follows. The node ‘Hip fracture QoL’ has two parents, which are both
events; its potential determines that, when ‘Start’ occurs, this node is assigned the value 1,
which means ‘one QALY per year’. For the same reason, the node ‘Vertebral fracture QoL’
is assigned the value 1. The potential for ‘E: QoL’ determines that the value for this node is
0.7 ×‘hip fracture QoL’ ×‘vertebral fracture QoL’; in this case, 0.7× 1× 1 = 0.7 (QALYs
per year). The next step is to accrue the immediate-payoffs of this event (line 15), which in
this case are none.

Then, the events that are children of ‘Start’, namely ‘Hip fracture’ and ‘Vertebral
fracture’, are processed (line 19). The potential for ‘Hip fracture’ is a Weibull distribution
whose parameters depend on the decision ‘Treatment’, as shown in Figure 2. In the
configuration d that we are considering, the value for this decision is the ‘new’ treatment,
and the parameters for the Weibull are 4 (shape) and 20 (scale). Let us assume that the result
of sampling this distribution is 4.7216 years. This new event, ‘Hip fracture’, is added to the
calendar. Similarly, we will assume that when processing the other child event, ‘Vertebral
fracture’, the time obtained from its Weibull is 9.1356 years; it is also added to the calendar.

Therefore, in the second iteration of the ‘while’ loop, event will be ‘Hip fracture’ (line 8).
Its occurrence time, 4.7216, is smaller than the time horizon, so clock is set to 4.7216 (line 9).
The latest accrual time was still 0, so the cumulative payoffs must be computed for the inter-
val (0, 4.7216)—see line 11. There are two cumulative payoffs: ‘E: QoL’ and ‘C: Treatment’.
During this interval the effectiveness has been 0.7 QALYs per year, so Equation (5) leads to
accruedValueE:QoL(0.7, 0, 4.7216, 0.035) = 3.0507 QALYs, which is added to the old accrued
value, 0. Similarly, for ‘C: Treatment’ we have accruedValueC:Treatment(500, 0, 4.7216, 0.035) =
GBP 2179.04. After this, latestAccrualTime is set to 4.7216 (line 12), marking the beginning
of the next accruing interval.

Now the algorithm updates the event-descendants of ‘Hip fracture’ (line 14), which
are two chance nodes (‘Die from hip fracture?’ and ‘Hip fracture QoL’) and two cumulative-
payoff nodes (‘E: QoL’ and ‘C: Hip fracture’). ‘Hip fracture QoL’ is updated as in the
previous iteration, so that now its value is 0.75. ‘Die from hip fracture?’ is a Boolean
variable having an associated probability distribution, such that the probability of dying
(when the parent event occurs) is 5%. The algorithm takes a random sample, choosing
either ‘yes’ with that probability and ‘no’ with 95% probability. Let us assume that the
value obtained is ‘yes’. The new value for ‘E: QoL’ is 0.7 ×‘hip fracture QoL’ × ‘vertebral
fracture QoL’ = 0.7× 0.75× 1 = 0.5250 QALYs per year. The potential for the immediate-
payoff node ‘C: Hip fracture’ determines that the cost of this fracture is GBP 7000; the
discounted cost, vdisc(7000, 4.7216, 0.035) = GBP 5949.63, given by Equation (1), is added
to the accrued value for this node.

Since ‘Hip fracture’ is not final, the algorithm schedules new events (line 19). In this
case, the only child event is ‘Death by hip fracture’. According to the potential of this
node, when ‘Die from hip fracture?’ = ‘yes’, as we have assumed, the child event occurs
immediately after its parent event, which implies that ‘Death by hip fracture’ is added to
the calendar with occurrence time set to 4.7216, which is smaller than the occurrence time
of the other scheduled event, ‘Vertebral fracture’.

