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Abstract: This paper presents a review of the theory and applications of memristor cellular 
nonlinear networks. By mapping the physical processes to the memristive framework, all resistive 
switching devices can be modeled. The idea is to find a state variable that presents with high 
accuracy the important features of the system, its dynamics, and time evolution in response to the 
inputs of the memristor. In order to develop a new design of memristor-based cellular nonlinear 
networks (MCNN), new circuital and mathematical memristor models need to be introduced. In 
this way, implementation into new software packages for computer-aided integrated circuit 
realization can be achieved. Another challenging problem is studying the complex behavior of 
MCNN models by means of local activity theory and generalizing it for various test cases. An 
application of the hardware implementation of these models can be found in nanostructures. 
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1. Introduction 
Classical computers have the unique property to be algorithmically programmable, 

which was invented by J. von Neumann and which means they use mainly binary logic 
and arithmetic on discrete valued data (binary codes). It is known that the Turing machine 
is based on the mathematical concept of a universal machine in which the neurons work 
as threshold logic, using the main structure of the brain. In 1948, transistors were invented, 
as well as integrated circuits in 1960, and this made computer architecture a very practical, 
cheap and ubiquitous commodity. Soon after that, however, it was discovered that the 
neurons operate in a different way. Since, at this time, the electronic industry was 
developed using a huge number of transistors, a nanoscale size and many pixels, new 
characteristics of modern computers appeared [1]: parallel processors using the two-
dimensional structure of silicon and optical technology; two-dimensional cellular 
structures together with a sub-100 nm size, giving power dissipation and wire length 
constraints; millions of analog sensory signals, which were organized in arrays and 
embedded in sensory computing devices; image flows, such as multi-spectral visual and 
tactile, becoming typical data; bionic array interfaces appearing, which made possible the 
mimicking of complex living organisms, such as muscle or retina prostheses; 
spatiotemporal devices, which made it possible to produce high complexity in time and 
space; software systems with high-performance grids and mobile communications with 
standardized interfaces. Nowadays, we find many dynamically programmable tiny 
sensor processors arranged in fixed arrays or on ad hoc platforms. For this reason, a new 
architecture is needed to develop spatiotemporal control and processing software. The 
invention of cellular nonlinear networks (CNN) [1] makes all this possible. 
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CNN consist of cells [1] that are connected to each other within small neighborhoods. 
This is the algorithm for the construction of the programmable cellular dynamics of CNN 
by elementary instruction: 
(a) we take a dynamical system; let us call it a cell (with input u, state x and output y); 
(b) we place the cells into the spatial grid with their neighborhood relations; 
(c) we process the spatial interactions between the dynamic cells, being programmable 

(called the cloning template or gene, or simply the template);  
(d) we add cellular sensors for the application of CNN in image processing. 

In this review, we shall present the theory and applications of memristor cellular 
nonlinear networks (MCNN) for pattern formation. Memristor devices can be integrated 
into the CNN architecture [2] in a standard way by incorporating their dynamics into the 
state equation of the CNN cell. We can assume that the default parameter values of the 
memristor models are obtained by analyzing different charge transportation phenomena. 
In the investigations of memristor models [3,4], a standard resistor of the RC subcircuit is 
replaced by a memristor. However, in this case, the well-known internal driving point 
plot analysis [3], which is applied for the derivation of most of all the templates of 
standard CNN, cannot be considered. For this reason, second-order cells are realized by 
taking first-order memristors into account. Applying techniques from the theory of 
nonlinear dynamics [5] in a comprehensive investigation of cell state equations enables a 
full characterization of the dynamic behavior of MCNN. Several cell topologies can be 
obtained by taking different memristor devices into account. The preliminary 
investigations [4] have shown that new CNN information-processing algorithms with 
clearly improved calculation efficiency can be derived for non-volatile memristor 
networks. The variability of circuit elements, especially those of memristors, can be 
modeled by normal random values and can be assumed in memristor cell simulations to 
determine admissible variation intervals ensuring local activity in CNN cells. Therefore, 
if the variability causes locally passive cell behavior, new cell topologies can be derived in 
order to ensure the emergence of complexity. 

The true origin of emergent complexity in nanostructures needs a much deeper new 
generalization of local activity [6]. The numerous complex phenomena unified under this 
mathematically precise principle include self-organization, dissipative structures, 
synergetics, order from disorder, far from thermodynamic equilibrium, collective 
behavior, edge of chaos, etc. Following the work of Leon Chua [6], in which the theory of 
local activity is applied to reaction–diffusion CNN, there is only a small number of papers 
on the generalization of this method for a broader class of CNN. Despite the impressive 
growth of memristor-related papers [7–38], there are few results on networks of 
memristive devices. Realized nano-scale CNN have been considered in the investigations 
dealing with image processing problems [1]. Nano-scale CNN have, so far, been studied 
via numerical integrations. No analytical results have been derived to date. 

