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Abstract: A new parsing method based on the semi-Thue system is described. Similar to, but
with more efficient implementation than Markov normal algorithms, it can be used for parsing any
recursively enumerable language. Despite its computational power, it is meant to be used primarily
for parsing programming and domain-specific languages. It enables a straightforward simulation
of a number of existing parsing algorithms based on context-free grammars. The list includes both
top-down shift-produce methods (such as SLL and LL) and bottom-up shift-reduce methods (such
as LALR and LR), as well as mixed top-down-and-bottom-up methods such as LLLR. To justify
the use of the new parsing method, the paper provides numerous examples of how a parser can
actually be made in practice. It is advised that the main part of the parser is based on some simple
well-established approach, e.g., SLL(1), while syntactically more complicated phrases can be parsed
by exploiting the full power of the new parser. These phrases may either be extensions to the original
language or some embedded domain-specific language. In all such and similar cases, no part of
the language is restricted to be context-free. In fact, context-sensitive languages can be handled
quite efficiently.

Keywords: turing-complete parsing; context-sensitive; error recovery

MSC: 68Q45

1. Introduction

Many of the most widely used compilers nowadays typically use hand-coded recursive-
descent parsers. Good examples are GCC C/C++ compilers, which initially used bison-
generated LALR parsers, and Clang/LLVM C/C++ compilers. The two most often cited
reasons are as follows. First, as recursive-descent parsers perform top-down parsing, it
is known not only which phrase is being parsed at each moment, but also its position in
the abstract syntax tree. Thus, it is usually easier to generate precise error messages and
implement good error recovery techniques in recursive-descent parsers than in bottom-up
parsers. Second, a programming language usually contains only a few constructs that are
hard to parse. For instance, when a programming language is extended, new constructs are
often syntactically more complicated than the existing ones, as these must not be altered to
maintain backward compatibility—Java was initially specified by an LALR grammar [1],
but after the first extensions were introduced, the grammar in the specification ceased to
adhere to LALR requirements [2]. However, various modifications or even hacks, e.g., the
local lookahead extension, can be much easier added to a hand-coded recursive-descent
parser than to a generated one [3].

Not even ANTLR, perhaps the most advanced parser generator, can fulfill the second
of the two requirements fully. Based on ALL(∗) parsing [4], it cannot handle, for instance,
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mutually left recursive symbols or indirect left recursion [5]. Hence, a parser, which pro-
vides a good error recovery and is capable of parsing even the most complicated constructs,
is needed. To address all these issues, the paper provides the following contributions:

1. Formulation of a new parsing model called the LLR-system. It is a Turing-complete rewrit-
ing (semi-Thue) system similar to Markov normal algorithms [6,7] on the one hand
and to a context-sensitive reduction system [8] on the other hand. Its computational
power enables parsing far beyond the limit of context-free languages, but, in the con-
text of parsing programming and domain-specific languages [9,10], it can (i) deal with
the most complex language constructs and (ii) to enable the implementation of parser
functionalities that would otherwise be implemented by augmenting or modifying
the parser source code, i.e., outside the formalism on which the parser is based.

2. Representation of existing parsing algorithms in the LLR-system. It is demonstrated how
canonical LL and LR parsing and their simplified variants, namely SLL and LALR
parsing, can be implemented using the LLR-system. Furthermore, it is demonstrated
how bidirectional parsing, i.e., a mixture of top-down and bottom-up parsing similar
to LLLR parsing [11,12], can be implemented in the most natural way. This makes
many important patterns needed to build language recognizers readily available.

3. Modelling and implementation of error recovery. It is shown how two of the most widely
used techniques, namely the panic-mode and phrase-level error recovery, can be
described naturally as a part of the LLR-system. Furthermore, as the LLR-system
can start parsing in the middle of a sentential form (as demonstrated in WEB and
CWEB [13,14]), it can simply restart parsing past the point of a syntax error if other
error recovery methods fail.

The LLR-system, defined here for the first time, is basically a very simple method,
but, just as any other parsing method, it requires some expertise to implement a parser.
This paper thus focuses (a) on the definition of the LLR-system; (b) on providing examples
that help one to start gaining skills in implementing parsers based on the LLR-system, as
its underlying principle and rules are different from those of context-free grammars; and
(c) on demonstrating that, once implemented, the LLR-system is nevertheless an efficient
language recognizer, despite being a more general and powerful computation model than
context-free grammars and pushdown automata.

This paper assumes that the reader shares a good knowledge of context-free parsing
as exposed by, for instance, Sippu and Soisalon-Soininen [15,16] or Grune and Jacobs [17].
After the section on related work, the core of the paper starts with Section 3, containing the
definition of the LLR-system. In Section 4, a formulation of the aforementioned parsing
algorithms in the LLR-system is described and supported by examples. Implementation
of error recovery is described in Section 5. In Section 6, the efficiency of parsers based on
LLR-systems is demonstrated on a real programming language and source files. After the
conclusion, the appendix contains a proof, and then the LLR-system is Turing-complete.

2. Related Work

As mentioned above, the two models most similar to the LLR-system in terms of
how the parser is specified are Markov normal algorithms [6,7] and the context-sensitive
reduction system [8]. Because of their similarity, they will be compared to the LLR-system
in Section 3, where the LLR-system is defined. However, as the LLR-system is Turing-
complete, it is, to some extent, similar to hand-coded parsers, as they can most easily be
augmented with an auxiliary code implementing parts of a parser that require computa-
tional strength beyond any context-free language formalism. Among hand-coded parsers,
the recursive-descent implementation of the SLL(1) parsers for context-free languages is
the most widely used example of this kind [15,17,18].

In general, the syntax of programming and most domain-specific languages is de-
scribed by context-free grammars [19], while common non-context-free features of these
languages, e.g., scopes and namespaces, are usually dealt with throughout a lexical, syntax
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and semantic analysis [18,20,21]. These features are dealt with informal techniques as stan-
dard lexers, or the context-free parser can be augmented with context-aware lexers [22–24].

Another way is using context-free parsers extended with a subset of approaches used
for parsing specific types of non-context-free language constructs and features. [25]. One
such approach is stateful parsing, which maintains a global parse-wide state. Whenever a
context-free formalism proves to be too weak, a stateful parser compensates its weakness
by manipulating the state. This can be conducted within a hand-written parser, within a
yacc-generated parser [26], or if parser combinators are used. [27,28].