Therefore, when entering the ‘while’ for the third time, event is ‘Death by hip fracture’.
Its occurrence time is smaller than the time horizon, so clock is set to 4.7216, i.e., its value
does not change. This event has no event-descendants (line 14), so it has no immediate-
payoff children (line 15). It is a final event, so the calendar is emptied in line 17.
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Thus, in the fourth iteration the ‘while’ loop finishes and line 20 computes the value of
the two criteria. There is one node for ‘effectiveness’, whose accrued value is 3.0507 QALY.
There are three nodes for ‘cost’; the accrued value is GBP 2179.04 for ‘C: Treatment’, GBP
5949.63 for ‘C: Hip fracture’, and GBP 0.00 for ‘C: Vertebral fracture’, so the total cost for
this hypothetical patient is GBP 8128.67.

Then the algorithm should be evaluated for the other configuration of the decisions,
d = {standard}.

3. Comparison with Other Frameworks and Software Tools

In this section, we compare DESnets—and their implementation in a plug-in for
OpenMarkov—with several alternative frameworks and software tools for CEA with DES:

• Programming languages (R and VBA);
• General purpose tools for DES (Arena and Simul8);
• Software tools specifically designed for this task (TreeAge Pro and DICE).

We first compare them qualitatively, by analyzing their expressive power, easy of use,
and transparency, and then quantitatively, by measuring the time required to evaluate the
respective versions of the osteoporosis model. The versions for R, VBA, Simul8, TreeAge
Pro, and DICE were provided by the DSU, who published the code as supplementary
material for their technical report [8] and are available at [34]. We implemented the Arena
version. Appendix B describes them in detail.

3.1. Qualitative Comparison: Ease of Use, Expressiveness, and Transparency

In CEA, modelers are usually academic researchers, public health agencies, or private
companies hired by manufacturers of medical technology—for example, a pharmaceutical
laboratory. In the third case, the recipient is a governmental health agency—the paradigm
being the above-mentioned NICE—who carefully examines all the information about the
new product, including all the clinical evidence and the model used for CEA, and advises
the health authorities as to whether the new product should be covered by the public
health system. Therefore, when assessing the advantages and disadvantages of a modeling
framework, it is necessary to examine both the modeler’s perspective and the recipient’s.
For the modeler, the main criteria are the skills and the effort required to build, debug,
and maintain a model (maintenance means updating and extending the model when
required). For the recipient, the main criterion is transparency, i.e., the possibility of
examining whether the hypotheses of the model are sound and whether the implementation
is correct.

3.1.1. Programming Languages

DES-based CEA can be implemented in any programming language. R, which was
designed for mathematical computations, especially in statistics, is the most widely used
for this purpose. Other models have been implemented in Visual Basic for Applications
(VBA), Java, or Python (C++ has been used in several CEAs based on Markov models and
dynamic transmission models but, to the best of our knowledge, it has never been used for
CEA with DES).

When implementing DES in a programming language, the designer has absolute
flexibility, which is, in principle, an advantage. The main drawback is that the modeler
must implement everything: the simulations (including the generation and management
of events), the analyses of the results, such as the accrued payoffs and the incremental
cost-effectiveness ratios (ICERs), the sensitivity analyses. . . Some programming languages
have built-in statistical functions and specialized libraries for CEA and/or for DES, which
greatly simplify the modeling tasks—for example, R includes several statistical distri-
butions and the package Flexsurv provides some probabilistic functions for parametric
survival analysis [35]—but still the implementation of a model for CEA requires strong
programming skills and a substantial amount of time to write and debug the code.
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The absolute freedom offered by programming languages, which is the main advan-
tage for the modeler, can be a challenge for the recipient who has to examine it and check
its validity, because the ability to understand a piece of software code depends, not only on
the reader’s skills, but also on the author’s style. Some programmers carefully organize
the code with a logical structure, assign meaningful names to variables and functions,
and generously annotate the code with useful comments, while others tangle the pieces of
code, occasionally choose misleading names for variables and functions, and do not ‘waste’
time on documenting it—we have often experienced it, not only as teachers, but also as
researchers when examining open-source programs and CEA models. For example, we can
see in Figures A2 and A3 that, although the code for the osteoporosis model in R and in
VBA is well structured and carefully commented, understanding it requires some effort
and time, even for those with knowledge of these programming languages.