This review paper is organized as follows. In Section 2, we present the basic 
definitions of memristors, together with a survey of their investigations. In this section, 
we give some basic equations concerning the dynamics of memristors. In Section 3, we 
make a survey of investigations of CNN. Because of the applications of CNN for pattern 
generation, which will be discussed later, we shall consider the reaction–diffusion CNN 
model. Section 4 presents the local activity theory and its applications in studying the 
dynamics of reaction–diffusion systems. In Section 5, we consider one model of reaction–
diffusion memristor cellular nonlinear networks, and we shall study its dynamics by 
applying the local activity theory. One of the possible applications of MCNN is pattern 
formation. This is why a short survey on pattern generation in MCNN is provided in 
Section 6. The main types of patterns arising in the study of MCNN models will be 
presented. 
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2. Memristors Basic Definitions 
Memristors were introduced by Leon Chua in [7], and, since then, they have become 

an important emerging element for memory and neuromorphic computing applications 
(see Figure 1). Novel materials and technologies for these nanostructures [12] have been 
found and developed for industry. Many mathematical models involving memristors 
have been presented [13], which reproduce the complex dynamics in nano-devices. For 
the investigation of the nonlinear dynamics [1] of memristor-based circuits [14,15], it is 
important to have accurate, general and simple models in order to develop novel hybrid 
[16] hardware architectures. In this way, memory storage is combined with data 
processing in the same physical location, which leads to an explanation of the behavior of 
biological systems. Several physical models have been obtained [17–21] that can study the 
phenomena characterizing these nano-devices. In [19], some mathematical models of 
memristors have been presented. Applying mathematical methods, the dynamic behavior 
of different MCNN models has been studied [31,32,34,35,39]. The first model of a titanium 
dioxide-based nanostructure was introduced by Williams in [20]. It is a simple model in 
which the boundary conditions in the state equation are not specified. More complex 
models appeared after that, in which the nonlinear effects on ionic transport and the 
definition of the behavior at the boundaries were taken into account. For example, the 
model proposed by Joglekar in [21] allows only single-valued state flux characteristics 
under any sign-varying periodic input. In Biolek�s model [22], only multi-valued state flux 
characteristics are considered with the same excitation type. In [23], a comparison of the 
dynamic behavior of titanium dioxide memristor circuits under different boundary 
models, such as the BCM model [12], is provided. All these nonlinear circuits are very 
sensitive to the accuracy of modeling. Moreover, in [20–22], memristor models based on 
other materials, such as tantalum oxide and niobium dioxide, are developed. In recent 
investigations, numerical solutions for the strongly nonlinear differential-algebraic 
equations occur, such as SPICE (Simulation Program with Integrated Circuit Emphasis) 
simulation [2].  

 
Figure 1. Memristor presentation. Four elements are given: resistor, capacitor, inductor and 
memristor, with their circuit representations (https://www.britannica.com/technology/memristor). 

In order to give completeness to this review paper, we shall introduce memristor 
dynamics [7,14]. Memristors are invented as single electrical port systems, with the 
dependence of their conduction properties on the memory of the port variables—current 
or voltage. 

Let us denote, by 𝜑(𝑡), the memory of port voltage 𝑣(𝑡) by 
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𝜑(𝑡) = ׬  𝑣(𝜏)𝑑𝜏௧ିஶ .  (1)

In the literature, this is known as voltage momentum or flux [7]. We shall denote, by 𝑞(𝑡), the memory of port current 𝑖(𝑡) 𝑞(𝑡) = ׬  𝑖(𝜏)𝑑𝜏௧ିஶ   (2)

or the current momentum, which physically corresponds to the charge; i is the current. In 
[7], the ideal memristor is introduced as a bipole with its constitutive relation given by an 
algebraic equation: 𝐹൫𝜑(𝑡), 𝑞(𝑡)൯ = 0  

We now show the analytical expressions for both a flux-controlled ideal memristor 
and a charge-controlled ideal memristor: 𝑞(𝑡) = 𝑓(𝜑(𝑡))  (3)

 𝜑(𝑡) = 𝑔(𝑞(𝑡)) (4)

Equations (3) and (4) describe the ideal behavior of these two main classes of 
memristive systems. Let us consider the flux-controlled class (3); then, we can obtain the 
current–voltage (𝑖 − 𝑣) expression by means of derivatives of the flux-charge (𝜑 − 𝑞) with 
respect to time ௗ௤ௗ௧ =  ௗ௙ௗఝ  ௗఝௗ௧   (5)

In (5), we see that 𝑖 =  ௗ௤ௗ௧  is the current through the bipole, and 𝑣 = ௗఝௗ௧  is the voltage 
across its terminals; therefore, it can be rewritten as follows: 𝑖(𝑡) = 𝐺൫𝜑(𝑡)൯𝑣(𝑡) (6)

where 𝐺(𝜑) is the memductance of the flux-controlled ideal memristor. 
If we want to study the dynamics of a larger circuit made of ideal memristors, it is 

not important that the initial condition of the memristor state variable is explicitly 
presented in the (𝑖 − 𝑣) domain.  