ANTLR4 [5], which is one of the most popular and advanced parser generators nowa-
days, implements ALL(∗), i.e., adaptive LL parsing, and provides support for scannerless
parsers and predicated ALL(∗) grammars [4]. Its scannerless parsers are useful for resolv-
ing context-sensitive lexical issues. Predicated ALL(∗) grammars use (a) side-effect-free
semantic predicates to ensure a particular production can be applied in a given context and
(b) mutators, to alter the sentential form, if needed. Strictly speaking, a predicated ALL(∗)
grammar generates “a recursively enumerable language because each mutator can be a Tur-
ing machine. In reality, grammar writers do not use this generality so it is standard practice
to consider the language class to be the context-sensitive languages instead” [4]. ANTLR4
can express a non-context-free language using semantic predicates and mutators. These
must be implemented in a host language and are therefore an extension of the formalism,
not a part of it.

Stateful parsers can be used for parsing non-context-free languages, but a lot of
discipline is required to write and maintain them. One example of making a stateful parser
manageable in practice is adding backtracking to LR parsing, in order to make a parsing of
ambiguous context-dependent languages, e.g., C++, possible [29]. It takes a lot of effort to
parse context-dependent language features using GLR and GLL parsing, because multiple
copies of global data structures must be maintained. To avoid this, three kinds of semantic
actions are used in the backtracking of LR parsing: trial actions for directing future parsing,
undo actions for reverting side-effects of trial actions, and final actions for reductions that
can never be undone [29]. As above, context-sensitive constructs are not formulated with
grammar productions but with semantic actions expressed in a host language. At each step,
such parsers can select the next action by only using the part of the input that has been
parsed so far, while the proper context-sensitive parsing is not bound by this limitation [8].

In principled stateful parsing [30], the idea of using a number of predefined primitive
operations for inspecting and altering a mutable parse-wide state is used. This opera-
tion focuses mostly on dealing with a set of specific context-sensitive features, including
the namespace classification, handling of whitespace, and alike, but they may prove use-
ful in general. Similar to ANTLR’s predicated grammars or principled stateful parsing,
data-dependent grammars [31,32] use semantic values to augment productions. If the
GLL parsing algorithm is used with data-dependent grammars, context-sensitive lexical
problems and indentation-sensitive rules can be dealt with effectivelly [33].

Some approaches are stronger than classical algorithms for parsing context-free lan-
guages. One such approach is based on the parsing expression grammars (PEGs): pro-
ductions in PEGs are ordered similarly to Markov normal algorithms. PEG parsing can
parse some non-context-free languages and it is also possible “to construct a PEG language
which is complete for P under log-space reductions”, but even-palindromes cannot be
parsed using a PEG parser (meanwhile, obviously, they can be generated by a context-free
grammar) [34]. A memoizing PEG parser called Rats! [35] expresses rules witnin transac-
tions. Hence, the state changes (as in stateful parsing) can be undone whenever certain
conditions cannot be satisfied; meanwhile, Nez, another PEG parser generator, focuses on
the declarative parser specifications [36–38]. Likewise, parser combinators “are a middle
ground between the fine control of hand-rolled parsers and the high-level almost grammar-
like appearance of parsers created via parser generators” [28]. Moreover, monadic parser
combinators can deal with context-sensitive language constructs [39]. The global state,
however, needs to be sent around the parser code during parsing. Hence, adding the
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reduction automaton to the monadic parser would most likely result in a significantly more
complex implementation of the latter.

In contrast with the computational power of the LLR-system (or the context-sensitive
reduction system), most authors focus on typical concrete non-context-free features found
in most programming languages. The list of such features includes the indentation sensitiv-
ity of Python or Haskell, typedef names in C/C++, HERE document in Perl, user-defined
operators with custom precedence, and associativity or Ruby [30,31,33,36,37]. However,
the true general context-sensitive parsing algorithms are rare: one is a general context-
sensitive parsing algorithm that finds each derivation only once [40] and the other is a
CYK-like tabular algorithm for context-sensitive languages [41]. To reduce the complexity
of context-sensitive parsing, it was suggested that weakly context-sensitive languages [42]
and loop-free context-sensitive languages [43] could be used as models for parsing pro-
gramming languages.

The summary of the most important approaches for parsing non-context-free lan-
guages is shown in Table 1. Note, however, than many approaches could be included into
the right column if semantic rules are misused for parsing. For instance, as non-context-free
constructs can be parsed by a user-supplied code within a semantic action in, say, yacc or
bison, these two tools could, in principle, be included into the topmost boxes in the right
column of Table 1.

Table 1. Summary of different approaches for parsing non-context-free languages.

Strength Supported by the Formalism If Augmented by Code

Turing-complete Markov normal algorithms [6,7] Predicated ALL(∗) [4] (if mutators are abused)
LLR-systems

Context-sensitive Woods algorithm [40]
CYK-like tabular algorithm [41]
CS reduction systems [8]

Limited context-sensitive Weakly context-sensitive languages [42] Backtracking LR [29] (can be done safely)
Loop-free context-sensitive languages [43] Principled stateful parser [30]
ALL(∗) [4,5] Data-dependent grammars [31,32]
PEG parsing [34]
Context-aware lexers [22–24]

However, most parser algorithms used nowadays are descendants of relatively old al-
gorithms, e.g., the canonical LR and LL parsing [44,45] or even PEG parsing [46]. However,
although extensively studied [17,18], error recovery has never been formalized to the same
extend as parsing. After all, actual errors made by programmers are hard to formalize and
any definition would most likely not match the definition of a syntax error as detected by
a particular parser [16]. Even more, most error recovery methods are either automatic or
implemented outside the formalism used for specifying the syntax of a language being
parsed, or both.

In practice, the error recovery approach for predictive top-down parsers made popular
by Wirth [47] resulted in two most widely used methods: panic-mode error recovery and
phrase-level error-recovery. Two well-known LALR parser generators, namely yacc and
bison, provide an error token to support simple and rather inflexible panic-mode error
recovery [26]. The ANTLR4 parser generator performs automatic error recovery, which
supports a single symbol insertion or deletion [4], i.e., a combination of both methods, but
occasionally requires that the entire input is reparsed and offers the parser writer little
authority over error recovery actions.

Various parsing libraries often lack the support for error recovery. One library that
does care about it, namely Parglare, implements panic-mode error recovery for its LR and
GRL parsers [48]. Furthermore, it allows replacing panic-mode recovery by a custom
strategy, albeit written in Python and thus not expressed formally. PEGs had been known
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for not having a good error recovery algorithm, but using “labeled failures”, it is now
possible to overcome this problem [49]. Even more, automatic error recovery has been
designed for PEG parsing [50], but again it leaves little space for customization by the
parser writer. Likewise, it is possible to perform automatic and language-independent
error recovery in generalized LR parsing [51].