For this reason, the DARTH group [36] is developing a coding framework that offers
a template and a set of guidelines aimed at improving the transparency and understand-
ability of decision analysis models in R by standardizing their components, code style, file
hierarchy, and naming conventions [37]. All this facilitates significantly the tasks of both
modelers and recipients, but still requires significant expertise.

By contrast, DESnets are declarative, i.e., the model only represents real-world vari-
ables and relationships among them, thus being separated from the code that implements
the evaluation algorithm, which is common to all DESnets. Additionally, the model can be
edited with a graphical user interface (GUI). As a consequence, it is possible to build and
evaluate complex models without writing a single line of code.

Similarly, the recipient can inspect the model by examining just the graph and the
potentials. In particular, every assumption of causal dependence or independence is clearly
represented by the presence or the absence of a link, respectively. For the modeler, the main
drawback is being limited to the options implemented in the GUI, which may be insufficient
in some cases; for example, when some complex correlations present in the data need to be
modeled or when the analyst wishes to perform non-standard calculations.

3.1.2. General-Purpose Tools for DES: Arena and Simul8

The two most popular general-purpose tools for DES are Simul8, developed by
SIMUL8 Corporation [38], and Arena, by Rockwell Automation [39]. Both have GUIs
that allow the building of complex models by combining elementary blocks. They provide
many options for generating and managing events, as well as facilities for tracing the evolu-
tion of the simulation, which are very useful when debugging the models. Although these
features are mainly oriented to simulating production systems, their versatility makes them
valuable tools for CEA in health, as they facilitate the modeler’s task and offer the recipient
some transparency.

However, being general-purpose entails two main drawbacks for the modeler. First,
mastering the use of these tools requires a significant learning effort because, among other
reasons, many of the options designed for other applications—such as modeling queues
and controlling industrial devices—are rarely used when evaluating health interventions,
where usually one patient is evaluated in each simulation. Second, building a model is
still a complex task, as shown in Appendix B.4 for Arena and Appendix B.3 for Simul8:
the modeler has to lay out an explicit computation plan in the form of a flow diagram (see
Figures A4 and A7), then add many formulas and even some code to define each simulation
(see Figure A5 for an example in Simul8), and finally write the functions that accrue the
payoffs, compute the ICERs, perform the sensitivity analyses, etc. Therefore, even though
these tools somehow facilitate the management of events, the programming skills and the
time required to build and debug a model is not very different from the case of using a
programming language, with the disadvantage of having to adapt the implementation to
the ‘philosophy’ of these tools, which may restrict the modeler’s freedom. For the recipient,
the flow diagram is a visual aid and the amount of code to be examined is less than in the
case of programming languages (because some of the routines for evaluating the model are
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built into the software tool). However, the effort required to understand the formulas and
the code is similar, and additionally requires understanding the intricacies of a commercial
product, either Arena or Simul8. In summary, the effort required to perform a CEA using
these tools is not smaller than when using a programming language and has the drawbacks
of limited flexibility and the need to pay for commercial licenses.

The advantages of DESnets with respect to Arena and Simul8 are the same as those
with regard to programming languages: ease for building and evaluating the models and
transparency for the recipient. Arena or Simul8 offer more flexibility than DESnets, but only
if the modeler implements everything that is not built into them.

3.1.3. TreeAge Pro Healthcare, a Software Tool for CEA with DES

TreeAge Pro Healthcare [40], by TreeAge Pro Software LLC, is a commercial program
widely used for decision analysis in medicine. Its basic representation framework are
decision trees, which have three main types of nodes: chance, decision, and value. Some
years ago, TreeAge added new types of nodes for DES.