The formal mathematical definition of the memristor, together with its circuit 
theoretical properties, is given in [7]. In general, the description of memristor can be 
described by the system [7]: 𝑣 = 𝑅(𝑥, 𝑖)𝑖  (7) ௗ௫ௗ௧ = 𝑓(𝑥, 𝑖)  (8)

where the voltage across the memristor is denoted by 𝑣, the current of the memristor is 
denoted by 𝑖, the state variable is 𝑥 =  (𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௡), which depends on external voltages 
or currents, and the memristance is 𝑅(𝑥, 𝑖); 𝑓(𝑥, 𝑖) is a real function.  

As stated at the beginning of this section, in the literature, different memristor models 
have been proposed. The voltage v–current i relationship expressed by (7) can be found 
in many of the models in which the control waveform is in current form. When the 
memristance is presented as the series between two variable resistances, which are 
associated with the insulating and conductive layers of the nano-film, the state of the 
system is given in the form 𝑥 = ௪஽ ∈ ሾ0, 1ሿ. Here, w is the width of the conductive layer, 
normalized with respect to the entire length, D, of the device. The linear drift model, 
introduced by Williams in [20], with the time derivative of the state proportional to the 
input waveform in the current form, is considered under the assumption of low electric 
fields. It does not take into account the boundary behavior, whereas the nonlinear drift 
models from [10,11] have the rate of change of the state proportional to the product 
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between the input waveform in a current form and a window function, accounting for 
nonlinear dynamical behavior. Suitable boundary conditions are imposed upon it. 

3. Cellular Nonlinear Networks 
CNN were invented by L. Chua and L. Yang in their papers [1,40] and formed a new 

class of system that processes information in real-time. Soon after, CNN showed very 
promissive and important applications [41–43]. CNN copy some properties from 
neurobiology and are arranged in integrated circuits (see Figure 2). The spatial structure 
of CNN consists of simple dynamical systems, which are called cells. The state equations 
of CNN are described by dynamical systems, which present the local dynamic law, the 
coupling law between the cells. Additionally, there are some initial and boundary 
conditions. Usually, the cell coupling is considered within the frame of the local 
neighborhood of each cell. The dynamics of CNN are nonlinear, because they are 
described by nonlinear ordinary differential equations. Therefore, CNN [42,44] have a 
very compact representation, given by a system of coupled ordinary differential 
equations. Nevertheless, CNN can present very complex dynamical behavior, such as 
chaos, self-organization and pattern formation. Moreover, nonlinear oscillations and wave 
propagation can appear. Reaction–diffusion CNN [40,45–47] have been studied and 
applied for modeling different complex phenomena [48–53]. In this way, novel 
approaches for information processing are developed [2,31–33,35,47,51,54] through the 
dynamics of complex nonlinear systems. 

 
Figure 2. CNN architecture: (a) spatial interactions; (b) circuit implementation; (c) output. 

The CNN Universal Machine (CNN-UM) was invented by T. Roska for a single CNN 
with local and logical memory [41,50,55]. Some time ago, analog CNN-UM chip hardware 
implementation was developed, as well. In this chip, a parallel computer with stored 
programmability is included, which allows the possibility for real-time processing of 
multivariate data. The applications of CNN in image processing and pattern recognition 
are given in [41,56]. The developed systems, such as the EyeRis 1.3 system, the MIPA4k 
and SCAMP—5, are mainly sensor-processor systems for high-speed vision, with rates of 
more than 20 kHz. However, they have low resolution, as, for example, 176X144 pixels in 
the EyeRis 1.3 system, which makes their application limited in practice. In the future, 
CNN-UM chip-realization nano-elements can be implemented instead of the conventional 
CMOS technology, which has a big cell size. In this sense, the memristors [7] with the 
synaptic connections in the first realization [20] will play a very important role in future 
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CNN-UM sensor-processor systems. This is because they have complex dynamical 
behavior. For the development of CNN-based computational methods, it is important to 
determine the parameter space of the memristor CNN [57,58]. 

In order to implement a topographic sensory computer, we use the principles from 
physics or biology. In optics, the spatial correlation is applied at the speed of light. For the 
construction of the POAC [50]—programmable optoelectronic analogic CNN computer—
the 4 f focal plane system using two lenses and a programmable light value is 
implemented with programmable light transmissivity in each pixel. The POAC laptop 
realization is shown in Figure 3, in which two different lasers (red and green) are used 
together with a local analog memory array. The templates are big enough. In this 
implementation, the nano-device�s functions are introduced and defined. In this way, we 
can produce an array that is locally active, as well as having some sparse global lines by 
means of optical interconnection. 

 
Figure 3. POAC computer [59]. In the picture, a laptop hardware version of the programmable 
optical analogic array computer (POAC) is shown, which provides high computing speed and full 
parallelism, having a large input array and template array size. 

Such a cellular architecture will be applied in many nano-systems, together with the 
environment, via acting, communication and sensing. It is better to use some functions of 
the nano-device that are defined by its layout. In a case when it is locally active, we can 
make an array and produce local interaction using some sparse global or semi-global lines. 
This can be obtained via radiation or optical interconnections. 