Note, however, that all these approaches are either based on augmenting the syntax
describing formalism, e.g., with an error token, as in yacc and bison, or automatic. In
either case, they are an addition to the formalism that the parser is based on and, more
often than not, implemented by an auxiliary algorithm. None of these approaches supports
the implementation of error recovery “within a system” (other than in a very limited form).
To combat the degree of freedom in specifying error recovery, some approaches are based
on designing sophisticated patterns used for describing error recovery [52].

As shown in Table 1, LLR-systems and Markov normal algorithms are the only Turing-
complete formalisms that have been or are being proposed for parsing programming and
domain-specific languages. Unlike other formalisms in Table 1, they can parse any language
construct no matter the complexity of the language syntax. However, Markov normal
algorithms were never used for parsing because they were considered hard to design and
slow to run [53]. Furthermore, no approach other than the LLR-system can implement
the error-recovery within a system, e.g., using productions of a context-free or parsing
expression grammar.

3. Longest-Leftmost Rewriting System
3.1. Notions and Notation

An alphabet Σ is a finite set of symbols. A string w is a finite sequence of symbols
from Σ. Sets Σ∗ and Σ+ contain all strings over Σ and all strings over Σ except the empty
string, respectively. An empty string is denoted by ε and the length of a string w is denoted
by |w|. Expression k : w, where k ≥ 0 and w ∈ Σ∗, denotes the prefix w consisting of the
first k symbols of w (or the entire w if |w| ≤ k). A language L over Σ is a set of finite strings
over Σ, i.e., L ⊆ Σ∗.

3.2. Rewriting Systems

A rewriting (or semi-Thue) system is a pair G = 〈V, R〉, where V is a finite set of symbols
and R is a finite binary relation on V∗ [15]. A pair (α, β) ∈ R is called a rule and is written
as α −→ β. A string v ∈ V∗ is called a sentential form.

A sentential form v1 derives another sentential form v2 using rule r = α −→ β if and
only if v1 =⇒r

G v2, where a relation =⇒r
G is defined as

=⇒r
G = {(ω1α ω2, ω1β ω2); ω1, ω2 ∈ V∗}.

Likewise, v1 derives v2 using a rule string π ∈ R∗ if and only if v1 =⇒π
G v2, where a

relation =⇒π
G is defined inductively as

=⇒ε
G = idV∗

=⇒π
G = =⇒r

G · =⇒π′
G

where π = rπ′ for some r ∈ R and π′ ∈ R∗. In the above definition, idA denotes the
identity relation {(a, a); a ∈ A} and operator · denotes the (relational) product of relations
R1 ⊆ A× B and R2 ⊆ B× C, defined as

R1 · R2 = {(a, c); a R1 b ∧ b R2 c for some b ∈ B}

for some sets A, B and C [15].
Furthermore, =⇒∗G denotes =⇒π

G for any π ∈ R∗. The subscript denoting the actual
rewriting system in the names of these relations, e.g., G, can be omitted whenever the
rewriting system can be deduced from the context.
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Formal grammars are special cases of rewriting systems. Let N and T be finite and
disjoint sets of nonterminal and terminal symbols, respectively, and let V = N ∪ T. A gram-
mar G is defined as G = 〈N, T, P, S〉, where S ∈ N is the start symbol and P ⊂ V+ ×V∗ is
a finite set of productions α −→ β ∈ P. If α ∈ N, the grammar is said to be context-free.
If 0 < |α| ≤ |β|, the grammar is context-sensitive. Sometimes these grammars are called
Type 1 monotonic grammars, while the term context sensitive grammars is reserved strictly
for grammars consisting of productions, where exactly one nonterminal symbol on the
left side is substituted by a nonempty string of symbols [17]. However, because each
context-sensitive grammar in the stricter sense can be transformed into a Type 1 monotonic
grammar [19], the former are considered just a normal form of the latter and no distinction
needs to be made for the purpose of this paper. If α ∈ N and β ∈ V∗, the grammar is said to
be context-free. For a context-free grammar G, the standard definitions of functions FIRSTGk
and FOLLOWGk are assumed [15,18,19].

Many models for describing various classes of formal languages are special cases of the
rewriting system. The list of these special cases includes “generators” such as context-free
or context-sensitive grammars, on the one hand, and “recognisers” such as LL and LR
parsers, on the other hand. Note that both, namely generators and recognizers, can be
considered as models describing a particular language, but the distinction between these
two groups resembles the way they are typically used in practice. However, unlike many
of its special cases, the rewriting system is Turing-complete and is thus far more general
then just being either a language generator or a language recogniser.

3.3. Longest-Leftmost Rewriting System

Being so general, the rewriting system as defined above permits nondeterminism and
therefore it is not very efficient if used as a language recognizer. To alleviate the efficiency
issues to a significant degree, the longest-leftmost rewriting system (LLR-system), a special
case of the rewriting system, is defined as

R = 〈V, T, R, S, [[, ]]〉,

where V is a finite set of symbols, T ⊆ V is a set of terminal symbols, R ⊂ V+ × V∗ is a
set of rules, S ∈ V \ T is the goal, and [[, ]] ∈ V \ T are left and right markers. Apart from
specifying T, S, and both end markers, the LLR-system differs from the general rewriting
system in the form of rules and how rules are used in derivations.

Regarding the form of rules, there are two restrictions:

1. The left sides of two distinct rules in R must be different, i.e.,

α −→ β ∈ R =⇒
(
∀α′ −→ β′ ∈ R : α′ 6= α ∨ β = β′

)
.

2. No rule can introduce, eliminate nor move a left or right marker, i.e.,

∀α −→ β ∈ R : ∃ α′, β′ ∈ V \{[[, ]]} :(
(α −→ β = α′ −→ β′) ∨ (α −→ β = [[α′]] −→ [[β′]]) ∨
(α −→ β = [[α′ −→ [[β′) ∨ (α −→ β = α′]] −→ β′]])

)
.