The main advantage of this tool is the possibility of building the model with a GUI
and then evaluating it automatically: the software runs the simulation, accrues the values,
and computes the ICERs, offering several tracing facilities. These advantages are common
to DESnets.

The main difference lies in the representation of models. As mentioned above, TreeAge
uses an extended version of decision trees, while DESnets are inspired by probabilistic
graphical models, so that each node represents a real-world property and links represent
causal relations. In contrast, some of the variables and formulas in TreeAge models
are introduced just for intermediate calculations. For example, the tree in Figure A9
includes the expression ‘If(N_hip_fract = 0; TimeToHipFracture_Tx; timeHorizon + 1) −
(timeCurrent)’, which involves three auxiliary variables—all except timeHorizon—that only
make sense during the evaluation of the model. In DESnet, neither are those variables part
of the model, nor does the modeler have to write such expressions to execute the simulation,
because the model is clearly separated from the code that evaluates it, as mentioned above.
Therefore, the effort required and the probability of making mistakes are much lower.

Another advantage from the point of view of representation is that DESnets, owing
to their similarity with influence diagrams, are more compact than decision trees: every
influence diagram can be expanded into an equivalent decision tree, but the number of
branches grows exponentially with the number of variables in the diagram. For instance,
our group has built influence diagrams for two medical problems, each having less than
25 variables, whose equivalent decision trees contain tens of thousands of branches [41,42].
TreeAge alleviates this problem by allowing clone nodes, as seen in Figure A9, but in
DESnets that workaround is not necessary.

For the recipient, the causal graph of a DESnet clearly shows the relations between the
variables and, consequently, the structural hypothesis of the model, while in a decision tree
the hypotheses are implicit in the formulas that define the model and, therefore, difficult
to observe. Additionally, DESnets require neither auxiliary variables nor expressions
for controlling the execution of the simulation, thus making it much easier to assess the
correctness of the model.

For the modeler, TreeAge has the same drawback as DESnets with respect to program-
ming languages, i.e., its expressive power is limited to the options implementing in its GUI,
as discussed above.

3.1.4. DICE, a Framework with Several Possible Implementations

DICE [43], which stands for ‘Discretely Integrated Condition Event’, is another frame-
work for CEA, especially designed for medicine. It currently supports DES, Markov models,
and survival partition models [44]. The first and most widely used implementation is an
Excel plug-in with a VBA macro, available for free at [45].
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DICE models are clearly structured and the modeler does not need to implement
the code for running the simulation and showing the results. However, it still lacks the
convenience of a full-fledged GUI, and it is necessary to write a significant number of
formulas in the syntax of Excel and DICE, as shown in Figure A12.

This representation is much more complex than when using DESnets. For example,
the graph in Figure 1 clearly shows that the probability of ‘Hip fracture’ depends on the
treatment, with a time-to-event probability given by the Weibull distributions in Figure 2,
and that this event affects the quality of life and the probability of dying. In DICE, this
information is encoded in a table (cf. Figure A12) that includes complex formulas for
accruing values and doing other computations, as well as some expressions for controlling
the simulation flow, which prevents this framework from being purely declarative.

In practice, a drawback of DICE is that the Excel implementation performs noticeably
worse than the rest of the tools, as shown below.

3.2. Empirical Comparison

In order to establish the validity of the DESnet formalism, we contrast its implemen-
tation in OpenMarkov with the other tools to check that simulation results agree and the
evaluation algorithm can be efficiently implemented. We have compared the efficiency of
these tools by measuring the time required to evaluate the corresponding version of the
osteoporosis model. We used a simulated cohort of 50,000 patients, the same size as in the
models provided by the DSU.

Table 1 shows the discounted cost and effectiveness obtained for the two interventions
and the running time for each tool, averaged across the 25 series (in this example it does not
make sense to compute the ICER because the new treatment dominates the standard one,
i.e., it is cheaper and more effective). As expected, all the tools return the same numerical
values, within stochastic variations.