Let us consider the following CNN architecture: a two-dimensional grid with a 3 × 3 
neighborhood system, as shown in Figure 4. The cells are represented by squares, and the 
coupling is presented by straight lines. One possible neighborhood of a cell (in red) is 
shown by the blue squares and green straight lines, so the red cell has nine possible 
neighbors [1].  
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Figure 4. Illustration of the CNN coupling structure. 

The cells are denoted by C(i,j), and the links between the cells show the interactions 
between each cell and its neighbor cells. The dynamics of the cell are presented by 
nonlinear dynamical systems. The interactions between cells are linear. In this sense, we 
can consider the CNN as nonlinear systems with linear spatial dynamics [44]. That is why, 
in the investigation of CNN dynamics, many technics from physics and engineering can 
be applied.  

The dynamics of CNN are described mathematically in [1] by its states equations, 
which are obtained by applying Kirchhoff�s law to the circuit implementation of the CNN 
given in Figure 2b:  𝑥ሶ ௜௝(𝑡) =  − 𝑥௜௝(𝑡) + ∑ 𝐴ሚ௜௝,௞௟஼(௞,௟)∈ேೝ(௜,௝) (𝑦௞௟(𝑡), 𝑦௜௝(𝑡)) + ∑ 𝐵෨௜௝,௞௟൫𝑢௞௟, 𝑢௜௝)൯ + 𝐼௜௝,஼(௞,௟)∈ேೝ(௜,௝)   𝑦௜௝(𝑡) = 𝑓൫𝑥௜௝൯, (9)1 ≤ 𝑖 ≤ 𝑀, 1 ≤ 𝑗 ≤ 𝑀, 𝑥௜௝, 𝑦௜௝ and  𝑢௜௝  are the state, output and input voltages of a cell 𝐶(𝑖, 𝑗)  and (𝑖, 𝑗) 
denote a grid point associated with a cell on the 2-D grid; 𝐶(𝑘, 𝑙) ∈ 𝑁௥(𝑖, 𝑗) is a grid point 
(cell) in the neighborhood within a radius, 𝑟,  of the cell 𝐶(𝑖, 𝑗) ; 𝐼௜௝  is an independent 
current source. 𝐴ሚ and 𝐵෨  are nonlinear cloning templates, which specify the interactions 
between each cell and all its neighboring cells in terms of their input, state and output 
variables. Reaction–diffusion CNN are usually described by the state equations in which 
the Laplace operator is approximated by a CNN synaptic law with an appropriate A 
template: 
- a one-dimensional discretized Laplacian template:  𝐴ଵ: (1, −2,1); 
- a two-dimensional discretized Laplacian template: 𝐴ଶ : ൭0 1 01 −4 10 1 0൱. 

As stated before, the most important application of CNN is in image processing [50]. 
In the one-dimensional case, there are two modes of information propagation existing in 
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the array: global propagation or local diffusion, meaning that two distant cells do or do 
not influence each other and determine the corresponding range of coupling parameters. 
The basic function of CNN for image processing is to map or transform an input image 
into a corresponding output image. This means that our CNN must always converge to a 
constant steady state. How can we guarantee the convergence of CNN? There are many 
studies devoted to finding the conditions which ensure that each trajectory of the network 
converges to an equilibrium point, depending on the initial conditions [41,42,48,49,55].  

Our aim in this review is to consider MCNN and their dynamics, which will be 
presented in Section 5, in which reaction–diffusion MCNN will be studied. Keeping in 
mind that there are many works on the theory of MCNN, we aim to give just one example 
of the mathematical investigation that is based on local activity theory. 

4. Local Activity Theory 
Complexity phenomena have been studied by many scientists, as well as emergence, 

self-organization, synergetics, collective behavior nonequilibrium phenomena, etc. 
[43,56]. In the literature, only qualitative results of different examples from many fields 
are provided. There is a lack of quantitative results concerning the complex behavior of 
the systems. In his work, Schrödinger presented the necessary conditions for the 
complexity of the exchange of energy from open systems. Prigogine [60] introduced a new 
principle of nature, which he called the instability of the homogeneous. As an origin of 
morphogenesis, Turing proposed symmetry breaking in [61]. In order to make the Turing 
interacting system oscillate, Smale [62] tried to find the axiomatic properties of a reaction–
diffusion system.  

In [6,43,56], mathematical proofs of complexity are presented in order to show that 
none of the emergent complex behavior in the reaction–diffusion system can be explained 
without introducing local activity. It is a constructive analytical method for the 
determination of the edge of chaos region [6]. If we determine the domain of the cell 
parameters of locally active cells, it is potentially able to exhibit complexity. By rigorous 
mathematical criteria, emergence and complexity can be explained, which is the main goal 
of local activity theory and the phenomena edge of chaos. The obtained locally active cell 
kinetic equations can exhibit complex dynamics, for example, limit cycles or chaos, even 
if the cells are not coupled with each other. This can be achieved by making all the 
diffusion coefficients equal to zero. When the cells are coupled, then, complex 
spatiotemporal phenomena can be observed, for example, scroll waves and 
spatiotemporal chaos [6,56]. Explicit mathematical inequalities are derived in order to 
identify the edge of chaos region in the CNN parameter space. If the cell parameter space 
is in the local activity domain, then the computation time for the parameter search 
algorithms can be reduced [43,56]. For different CNN models, the edge of chaos domain 
is obtained in the investigations. In [47,54], reaction–diffusion CNN models are 
considered, and the domain of the cell parameters for locally active cells is obtained, in 
which they can exhibit complexity. 