Regarding the usage of rules in derivations, the LLR-system enforces the longest-
leftmost principle which states that, when considering a sentential form at each step of
a derivation, the longest of its leftmost substrings constituting the left side of some rule
in R is replaced by the right side of that rule. Therefore, a single step of using a rule
r = α −→ β ∈ R in a derivation is described by a relation (=⇒r

R) ⊆ V∗ ×V∗, where

ω1α ω2 =⇒r
R ω1β ω2

if and only if

1. ω1, ω2 ∈ V∗ (as in a general rewriting system) and
2. The condition
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ω′1α′ω′2 = ω1α ω2 =⇒ |ω1| < |ω′1| ∨ (|ω1| = |ω′1| ∧ |α| ≥ |α′|)

holds for all ω′1, ω′2 ∈ V∗ and α′ −→ β′ ∈ R (as required by the longest-leftmost principle).

The combination of (a) the first restriction on the form of rules, which ensures distinct
left sides of rules in R, and (b) the longest-leftmost principle for selecting the next rule
makes the LLR-system deterministic. The second restriction on the form of rules, which
preserves the position of the left and the right marker, simplifies things in a similar way, as
does augmenting the context-free grammar with $.

The language accepted by the LLR-system is defined as

L(R) = {v ∈ T∗; ∃π ∈ R+ : [[ v]] =⇒π
R [[S]]}.

Hence, a parsing process is the longest possible derivation

[[w]] = v0 =⇒r1
R v1 =⇒r2

R v2 =⇒r3
R . . . =⇒rn

R vn,

where w = v is the input string and vn is the result. If vn = [[S]], parsing is successful, i.e.,
w ∈ L(R), and π = r1r2 . . . rn represents the parse of w in regard toR.

Example 1. Consider an LLR-system for language {anbncndn; n ≥ 0} with the following rules:

[[ a −→ [[ A Aa −→ aA Bb −→ bB Cc −→ cC
Ab −→ B Bc −→ C Cd −→ ε [[ ]] −→ [[ S ]]

Parsing of string aabbccdd proceeds as follows (symbols that represent the left side of a rule to
be applied at each step are underlined):

[[ aabbccdd ]] =⇒ [[ Aabbccdd ]] =⇒ [[ aAbbccdd ]] =⇒ [[ AAbbccdd ]] =⇒
=⇒ [[ ABbccdd ]] =⇒ [[ AbBccdd ]] =⇒ [[ BBccdd ]] =⇒ [[ BCcdd ]] =⇒
=⇒ [[ BcCdd ]] =⇒ [[ CCdd ]] =⇒ [[ Cd ]] =⇒ [[ ]] =⇒ [[ S ]]

The last rule, i.e., [[ ]] −→ [[ S ]], extends the sentential form: the reader is invited to rewrite
this LLR-system to an equivalent one where no rule extends the sentential form.

Defined here for the first time, the LLR-system is meant to be used as a model of a
language recognizer, i.e., parser, which transforms its input into a single symbol. At each
step, it transforms the current sentential form into the next one: in step i, it transforms vi−1
into vi using some rule ri ∈ R chosen according to the longest-leftmost principle.

3.4. Similar Models

A context-sensitive reduction system [8] is a special case of the LLR-system. It differs
from the LLR-system by imposing another restriction on the form of rules: the length
of the rules’ right side cannot not exceed the length of its left side. As the rules of the
context-sensitive reduction system never make the sentential form being processed longer,
they are called reductions and the system itself is called a reduction system.

Switching the sides of the additional restriction yields the restriction on productions
of context-sensitive grammars. Hence, the context-sensitive reduction system can be
used to recognize deterministic context-sensitive languages even though in practice it
has so far been used to parse context-free languages [13,14]. However, by avoiding the
additional restriction, the LLR-system offers a more natural implementation of parsers,
both traditionally table driven or manually written.

Another model similar to the LLR-system is a Markov normal algorithm [6]. It has been
defined for studying various problems regarding computability [7,54,55] and is very similar
to the LLR-system, except that the next rule is not chosen as required by the longest-leftmost
principle. Instead, rules are indexed and a rule with a lower index takes precedence over
all rules with higher indices regardless of where in a sentential form a rule can be applied.
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Still, if a sentential form contains several appearances of the left side of a rule, the leftmost
one is selected and subsequently replaced by the rule’s right side. Furthermore, a rule
designated as terminal ends a derivation that could have been extended further, had such a
rule not have been terminal.

Both the LLR-system and the Markov normal algorithm are Turing-complete rewriting
systems (see Theorem A1 in Appendix B for the former and [7] for the latter) and thus
equivalent. However, to a person trained in formal grammars, the LLR-system might
feel like a more natural model than the Markov algorithm with its indexed set of rules.
Furthermore, the latter’s formulation “makes it difficult to specialize subclasses of Markov normal
algorithm’s performing particular tasks” [53] and, despite some efficiency improvement [56],
it has been noted that the implementation of Markov normal algorithms “is intrinsically
slow” [53].

3.5. Implementation

Even though the LLR-system is fully deterministic, once efficiency issues are consid-
ered, its implementation is not as straightforward as one would assume or wish. There are
two main issues to be resolved:

1. How to determine:

(a) Which rule must be applied to a given sentential form;
(b) Where in the sentential form it must be applied efficiently? (As it turns out,

these two questions are inseparable and therefore considered a single issue.)

2. How to represent the sentential form so that both the selection and application of the
next rule can be performed as efficiently as possible?

Regarding the first issue, i.e., selection and application of a rule at each step, the
problem is as follows : given a set of nonempty strings over V, i.e., the left sides of all rules
inR, and a sentential form v, find such strings ω1, ω2 ∈ V∗ and rule r = α −→ β ∈ R that

v = ω1α ω2 =⇒r
R ω1β ω2.

By the definition of =⇒r
R, there should be no other strings ω′1, ω′2 ∈ V∗ and no other

rule r = α′ −→ β′ ∈ R so that v = ω′1α′ ω′2, and |ω′1| < |ω1| ∨ (|ω′1| = |ω1| ∧ |α′| ≥ |α|)
would hold.

As the problem of selecting the next rule and finding the position of its application does
not depend on the length of rules’ right sides, it is exactly the same as if the context-sensitive
reduction system is considered. Since the problem is the same, so are the solutions [8]:

1. Full backward jumping algorithm:
The naive approach is to start at the beginning of the current sentential form v =
X1X2X3 . . .: if there are some left sides of rules in R that are prefixes of X1X2X3 . . ., then
the longest one is selected and it must be applied at position 1 (ω1 = ε); otherwise,
if there are some left sides that are prefixes of X2X3X4 . . ., then the longest one is
selected, and it must be applied at position 2 (ω1 = X1), etc. If none is found, the
parsing is over.
This is performed at each step of parsing independently, without any information
about the part of the sentential form already scanned being carried from one step to
another; at each step, the algorithm jumps back all the way to the beginning of the
(transformed) sentential form.