Regarding running times, VBA and Arena are the fastest, closely followed by Open-
Markov’s plug-in for DESnets: each of them takes around 1 second for every 50,000-patient
simulation. Simul8 needs 3 seconds, i.e., it is around three times slower. TreeAge takes
around a half a minute and R almost one minute. The DICE implementation examined was
the slowest, as it required almost two and a half hours, probably due to the overhead from
using Excel, as confirmed by other studies [46–48].

Table 1. Average results (95% CI) for experiments simulating 25 series, each with 50,000 patients,
in the osteoporosis model. The table shows the cost and the effectiveness for the standard treatment
(std.) and the new one. QALY = quality-adjusted life year. DESnet is implemented as an OpenMarkov
plug-in and DICE as an Excel plug-in.

Cost (GBP) Effectiveness (QALY) Time (s)
New. Std. New Std.

R 6876 ± 4 6887 ± 5 6.642 ± 0.002 6.092 ± 0.002 55.76
VBA 6877 ± 5 6887 ± 5 6.643 ± 0.002 6.092 ± 0.002 0.76

Simul8 6872 ± 5 6886 ± 5 6.644 ± 0.002 6.093 ± 0.002 3.21
Arena 6873 ± 5 6884 ± 5 6.642 ± 0.002 6.092 ± 0.002 0.96

TreeAge 6874 ± 6 6886 ± 5 6.643 ± 0.002 6.092 ± 0.002 28.09
DICE 6875 ± 5 6889 ± 4 6.644 ± 0.002 6.093 ± 0.002 8153.67

DESnet 6875 ± 5 6885 ± 4 6.643 ± 0.002 6.092 ± 0.002 1.07

4. Discussion

Several requisites are necessary for a decision analysis tool: ease of use, expressive
power, model transparency, and efficiency. First of all, learning to use GUI for DESnets is
clearly much easier than learning how to program in a general-purpose language, such as
R or VBA, and, in our opinion, easier than using commercial tools for DES, such as Arena
or Simul8. Similarly, the effort required to implement a model and conduct a CEA with a
GUI for DESnets is much less than when using any of those tools or DICE.
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The expressive power of DESnets is more limited than that of programming languages,
although it suffices to conduct typical CEAs. However, some complex models, especially
those that include non-standard correlations among their parameters, may require a more
powerful tool, such as R. Another limitation of DESnets is that the algorithm proposed
in this paper can only perform patient-level simulations. When it is necessary to model
interactions between patients or constraints in the access to clinical resources, general-
purpose simulation tools, such as Arena or Simul8, may be more appropriate.

Model transparency is especially relevant for government agencies that have to assess
the validity of CEAs submitted by pharmaceutical laboratories and other manufacturers
of health technology. DESnets are more transparent than other tools for two reasons.
First, the software for evaluating them is common to all DESnets, and a DESnet consists
only of variables that represent real-world concepts and the relationships between them.
Both elements are clearly separated. In contrast, a model implemented in a programming
language is inseparably embedded in the code that evaluates it and sharing its code does not
guarantee transparency [37]. Other tools, such as Arena, Simul8, TreeAge, and DICE also
aim at a similar separation of the model from the execution code, but their models include
many variables and formulas designed for running the simulations. Second, the causal
graph of a DESnet clearly represents the relationships of dependence and independence
among the variables, as in standard probabilistic graphical models, such as Bayesian
networks, influence diagrams, and factored Markov decisions processes. In contrast,
in other tools the assumptions of dependence and independence are implicit in the formulas
that relate the variables in the model and are difficult to read out.

Computational efficiency is required to evaluate complex models in a reasonable
amount of time. In our empirical comparison, the OpenMarkov plug-in was among the
fastest tools, being 3 times faster than Simul8, around 25 faster than TreeAge, 50 times
faster than R, and 7600 times faster than DICE, but these results must be taken with a grain
of salt, as they depend on the versions evaluated. For example, the R implementation
could be improved through the use of vector handling capabilities. In fact, the model by
Graves et al. [49]—which is slightly more complex—executes much faster, while Gray et al.’s
model for breast cancer [50] and Glover et al.’s model for abdominal aortic aneurysm [51]
have similar running time as the DSU implementation of the osteoporosis model despite
being much more complex.