5. Memristor Cellular Nonlinear Networks and Their Dynamics 
Different models of memristive nanostructures have been studied [2,12,23,27–

29,36,37,42]. The investigations into the implementation of memristors in integrated 
circuit design include some of the most common learning rules based on brain 
functionalities. Optimized mathematical models have been made to capture the dynamics 
when the parameters of the Pickett model are fitted to experimental data. In [30] a 
polynomial model (PM) for a niobium-dioxide-based memory device was introduced. In 
this model, the memductance and the state evolution function are represented by a 
polynomial following the unfolding theorem [25]. The coefficients of the polynomial series 
need to be fitted to the reference model based on the given circuit and excitation. 

We shall integrate the memristor dynamics of (7) and (8) into a general reaction–
diffusion model. The well-known reaction–diffusion (RD) equation is  
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 𝜕𝑢𝜕𝑡 = 𝑔(𝑢) + 𝐷 𝛻ଶ𝑢, 
where 𝑢 ∈  𝑹௡, 𝑔 ∈  𝑹௡, D is a matrix with diffusion coefficients and 𝛻ଶ is the Laplacian 
operator in 𝑹ଶ . Instead of resistors for diffusion in analog RD large-scale integrators 
(LSIs), we shall introduce memristors. 

Let 𝑢(𝑥) be represented by voltages on the RD-CNN hardware; then, the diffusion 
terms in the RD model are represented by linear resistors. We shall discretize the 
Laplacian 𝛻ଶ as 𝛻ଶ𝑢(𝑥) =  𝑢௜ିଵ + 𝑢௜ାଵ − 2𝑢௜∆𝑥ଶ  
where ∆x is the discrete step in space.  

Generally, we shall consider the RD system described by: 

డ ௨(௫)డ ௧  = 𝑔௨ 𝛻ଶu(x) + 𝑓௨(𝑢(𝑥),  𝑣(𝑥)) 

డ ௩(௫)డ ௧  = 𝑔௩ 𝛻ଶu(x) + 𝑓௩(𝑢(𝑥),  𝑣(𝑥)) 

where 𝑔௨,௩ are the diffusion coefficients, and 𝑓௨,௩(. ) are the functions of the states for the 
reaction model. 

In the RD system, u(x) and v(x) are represented by voltages on the RD hardware, and 
the gradient is represented by linear resistors. We apply, below, one-dimensional spatial 
discretization. 

We discretize spatially the first equation of the RD system in the following way: ௗ ௨ೕ(௧)ௗ௧  = ௚ೠ൫௨ೕషభି ௨ೕ൯ା ௚ೠ(௨ೕశభି ௨ೕ)∆௫మ  + 𝑓௨(.), (10)

where, by j, the spatial index is denoted, ∆𝑥  is the discrete step in space, terms 𝑔௨൫𝑢௝ିଵ − 𝑢௝൯ and 𝑔௨(𝑢௝ାଵ − 𝑢௝) represent, respectively, the current flowing into the jth 
node from the (j − 1)th and (j + 1)th nodes via two resistors whose conductance is 
represented by 𝑔௨. Here, we introduce the memristor model, in which the resistors are 
replaced with memristors. The resulting point dynamics are given by ௗ ௨ೕௗ ௧ =  ௚ೠቀ௪ೕ೗ቁ൫௨ೕషభି௨ೕ൯ା௚ೠ(௪ೕೝ)(௨ೕశభି௨ೕ)∆௫మ  + 𝑓௨(.),  (11)

where 𝑔௨(.) denotes the monotonically increasing function defined by:  𝑔௨(𝑤௝௟,௥) = 𝑔௠௜௡ + (𝑔௠௔௫ - 𝑔௠௜௡) ଵଵା௘షഁೢೕ೗,ೝ,  

where 𝛽  denotes the gain, 𝑔௠௜௡  and 𝑔௠௔௫  denote the minimum and maximum 
coupling strengths, respectively, and 𝑤௝௟,௥ denotes the variables for determining the 
coupling strength (l—leftward, r—rightward). 

Finally, we introduce the following memristive dynamics for 𝑤௝௟,௥: 𝜏 ௗ௪ೕ೗,ೝௗ௧  = 𝑔௨(𝑤௝௟,௥).𝜂ଵ.(𝑢௝ିଵ  −  𝑢௝), (12)

where the right-hand side represents the current of the memristors, and 𝜂ଵ denotes the 
polarity coefficient—𝜂ଵ = +1: 𝑤௝௟, 𝜂ଵ = −1: 𝑤௝௥. 