2. Limited backward jumping algorithm:
If the rule α −→ β has been applied in the previous step at position i, rule α′ −→ β′

cannot be applied in the next step left of position (i− (|α′| − 1)), as otherwise, the
rule α′ −→ β′ should have taken precedence over α −→ β in the previous step. Even
more, depending on the overlapping of β and α′, the first position, where α′ −→ β′

is applicable in the next step, might be even further to the right (sometimes so much
that it is actually a jump forward). Hence, instead of jumping back to the beginning of
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v, the algorithm must jump back only as far as the rule with the longest backward
jump relative to β requires (see [8] for full details).
This approach is implemented in WEB and CWEB [13,14], where the parsers are
implemented by hand. A Deterministic Finite Automaton (DFA) for finding out which
left side matches at the given position is implemented by a series of nested case (WEB
is written in Pascal) and switch (CWEB is written in C) statements. Although error
prone, the length of a backward jump for each right side is calculated by hand.
A very similar technique is used in optimizing the implementation of Markov normal
algorithms [56]. However, because the indexation of rules introduces precedence,
the lengths of rules already applied are kept on the auxiliary stack, which makes
implementation slightly more complicated.

3. DFA-based algorithm:
The main idea is to keep states that a DFA, which is used to determine what rule and
where, is to be applied to at each step and passed for reuse in the subsequent steps. If a
DFA was used to determine that a rule α −→ β should be applied to a sentential form
v = ω1α ω2, the states that the DFA passed when scanning ω1 should be stored for
later use. Once the rule has been applied, i.e., when the sentential form is transformed
into ω1β ω2, the DFA can immediately continue scanning β ω2 starting from the state
it reached after reading ω1.
The appropriate DFA can be generated using the same procedure as for the context-
sensitive reduction system [8]; alternatively, but with less insight into the meaning of
particular states, the algorithm for transforming a regular expression into a POSIX
DFA can be used as well [57].

As described in [8], the states of the DFA, which is used for finding the longest leftmost
left sides of rules in the sentential form being parsed, are modeled by sets of items. An
item [α1 · α2 + η], where α1α2 is the left side of some rule in R and α2 = ε ∨ η = ε, in
state q denotes two possibilities. If α2 6= ε, then α1 has just been seen, but α2 are still to
be seen. Otherwise, if α2 = ε, then α1η has just been seen and α1α2 can be selected to be
replaced by a rule if and only if there is no other item that could provide, by reading a
few more symbols, another left side that starts earlier or is longer. Check [8] to see how
items start canceling each one out when one item cannot ever trigger a reduction for being
overshadowed by another.

Example 2. To observe the difference between the three algorithms used for determining which rule
is to be used at the next step and where, consider another LLR-system

bc −→ BC bB −→ Bb Cc −→ cC
aB −→ ε Cd −→ ε [[ ]] −→ [[ S ]]

for language {anbncndn; n ≥ 0}. The parsing of string aabbccdd is shown in Figure 1.
Full backward jumping is simple to understand, but limited backward jumping deserves a bit

of an explanation. After the first rule, i.e., bc −→ BC, has been applied, the sentential form changes
to [[aabBCcdd]]. No rule can be applied to the prefix [[aab—if this was possible, that rule should
have been reduced first (the leftmost component of the longest leftmost principle). However, when
the parser is being made, all possible contexts of the newly inserted right side BC must be considered
(the dot represents a wildcard standing for any symbol):

the right side of b c −→ B C . B C . . ∆
the left side of b c −→ B C . . . b c +2
the left side of b B −→ B b b B . . . −1
the left side of a B −→ ε a B . . . −1
the left side of C c −→ c C . . C c . +1
the left side of D d −→ ε . . C d . +1
the left side of [[ ]] −→ [[ S ]] . . . [[ ]] +2

min = −1
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Hence, as the minimal ∆ for b c −→ B C is −1, the next rule can only be applied at a position
that is 1 place left of B (of BC just inserted) or, if this is not possible, somewhere further to the
right. All subsequent steps follow the same reasoning but the minimal ∆ must be computed for each
rule separately.

The DFA-based algorithm uses the reduction automaton shown in Figure 2. In the initial
state, q0, there are items denoting the starting points of all left sides of rules in R. In every other
state, there is also a possibility that any left side starts right there. In this simple example, no item
canceling happens—see [8] to observe this.

Note, however, that there exist cases when the limited backjumping outperforms the DFA-based
approach: parsing the only string of language {ε} using the LLR-system containing a single rule
[[ ]] −→ [[ S ]] requires two symbol operations with the former approach but five with the latter. An
LLR-symbol consisting of rules [[ a −→ [[ and [[ ]] −→ [[ S ]] represents another example.

The second issue, i.e., how to represent the sentential form efficiently, is important because a
rule can be applied anywhere in the sentential form and can expand or contract it. In general, a
double-linked list works fine, but there are two alternatives:

1. If the LLR-system is used to emulate known context-free parsing algorithms (see Section 4),
which in one way or another use a stack, then it is wise to use an array for representing the
sentential form.

2. If the LLR-system is used to parse very long programs of a language where it must traverse
the sentential form from the left and right many times in order to apply rules at big distances
(consider parsing string anbncndn for n = 1010 using the LLR-system from Example 2),
random access lists might be preferred [58].

Once these two issues are resolved, the implementation of the LLR-system is much the same as
the implementation of the context-sensitive reduction system [8].