5. Conclusions

DESnets are a new visual formalism for performing cost-effectiveness analysis (CEA)
with discrete event simulation (DES). The GUI we have developed allows them to be created
and evaluated without requiring any programming expertise. We have implemented in
this formalism several models published in the literature, including the osteoporosis model
used by NICE to illustrate the use of CEA with patient-level simulations.

DESnets compare favorably with alternative frameworks in terms of ease of use,
expressive power, transparency, and computational efficiency: the OpenMarkov plug-
in was nearly as fast as VBA and Arena, and clearly outperformed Simul8, TreeAge,
R, and—especially—the Excel version of DICE. However, a more efficient R version of
the osteoporosis model or a different implementation of DICE would have yielded very
different results; this is an open issue for future research.

Another line in which we are working is the automatic conversion of DESnets into
DICE models. The motivation is that health technology assessment agencies are skeptical
about the reliability of new software tools for CEA. Showing that the results of a DESnet
agree with those of DICE, which is an increasingly popular tool, already accepted by the
British NICE, would help overcome their reluctance.
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Supplementary Materials: The following are available at https://bit.ly/3ZIjgVd (accessed on
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the jar file for OpenMarkov with the DESnet plug-in.
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Appendix A. Constraints for DESnets

Every DESnet must fulfill a set of constraints to ensure logical consistency and comply
with the evaluation algorithm:

• There is only one decision because every option (i.e., every state of the decision node)
is one of the interventions evaluated in the CEA. This constraint will be relaxed in
upcoming versions of the algorithm by taking as the set of interventions the Cartesian
product of the states of all the decisions;

• The initial event is unique and has no parents, because it marks the beginning of
the simulation;

• Any other event has at least one event parent;
• Final events have no event children because they end the simulation (but they may

have chance and payoff nodes as children);
• Payoff nodes have no children;
• The domain for time-to-event distributions (density functions) is R+;
• Every directed cycle involving more than one node contains at least one event.

The reason for this last constraint is to avoid an infinite evaluation loop. Given that
links denote influence, directed cycles, such as the one in Figure A1b, would cause the
evaluation of a chance variable to eventually influence itself, thus entering an infinite loop.
When an event is present within the cycle (Figure A1b) the problem is avoided, because the

https://bit.ly/3ZIjgVd
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influence on an event of a DESnet affects its future time of occurrence, which eliminates the
need to compute immediately any further consequences.

Self loops are a special case which does not present the infinite evaluation problem,
thanks to their modified semantics, as seen in Section 2.1.2: a link from a chance node C to
itself means that the future value of C depends on its previous value, whereas a link from
an event E to itself means that E may cause itself to be triggered in the future.

(a) (b)

Figure A1. Cycles in a DESnet: (a) is allowed because it contains an event node, whereas (b) is not.

Appendix B. Implementations of the Osteoporosis Model

We have already described in detail the DESnet version of the osteoporosis model. This
appendix describes the other versions and the tools used in the experiments in Section 3.2.
The software tools used are:

• R version 4.1.1, on RStudio 1.4.1717;
• Microsoft Excel Professional Plus 2016 (for VBA and DICE);
• Arena version 16.10;
• TreeAge Pro Healthcare 2022 R1.2.

They were all running on an Intel Core(TM) i7-8565U CPU at 1.80 GHz with 16.0 GB
and Windows 10 Home.

Five of the versions of the osteoporosis model used in our experiments were provided by
the DSU of the NICE. We introduced some minor modifications to make the results comparable:

• No time horizon was set, in order to cover the patients’ whole lifespan;
• Recording of patient-level data was disabled (except for TreeAge, because it was

not possible);
• Batch simulation and simulation timing were enabled.