As an example, we shall consider the Oregonator CNN model [9]: 
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          ௗ௨೔ೕௗ௧ = 𝐷ଵ𝐴ଶ ∗ 𝑢௜௝൫1 − 𝑢௜௝൯ − 𝑎𝑣௜௝ ௨೔ೕି௕௕ା௨೔ೕ = 𝐺ଵ൫𝑢௜௝, 𝑣௜௝൯ 

ௗ௩೔ೕௗ௧ = 𝐷ଶ𝐴ଶ ∗ 𝑣௜௝ + 𝑢௜௝ − 𝑣௜௝ = 𝐺ଶ൫𝑢௜௝, 𝑣௜௝൯  

(13)

According to the above theory, we shall incorporate memristor dynamics in the 
Oregonator CNN model in the following way: 

         ௗ௨೔ೕௗ௧ = 𝐷ଵ(𝑤௜௝௟,௥)𝐴ଶ ∗ 𝑢௜௝൫1 − 𝑢௜௝൯ − 𝑎𝑣௜௝ ௨೔ೕି௕௕ା௨೔ೕ = 𝐺ଵ൫𝑢௜௝, 𝑣௜௝൯ 𝑑𝑣௜௝𝑑𝑡 = 𝐷ଶ(𝑤௜௝௟,௥)𝐴ଶ ∗ 𝑣௜௝ + 𝑢௜௝ − 𝑣௜௝ = 𝐺ଶ൫𝑢௜௝, 𝑣௜௝൯ 

(14)

We present the Oregonator model, above, because we shall study a new reaction–
diffusion-type excitable medium. The Oregonator describes the kinetic chemical reaction 
model of morphogenesis.  

We apply a constructive algorithm for the determination of the locally active region 
and the edge of chaos in our model [6]. First, we find the equilibrium points of (14), i.e., 𝐺ଵ൫𝑢௜௝, 𝑣௜௝൯  = 0 and 𝐺ଶ൫𝑢௜௝, 𝑣௜௝൯  = 0. We obtain three equilibrium points: 𝐸ଵ = (0,0), 𝐸ଶ =(𝑏, 𝑏), and 𝐸ଷ = (−b,−b). Then, we find the four cell coefficients: 𝑎ଵଵ,𝑎ଵଶ, 𝑎ଶଵ and 𝑎ଶଶ. The 
locally active region for each equilibrium point can be defined as follows: 

LAR(𝐸௣): 𝑎ଶଶ > 0, 𝑜𝑟 4𝑎ଵଵ𝑎ଶଶ <  (𝑎ଵଶ + 𝑎ଶଵ)ଶ 

An additional stability condition in this case is: 𝑇𝑟(𝐸௣) < 0 and 𝐷(𝐸௣) >0. 
After checking the above conditions, we obtain the following results: In the 

equilibrium point 𝐸ଵ = (0,0),  we have a stable and locally active region; in the 
equilibrium points 𝐸ଶ = (𝑏, 𝑏), and 𝐸ଷ =(−b,−b), we obtain unstable regions. The 
simulation of the above analysis is presented in Figure 5 below:  

 
Figure 5. Bifurcation diagrams of the Oregonator model for different sets of cell parameters. The 
edge of chaos region is shown in red, the locally active and unstable region is given in green, and 
the locally passive region is blue. In the domain coded with yellow, no equilibrium point exists. 

Some comments on the results obtained in Figure 5 follow: For the numerical 
simulations, we should have information for the behavior of the solutions. One advantage 
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of the above algorithm is its robustness. Therefore, we are able to calculate all the 
necessary processing steps in real-time due to the MCNN programmable realization. Our 
simulations shown in Figure 5 are obtained via MATLAB simulations based on the fourth-
order Runge–Kutta integration.  

The results we obtain after simulating of Oregonator model (14) are as follows:  
(1) the Oregonator model exhibits limit-cycle oscillations and excitatory behaviors, 

which depend on the reaction parameters;  
(2) non-uniform spatial-pattern generation is observed, which depends on the initial 

condition of the Oregonator�s state, memristor polarity and stimulation.  
This will be shown and commented on in Section 6, below. The answer to the 

question: “what happens if one replaces resistors in analog RD LSIs with memristors?” 
will be given. 

6. Applications of MCNN for Pattern Formation 
In this section, we present an application of MCNN considered in the previous 

section to pattern generation. It is important to point out that the following analysis is 
based on the local activity theory [6]. We consider the reaction–diffusion model in our 
investigation. 

Dynamical systems arising in engineering, biology, fluids, chemistry and plasmas 
can develop various patterns. The formation of patterns in hydra was described in the 
famous paper by Turing [61]. There are many patterns in nature, such as seashells [63] and 
animal coats [64], which are modeled by the dynamics of spatial pattern formation. The 
mechanism for fingerprints [65] is described by methods of pattern generation in 
engineering. 