Full backward Limited backward DFA-based

by rule bc −→ BC –
[[

––
a

––
a

––
b

––
b

–
c c d d ]] 10 cmps –

[[
––
a

––
a

––
b

––
b

–
c c d d ]] 10 cmps

0
–
[[
4
–a
1
–a
1
–b
2
–b
2
–c
*
c d d ]] 6 cmps

by rule bB −→ Bb –
[[

––
a

––
a

––
b

–
BC c d d ]] 8 cmps [[ a a –b –BC c d d ]] 2 cmps

0
[[
4
a
1
a
1
b
2
–B
*
C c d d ]] 1 cmp

by rule aB −→ ε
–
[[

––
a

––
a

–
B bC c d d ]] 6 cmps [[ a –a –B bC c d d ]] 2 cmps

0
[[
4
a
1
a
1
–B
*
bC c d d ]] 1 cmp

by rule Cc −→ cC –
[[

––
a

––
b

––
C

––
c d d ]] 8 cmps [[ a –b ––

C
––
c d d ]] 6 cmps

0
[[
4
a
1
–b
2
–C
3
–c
*
d d ]] 3 cmps

by rule bc −→ BC –
[[

––
a

––
b

–
c Cd d ]] 6 cmps [[ a –b –c Cd d ]] 2 cmps

0
[[
4
a
1
b
2
–c
*
Cd d ]] 1 cmp

by rule aB −→ ε
–
[[

––
a

–
BCCd d ]] 4 cmps [[

–a –BCCd d ]] 2 cmps
0
[[
4
a
1
–B
*
CCd d ]] 1 cmp

by rule Cd −→ ε
–
[[

––
C

––
C

–
d d ]] 6 cmps –

[[
––
C

––
C

–
d d ]] 6 cmps

0
[[
4
–C
3
–C
3
–d
*
d ]] 3 cmps

by rule Cd −→ ε
–
[[

––
C

–
d ]] 4 cmps [[

–C–d
]] 2 cmps

0
[[
4
C
3
–d
*
]] 1 cmp

by rule [[ ]] −→ [[ S ]] –
[[

–
]] 2 cmps –

[[
–
]] 2 cmps

0
[[
4
–
]]
*

1 cmp

–
[[

––
S

–
]] 4 cmps [[ S ]] 0 cmps

0
–
[[
4
–S
0
–
]]
0

3 cmps

58 cmps 34 cmps 21 cmps

Figure 1. Comparison of parsing string aabbccdd using the LLR-system defined in Example 2 (symbols
checked and states entered at each step of parsing are typeset in red and underlined, while states
typeset in green were inherited from the previous step; the asterisk denotes the position where the
DFA recognized the left side of a rule).
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STATE q0
[ε · bc + ε]
[ε · bB + ε]
[ε · aB + ε]
[ε · Cc + ε]
[ε · Cd + ε]
[ε · [] + ε]

STATE q1
[a · B + ε]
+ items of q0

STATE q2
[b · c + ε]
[b · B + ε]
+ items of q0

STATE q3
[C · c + ε]
[C · d + ε]
+ items of q0

STATE q4
[[[ · ]] + ε]
+ items of q0

[aB · ε + ε] [bB · ε + ε]

[bC · ε + ε]

[Cc · ε + ε]

[Cd · ε + a]

[[[ ]] · ε + a]

REDUCTION AUTOMATON

REDUCTION ITEMS

a

b C [[

B B

C

C

d

]]

Figure 2. The DFA used by the LLR-system defined in Example 2 (the missing transitions on a, b, C
and [[ lead to states 1, 2, 3 and 4, respectively; all other missing transitions lead to state 0).

4. Parsing Context-Free Languages

As the LLR-system is Turing-complete, there is no question about what can or what
can not be achieved by it. Hence, the more pressing question, by far, is how easy it is to
implement a language recognizer, i.e., parser, using an LLR-system for, say, present and
future programming and domain-specific languages. To answer this question, it is worth
looking at how it relates to other known parsing algorithms first. As the LLR-system is
defined in this paper for the first time, the formulations presented in this section should
serve as the initial pool of patterns helping someone to start using LLR-systems for parsing.
Note that most of them are not applicable even to the context-sensitive reduction system [8],
because they depend heavily on being possible to extend the current sentential form that is
being parsed.

Be aware that the exposition starts with trivial formulations of existing parsing algo-
rithms. However, this triviality is the point: it makes the LLR-system easier to understand
and use for someone trained in mainstream parsing algorithms. Furthermore, the examples
in this section are essential, as they are meant to illustrate, beyond the formal schemes
provided, how a parser can be constructed.

4.1. Top-Down Parsing: SLL and LL

The simplest and by far the most widely used top-down parsing method is SLL(1)
parsing [15]. It represents the theoretical model for handwritten recursive-descent parsers,
which are (usually slightly augmented with a trick or two) built into many of the most
widely used compilers nowadays, e.g., GCC and Clang/LLVM implementations of C and
C++ compilers.

An SLL(k) parser for grammar G = 〈V, T, P, S〉 ∈ SLL(k), where the T ⊂ V, as in [15],
can be implemented as an LLR-systemR = 〈V, T, R, S, [[, ]]〉 with a set of rule R, defined as

startup rules: [[ a −→ [[ SSa ∈ R ∀a ∈ T ∪ {]]}
shift rules: aa −→ ε ∈ R ∀a ∈ T

produce rules: Ax −→ XnXn−1 . . . X1x ∈ R
∀A −→ X1X2 . . . Xn ∈ R ∧
∀x ∈ FIRSTG

′
k (X1X2 . . . XnFOLLOWG

′
k (A)),

where V = {S, [[, ]]} ∪ {X; X ∈ V} ∪ T and [[, ]] 6∈ V; G ′ is ]]-augmented grammar G, i.e.,
using ]] as the “end-of-file” marker. The idea behind this scheme is simple:
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1. During parsing, the sentential form at each step has the form [[Sδw ]], where δ, a
string consisting of the “overlined” symbols, represents the LL stack, and w, a string
consisting of the not-“overlined” symbols in T, represents the remaining input.

2. At the beginning, one of the startup rules inserts S, which ensures that no startup rule
can be applied again, and S, which represents the initial stack contents.

3. Once the stack has been set up, shift and produce rules are applied just as they would
be applied by an SLL(k) parser. If and only if the input belongs to L(G), the stack
contents and the remaining input are eliminated and the accepting sentential form
[[ S ]] remains.

Example 3 (Dealing with the right recursion). As the scheme for SLL(k) parsers is so straightfor-
ward, an example instead of a rigorous proof, e.g., the induction on the length of a derivation, should
suffice. Consider a fragment of a programming language grammar described by EBNF productions

S −→ id = E
S −→ begin S { ; S } end

where E is considered a terminal for a moment. To rewrite the above grammar into an LLR-system,
S { ; S } describing a sequence of statement is replaced by a new nonterminal L. Thus, the following
startup and produce rules are obtained first (the shift rules are trivial and thus not listed here):

S −→ id = E
S −→ begin L end

=⇒
[[ x −→ [[ S S x

S id −→ E= id id
S begin −→ end L begin begin

The first rule is actually a set of rules, where x stands for any terminal of this little language.
The sequence of statements is treated in the most standard way, namely

L −→ S L′
L′ −→ ε
L′ −→ ; S L′

=⇒
L x −→ L′ S x

L′ end −→ end
L′ ; −→ L′ S ; ;

where x ∈ FIRST(SL′FOLLOW(L)) = {id, begin, if} (as anyone familiar with SLL parsing
knows, x could also be left out entirely).