We have kept those changes to a minimum in all cases, ensuring they do not invalidate
the simulation results. Additionally, we built the DESnet and the version in Arena. These
are available in the supplementary material.

Appendix B.1. R Language

The R version built by the DSU consists of two files. DSU_DesFuntions.R (with
267 lines of code, excluding comments and blank lines) contains the main function, RunSim,
and the main event loop (cf. Figure A2), along with seven additional functions. RunSim
holds two loops, one for each intervention, which compute the sequence of events and
their consequences. The logic of this event processing is generic, since it is agnostic of the
specific event triggered at any given time. The file DSU_DES_Script.R (94 lines of code) sets
the variables and the simulation parameters, calls the main function, RunSim, and presents
the results.
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Figure A2. Code for selecting and processing the next event in the R version of the osteoporosis
model.

Appendix B.2. VBA Language

This model is embedded in the file Excel_DSU_VBA_DES.xlsx, a macro-enabled
workbook that yields its results in Excel sheets. The VBA module, with 233 lines of code,
contains a set of declarations and a Sub procedure that carries out the whole simulation.
Like in the R model, this code is sufficiently commented.

This procedure generates five sequences of random numbers for N patients; one
sequence for each of the four events plus one for the chance of dying from a hip fracture.
Then, for each patient and each event the code computes the time to event and enters a
loop that, in each iteration, determines which event happens next by comparing their time
of occurrence using a series of “If” statements (cf. Figure A3) specific for the events in this
model. The consequences of the events are then computed using a “Select Case” statement,
which is also tailored to this specific model. This logic differs from that of the R version,
which is model-agnostic.

Figure A3. Logic for selecting the next event in the VBA version of the osteoporosis model.
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Appendix B.3. Simul8

In Simul8 the model is run twice, one for each intervention. The modeler needs to
specify the desired intervention in a variable, prior to simulating. For each intervention,
many runs of many patients can be executed in a batch, which is called ‘a trial’.

We can distinguish four main components in the osteoporosis model:

• A graph, which depicts the simulation flow (cf. Figure A4). There is a start point,
where the patients enter the model, three ‘activities’ that represent the main events of
the model, and two end points. A queue is necessary to connect each activity with the
start point;

• Visual Logic (VL) code, in several pieces, which specify the behavior of the simulation.
For example, Figure A5 shows the code for processing the consequences of the event
‘Hip fracture’. The algorithm implemented in this model is similar to the one in VBA;

• A set of distributions, selected from Simul8’s catalog;
• A set of variables, which store model data, auxiliary values, simulation settings,

and results; for example, the number of patients to be simulated, the intervention
currently examined, the total cost and effectiveness, etc., as shown in Figure A6.

The fact that the simulation settings, including the intervention evaluated, are stored
in variables implies that the model must be edited prior to each trial. Additionally, al-
though Simul8 manages the random generators and provides probability distributions,
the modeler must ensure that the generators are correctly seeded and set up at the be-
ginning of each trial. This is especially important because each intervention requires a
separate trial and trials should be set up consistently across interventions to avoid nuisance
variance [22].

The arrows in the Simul8 graph determine the simulation flow; however, being
oriented to modeling organizations, it is almost necessary to manually code everything
when modeling the course of disease in an individual patient: from computing which event
will follow and when, to accruing discounted payoffs. Figure A5 shows a typical example,
where, upon an event happening, manual computation must be detailed for accruing costs
and effectiveness, keeping track of time, updating the simulation state, and determining
the next event.

Figure A4. Graph with the simulation flow for the osteoporosis model in Simul8.
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Figure A5. Code for the ‘Hip fracture’ event in for the osteoporosis model in Simul8.

Figure A6. Variables for the osteoporosis model in Simul8.
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Appendix B.4. Arena

Given that the book by Caro et al. [22] explains how to perform DES for CEA in Arena,
we decided to build a new version of the osteoporosis model to compare it with other tools.