Pattern generation is usually studied theoretically, experimentally or via simulations. 
Direct evidence of reaction–diffusion in physical systems is studied experimentally, but it 
is difficult to control the parameters in these cases. The evolution of the dynamics in 
chemical and biological substrates is very slow. In order to find insights into the effects, 
we must vary the parameters for controlling the reaction and diffusion components 
arbitrarily, by means of theoretical and simulation studies. These investigations are quite 
long because of the modeling assumptions, such as approximations and discretization in 
time and amplitude.  

According to the definition given in [6], MCNN are working in the edge of chaos (EC) 
domain if we can find at least one equilibrium point in the locally active and stable region. 
Depending on the parameters, it is possible to obtain different patterns in the EC domain. 
In the case when there is only one diffusion coefficient in the EC region, static patterns are 
generated. With two diffusion coefficients, it is possible for Turing-like static patterns to 
develop. In this case, the coupling coefficient should be taken, depending on the location 
of the cell parameter point in the boundary region between the locally active and unstable 
domain and the EC domain. It is known that Turing-like patterns can be generated in CNN 
when the cells are in the EC region only for the two-diffusional case. Then, the possibility 
of the emergence of complexity [6] is very high when the cell parameters are in the EC 
domain in both the one-diffusion and two-diffusion cases.  

Below, in Figures 6–9, different kinds of patterns generated in MCNN models under 
consideration are given. 

In Figure 6, Turing patterns arising in a reaction–diffusion system are generated 
when the dynamical system is changed by replacing 𝑢ଶ → ௨మଵା௞௨మ . In this case, with the 
change of the parameter, k, Turing instability occurs, and we obtain the variety of patterns 
shown in the figure. In the simulations λ, 𝜇 and  𝜌 are the parameters of the RD system. 
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Figure 6. Turing patterns in reaction–diffusion MCNN. When the parameter, k, is changed, different 
patterns are obtained. 

As we pointed out in Section 5 for the Oregonator MCNN model, we can determine 
the edge of chaos domain of the parameter sets in which complex behavior can emerge. 
Nonuniform spatial patterns are generated in this model, and they are presented in Figure 
7. The initial state of all the Oregonator�s cells is set to be the inactive state. After 
stimulating the center node, the excitable waves propagated outwards, as shown in Figure 
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8. Among the demonstrated behaviors, the nonuniform spatial-pattern generation is 
applied to investigations detecting the pattern generation due to the memristors. 
Therefore, if one has proper (non-memristive) RD media and a 2-D array of memristors 
without any reaction circuit, and the point dynamics of the RD media are given to the 
memristor array, one may detect the global motions of the RD media. This application is 
not limited to the analysis of RD systems, but the idea can be transferred to analyzing 
much more complex systems, such as brain networks, social networks and so on. 

 
Figure 7. Pattern formation in the Oregonator model studied in Section 5, depending on the initial 
condition of Oregonator�s state, memristor polarity and stimulation. 

 
Figure 8. Spiral waves obtained when the point dynamics of the RD media of the Oregonator MCNN 
model are applied to the memristor array. 
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After the simulations of the Oregonetor model presented in Figures 7 and 8, we make 
the following conclusions: (a) the memristor�s conductances are modulated by excitable 
waves propagating on the memristor, depending on the memristor�s polarity; and (b) the 
velocity of the excitable wave propagation is thus modulated by the change of memristor 
conductance, and the degree of the modulation is inversely proportional to the time 
constant of the memristor�s model. 

Dynamic patterns are usually obtained [6] within the locally active and unstable 
region. Complex behavior can emerge when the cell parameter points are located on the 
boundary between the edge of chaos region and the locally active and unstable region [6]. 
In this sense, the chaotic dynamic patterns, presented in Figure 9, are generated for the 
cell parameter points. Usually, they are very close to the edge of chaos region and within 
the locally active and unstable region. According to the local activity theory [6], when the 
cell parameter points are within the locally passive region, complex behavior is observed 
in MCNN, with some particular cases when the initial conditions are near the equilibrium 
point. Usually, the stability analysis does not give the exact cell parameter domain in 
which the cells are locally passive [6]. Two kinds of pseudo-color codes were introduced 
to graphically exhibit the complex dynamic behavior of the Oregonator array. Extensive 
computer simulations have tested the effectiveness of the local activity theory and have 
displayed the extremely complex behavior of the cells of the reaction–diffusion array 
equations. 

 
Figure 9. Chaotic patterns arising in the locally active and unstable region on the boundary of the 
edge of chaos region for different cell parameter sets. 
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It is well known [65] that some complex systems can self-organize into spatially 
structured states independent of the initial states, which can be unstructured or spatially 
homogeneous. Such phenomena are observed in all scientific fields, for example, in 
physics, biology, social science, etc. In order to explain how such behavior occurs, we need 
some explanation. The experimental simulations are close to the behavior observed in the 
associated set of reaction–diffusion equations. By applying our theoretical analysis of 
MCNN, which is provided for the example of the Oregonator system, we can predict with 
accuracy the dependence of the experimental measures of the obtained patterns on the 
input parameters. By studying the two-layer MCNN, we can understand better the pattern 
formation dynamics of the chip. In this case, we have a stable diffusion process, which 
results in the evolution of such an array of different spatial patterns.  