To see how parsing works, consider the first few steps of the parsing string begin id = E;
id = E end:

[[ begin id = E ; id = E end ]]
=⇒ [[ S S begin id = E ; id = E end ]]
=⇒ [[ S end L begin begin id = E ; id = E end ]]
=⇒ [[ S end L id = E ; id = E end ]]
=⇒ [[ S end L′ S id = E ; id = E end ]]
=⇒ [[ S end L′ E= id id = E ; id = E end ]]

Hence, after the initial S, which waits to announce success once the parsing is over, the
“overlined” symbols represent the stack (with the topmost symbol on the right) and the rest is the yet
unparsed part of the input string.

Example 4 (The dangling else problem). Suppose that the if-statement defined by EBNF production

S −→ if E then S [ else S ]

is added to the grammar introduced in Example 3. To deal with the dangling else problem, the
ambiguity of a language must first be eliminated. Assuming the standard syntax of the if-statement,
i.e., the else-branch is a part of the most recent preceding else-free if-statement, the EBNF production
can be transformed into a set of productions resulting in a unambiguous but bloated grammar [1,18].
Alternatively, it can be transformed elegantly into rules

S −→ if E then S
S −→ if E then S else S

=⇒
S if −→ S else S then E if if

S else x −→ x
else else −→ ε
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where x ∈ FOLLOW(S) \ {else} = {end, ; , ]]} or simply x 6= else. Namely, the produce rule
ignores the dangling else problem, which is then fixed by the second rule (the third rule is just the
regular shift rule). To be sure, these three rules, which describe how the if-statement above is handled,
are exactly how a recursive function responsible for parsing the if-statement is usually written: once
the statement in the then-branch has been parsed, it checks whether there is a matching else—if
there is none, it skips the else-branch. Note, however, that the decision made during the production
is being parsed.

Note, however, that the LLR-system makes it possible to express this with just another rule
(albeit neither a shift nor produce); within a system and without a hack, e.g., choosing a shift over
reduce by default to resolve a conflict, like most LALR parser generators do.

Example 5 (Extending the lookahead). Suppose that the EBNF production describing the
assignment statement of grammar in Example 3 is modified into

S −→ id ˆ? = E

that can be replaced by productions S −→ id P = E and P −→ ε | ˆ, which fulfill the SLL(1)
condition. However, by extending the lookahead buffer from 1 to 2 locally, i.e., just in case of the
assignment statement, the transformation

S −→ id = E
S −→ id ˆ = E

=⇒ S id −→ E= id id
S id ˆ −→ E= ˆ id id ˆ

can be used without introducing an additional nonterminal symbol and productions expanding it.
Looking two, three, or a few symbols ahead instead of just one symbol ahead is an extension

used in many hand-coded recursive-descent parsers. Moreover, again, unlike grammars that are
transformed into a parser by a generator, the LLR-system makes it possible to express such a
local change.

To summarize, SLL(k) grammars can be transformed into an LLR-system in a straight-
forward manner (Example 3). If needed, the LLR-system can inspect several topmost stack
symbols (Example 4) or more than k input symbols whenever needed (Example 5), or
both. Finally, an LLR-system obtained by the transformation from an SLL(k) grammar, as
defined above, is not a context-sensitive reduction system: startup rules and (in practice
most of) produce rules extend the sentential form and thus violate restrictions imposed by
a context-sensitive reduction system.

As the canonical LL(k) parser can also be described as a rewriting system with a set of
rules M containing shift and produce actions [16], it can be transformed into an LLR-system
in more or less the same way as the SLL(k) parser:

startup rules: [[ a −→ [[ S [[[] [[[S] a ∈ R ∀a ∈ T ∪ {]]}
shift rules: [δa] ax −→ x ∈ R

iff [δa] • ax −→ ε • x ∈ M
produce rules: [δ] [δA] x −→ [δ] [δXn] [δXnXn−1] . . . [δXnXn−1 . . . X1] x ∈ R

iff [δ] [δA] • x −→ [δ] [δXn] [δXnXn−1] . . . [δXnXn−1 . . . X1] • x ∈ M
final rule: [[ S [[[] ]] −→ [[ S ]] ∈ R.

Remember that [δ], where δ ∈ (V ∪ {[[, ]]})∗, represents the equivalence class of viable
suffixes of the [[, ]]-augmented grammar G ′ in regard to LL(k)-equivalence [16] or, in other
words, a state of the canonical LL(k) parser.

The idea behind these scheme is the same as for the SLL(k) parser, but as the canonical
LL(k) parser needs two topmost states to decide the next produce action, the state [[[] is
inserted beneath [[[S] at the beginning and therefore must be removed at the end. Again,
the startup and produce rules violate restrictions of the context-sensitive reduction system.
However, as the canonical LL(k) parser is rarely needed in practice even for k = 1 and as
in practice it cannot be produced without a generator except for the smallest and simplest
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grammars, it is not considered as an important model for formulating parsers using the
LLR-system.

4.2. Bottom-Up Parsing: LR and LALR

The most widely used bottom-up parsing method is LALR parsing, or more precisely,
LA(1)LR(0) parsing. Even though it is usually implemented by a generated table-driven
parser, in theory both the canonical LR(k) and LA(k)LR(l) parsers are formulated as
rewriting systems with shift and reduce actions [16]. If described by a set of actions M,
either one can be transformed into an LLR-system with a set of rules R, defined as follows:

startup rules: [[ a −→ [[ S [[[] a ∈ R ∀a ∈ T ∪ {]]}
shift rules: [δ] ax −→ [δ] [δa] x ∈ R

iff [δ] • ax −→ [δ] [δa] • x ∈ M
reduce rules: [δ] [δX1] [δX1X2] . . . [δX1X2 . . . Xn] x −→ [δ] [δA] x ∈ R

iff [δ] [δX1] [δX1X2] . . . [δX1X2 . . . Xn] • x −→ [δ] [δA] • x ∈ M
final rule: [[ S [[[] [[[S] ]] −→ [[ S ]] ∈ R.