Arena is based on the SIMAN language, which is process-oriented. The main compo-
nents of this version of the model are:

• A graph, which constitutes the flow diagram, built with SIMAN blocks. Entities—
patients, in our case—flow through the diagram, triggering actions (such as computing
values, assigning variables, and accruing payoffs) in the blocks they traverse. For ex-
ample, the ‘Which Event?’ block, shown in Figure A7, has some embedded logic
(cf. Figure A8) for selecting the next event when a patient arrives. The probability
distributions are sampled at the ‘Initial values’ block, placed before ‘Duplicate’, in
order to reduce nuisance variance. This allows both interventions to be simulated
while ensuring that values change only when needed;

• Variables, which hold the values global to the whole simulation, such as the accrued
payoffs;

• Attributes, which hold values for the current patient, including the times of occurrence
of the events.

Arena allows the running of multiple simulations in a batch and collecting over-
all statistics.

Figure A7. Flow diagram for the osteoporosis model in Arena.
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(a)

(b)

Figure A8. Explicit computations in Arena blocks. (a) Block of type ‘Assign’ for setting the occurrence
time of the next events. (b) Block of type ‘Decide’ for selecting the next event.

Appendix B.5. TreeAge

We can distinguish two main parts in the osteoporosis model:

• A tree, shown in Figure A9. Its root is a decision node for the two interventions,
‘Control’ and ‘Treatment’. The second branch is a clone, with redefined variables;

• The bottom pane, shown in Figure A10, with tabs for different element types: variables,
variable definitions, distributions, DES payoffs, etc.

When an event occurs, either the simulation ends or it resumes at the ‘Process Event’
node. The ‘Time’ node, drawn with a clock icon, has one outgoing branch for each event.
During the evaluation, the algorithm obtains a time of occurrence for each event and
the flow continues on the branch for the event occurring first. This requires controlling
manually the events that may occur at most once and those that must be preceded by
others; additionally, when an event occurs, the time elapsed must be subtracted from the
time to event sampled for each of the other events.

In our experiment, we detected an issue in the DSU version in TreeAge, which caused
a division by zero error when computing ‘Payoff 6’. After a consultation with the DSU,
we fixed it. With respect to the execution time shown in Table 1, we should mention that
TreeAge generates a large amount of patient-level data to be shown after finishing; this
process takes nearly half of the running time for the osteoporosis model, but it cannot
be disabled.
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Figure A9. Decision tree for the osteoporosis model in TreeAge. The decision has one subtree for
each intervention (here, ‘Control’ and ‘Treatment’). The subtrees perform the DES simulation, as
noted by their root being a DES node (circled ‘D’). The top DES node is labelled with ‘1’ because it
was the source for cloning the bottom one. Branches in a DES subtree may have a time to event or a
probability value; in this case, a ‘#’ symbol represents the complement probability.



Mathematics 2023, 11, 1602 21 of 24

Figure A10. TreeAge’s bottom pane, showing the variables and the DES properties for the ‘Time’ node.

Appendix B.6. DICE

The DICE version of the osteoporosis model is implemented in an Excel workbook
including the VBA macro that executes the simulation. Some Excel sheets specify the model
and others collect the results. The main components of the model are:

• Conditions, which are variables used to represent real world magnitudes (for instance,
‘Age’) or to implement the flow control (for example, ‘TimePrevEvent’). Each condition
has a name and a value (called ‘level’) and appears as a row in the ‘conditions table’,
shown in Figure A11;

• Events, each having an associated table (see Figure A12) that indicates how to update
the simulation when the event occurs; for example, changing the ‘level’ of some
conditions, queuing new events, or calculating some outputs;

• Outputs. In DICE each output defines a property for which the evaluation will return
a value. In this model, the outputs are not only cost and effectiveness but also some
other properties, such as the age of death;

• Results. These are the values (usually numerical) obtained for the different outputs,
both patient-level data and accrued values.

Figure A11. Table of conditions for the osteoporosis model in DICE.
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Figure A12. Table for the ‘hip fracture’ event in DICE.
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