As a conclusion to this section, we would like to point out that oscillatory patterns, 
static (convergent) patterns and unbounded (divergent) patterns can be formed only in 
cases where the parameter set is determined in the edge of chaos domain. In some 
particular cases, complex patterns can be generated if the cell parameters are in the locally 
active unstable domain, but in the border of the edge of chaos domain. This proves that 
the local activity theory gives us an explicit analytical method for the study of complexity.  

7. Discussion 
There are many models of physical, chemical and biological systems using CNN 

architecture. Because of its continuous-time analog operation, it is possible to provide real-
time signal processing with high precision. This is due to the local interconnection 
between the processing elements, which leads to several digital and analog 
implementations of CNN architecture in the form of very large-scale integrated chips 
(VLSI). Several powerful applications for CNN are reported in the literature, which 
include pattern and image analysis, such as vertical line detection, noise reduction, edge 
detection, feature detection, character recognition, etc. [41–43,45,46,48–50,55]. 

In order to improve the resolution in static and dynamic image processing, it is 
necessary to reduce the size of the processing elements and the connectivity between these 
elements describing the feedforward and feedback templates in the CNN models. It is 
known that the current versions of CNN arrays in CMOS VLSI chips are limited to 16K 
processing elements [66,67]. Recently, some new technologies, such as resonant-tunneling 
diode and quantum dots, implement processing elements in a more compact way to 
improve the resolution of CNN computation. For example, in [68], it is shown that photo-
reversible photochromic compounds are presented and used for the implementation of 
optical synapsis and memory effects which improve pattern recognition significantly. The 
introduction of memristors offers the possibility to significantly enhance the resolution of 
the CNN model of computation [69,70]. The main properties of memrsitors (nonvolatility, 
binary and multiple memory states and nanometer geometries) are important for 
nanofabrication technology. These promising properties of memristors have been 
exploited in their applications in nonvolatile memory, artificial neural networks, etc. [71–
74]. Their conductance can change in response to the applied voltage or current like a 
biological synapse, and that is why they are applied for biological signal processing. In 
[4,38], a compact memristor bridge synapse is presented in order to perform weighting 
and weight programming at different time slots. All resistive switching devices can be 
modeled by mapping the physical processes that underpin their operation to the 
memristive framework. The key is in identifying a state variable that accurately captures 
the important aspects of the system and then describing its dynamic, time evolution in 
response to the memristor�s inputs. The first use of the memristive framework was to 
describe resistive switching, characterizing the behavior of TiO2 devices. Here, the 
memristor was composed of two adjacent regions, doped and undoped, with oxygen 
vacancies, with a movable boundary between the regions while keeping the overall film 
thickness fixed. 
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Memristor devices have a two-terminal nature and the ability to change conductance 
when they are stimulated with voltage pulses and evolve into states which are based on 
the input history. For this reason, they become almost ideal electronic analogies of the 
biological synapses. Moreover, since memristors can be implemented in a crossbar 
architecture, they are adaptive, with high density and large connectivity which leads to 
neuromorphic applications. Memristors can store a static weight as an analog resistance 
value, unlike the conventional artificial neural networks, which offer more complex 
internal dynamics, and, in this way, they can be used to implement different bio-
mimicking learning rules. Memristors can be applied to the direct implementation of 
learning rules, which is a very challenging approach. 

8. Conclusions 
In this paper, we present a review of memristor cellular nonlinear networks from the 

point of view of the theory and applications. We discuss the developments in both fields—
memristors and cellular nonlinear networks. Then, we present, as an example, an MCNN 
model of the Oregonator system, and we apply local activity theory in order to study its 
dynamics. The locally active domain of the parameter space of this model is determined, 
as well as the edge of chaos region. A short presentation of the pattern formation in 
MCNN models is presented at the end of the paper, showing a possible application. The 
solutions calculated in these models can be compared to those of known phenomena in 
excitable media. Furthermore, different excitations are applied to generate non-uniform 
spatial patterns, depending also on the initial condition of the CNN cell state and the 
memristor polarity. 

The local activity theory for reaction–diffusion equations could be generalized to 
other systems. In particular, it is applicable to any system whose cells and couplings are 
described by deterministic mathematical models. In such generalizations, it is very 
important to derive testable necessary and sufficient conditions, which guarantee that the 
system has a unique steady-state solution at t→∞. In the case of equilibrium states, each 
cell must be defined by a strictly monotone increasing function of the port state variables. 
The fact is that a strictly monotone increasing function imposes stronger mathematical 
conditions than a homeomorphic function in 𝑅௡, 𝑛 ≥ 2. One can interpret this definition 
as a generalization of the concept of a strictly monotone increasing function to the function 
space. The general conditions for the case n>2 are obtained during the simulation 
procedure of reaction–diffusion MCNN and can be based on the following conjecture: A 
homogeneous non-conservative medium cannot exhibit complexity unless the cell or the 
coupling network is locally active. 
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