Remember that [δ], where δ ∈ (V ∪ {[[, ]]})∗ represents the equivalence class of
viable prefixes of the [[, ]]-augmented grammar G ′ in regard to LR(k)- or LA(k)LR(l)-
equivalence [16], or, in other words, a state of the canonical LR(k) of the LA(k)LL(l) parser,
respectively. Again, formulating an LR or LALR parser for a full-scale programming lan-
guage as an LLR-system in practice is out of the question because of the size and complexity
of the underlying LR or LALR automata and consequently the number of states and rules.

Despite the complexity of LR parsing, one should embrace rather than abandon the
shift-reduce parsing, as it is the most natural solution for parsing sentential forms where a
left recursion is essential.

Example 6 (Essential left recursion). One of the most apparent examples of essential left recursion
is the description of arithmetic expressions. Unlike the sequence of statements (as in Example 3)
where both left or right recursion work equally well, the left recursive productions allows neat
abstract syntax trees because they enforce left-associativity of operators [18]. Fortunately, for the
well known grammar for arithmetic expressions, there exists a simple and intuitive LLR-system
with a set of rules

E −→ E + T | T
T −→ T ∗ F | F
F −→ num | id | ( E )

=⇒

num −→ F
id −→ F

( E ) −→ F
F −→ T

T ∗ F −→ T
T x −→ E x

E + T x −→ E x

where x is any symbol other than ∗ (or belonging to {+, ), ]]} if one takes the pain of finding this out
manually). The first three and the fourth rule are obvious. The fifth and the sixth rules are crucial
for understanding this LLR-system:

1. As soon as T ∗ F is observed, it should be reduced to T. Because the leftmost rule applies first,
“as soon as” (rather than just if), the left associativity of ∗ is ensured.

2. However, if and only if T cannot be extended any further, i.e., if it is followed by anything
other than ∗, it can and thus should be reduced to E.

Likewise, E + T can be reduced to E if and only if T cannot be extended any further, i.e., if it
is not followed by ∗, the operator with the higher precedence.

Parsing proceeds in similar way as in Example 3. To see why the condition imposed by x in the
sixth rule is needed, consider the derivation

[[id∗id]] =⇒ [[F∗id]] =⇒ [[T∗id]] =⇒ [[E∗id]] =⇒ . . .
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without x in the sixth rule: the first id is first reduced to E and never reduced any further.
The above transformation can be considered as a pattern just as much as another transformation,

which involves left recursion elimination and results in SLL(1) grammar. It produces a shift-reduce
parser that is much simpler than the corresponding LR(1) parser with 24 states or LALR parser
with 13 states. Lastly, it can be observed as an example of operator-precedence parsing [59].

4.3. Bidirectional Parsing: Top-Down and Bottom-Up

Sticking to a preselected strategy, either top-down or bottom-up, is not always the best
choice for all parts of the language being parsed. For instance:

1. Sequences of statements or declarations can be expressed using either a left or a right
recursion. However, if described by the right recursion and parsed using the top-
down parser, e.g., shift-produce, each statement or declaration is appended to the
abstract syntax tree as soon as it has been parsed. If the left recursion is used, it can be
appended to the tree only after the entire sequence has been parsed.

2. Expressions are best described by the left recursion because, unlike the right recursion,
it allows describing the left-associativity of arithmetic operators in the best possible
way [18]. To avoid (a) eliminating the left-recursion when the parser is being made
and (b) transforming abstract syntax trees when the parser is being run, one should
use the bottom-up, e.g., shift-reduced, parser.

Bidirectional parsers, i.e., those incorporating both top-down and bottom-up parsing,
have been investigated before. Most of these parsers are variants of either left-corner
parsing [60–62] or a combination of LL and LR parsing [11,12]. Parsers based on these
approaches have never become widely used, most likely because of their complexity,
rigidity, non-intuitiveness, and perhaps because of lack of tools, as none of them can be
hand-coded. However, as the following two examples show, LLR-system represents a
platform for hand-coded bidirectional parsers.

Example 7 (Bottom-up parsing during top-down parsing). The statements of the little pro-
gramming languages are described by an EBNF grammar in Examples 3–5. By rewriting it
into an SLL(1) grammar first, it has been transformed into an LLR-system which performs a
top-down parsing:

S −→ id = E
S −→ id ˆ = E
S −→ begin L end
S −→ if E then S
S −→ if E then S else S
L −→ S L′

L′ −→ ε
L′ −→ ; S L′

=⇒

[[ x1 −→ [[ S S x1
S id −→ E= id id

S id ˆ −→ E= ˆ id id ˆ
S begin −→ end L begin begin

S if −→ S else S then E if if
S else x2 −→ x2

L x3 −→ L′ S x3
L′ end −→ end

L′ ; −→ L′ S ; ;

where x1, x2 and x3 belong to T ∪ {]]}, {end, ; , ]]} and {id, begin, if}, respectively.
So far, symbol E denoting expressions has been treated as a terminal symbol (Example 3).

Suppose expressions have the form as described in Example 6. By adding rules from Example 6 for
parsing expressions and rules

E E x −→ x

where x is anything but + (which extends an expression as E is a left recursive symbol), and the
resulting parser becomes bidirectional. Namely, sentences are parsed top-down while expressions are
parsed bottom-up. Note that E is never expanded by any “SLL(1) rule” and thus the parser slips
into a bottom-up parsing of an expression. The expression is reduced into symbol E, which must
then be removed together with E so that top-down parsing can continue.

To see how this works in practice, consider the parsing program “if x + 1 then x = 2 ∗ x”. It
starts with the top-down mode:
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[[ if id + num then id = num ∗ id ]]
=⇒ [[ S S if id + num then id = num ∗ id ]]
=⇒ [[ S S else S then E if if id + num then id = num ∗ id ]]
=⇒ [[ S S else S then E id + num then id = num ∗ id ]]

With E “at the top of the LL stack”, the parser switches into a bottom-up mode:

[[ S S else S then E id + num then id = num ∗ id ]]
=⇒ [[ S S else S then E F + num then id = num ∗ id ]]
=⇒ [[ S S else S then E T + num then id = num ∗ id ]]
=⇒ [[ S S else S then E E + num then id = num ∗ id ]]
=⇒ [[ S S else S then E E + F then id = num ∗ id ]]
=⇒ [[ S S else S then E E + T then id = num ∗ id ]]
=⇒ [[ S S else S then E E then id = num ∗ id ]]
=⇒ [[ S S else S then then id = num ∗ id ]]

By removing E E , the parser has slipped back into the top-down mode. It will perform another
pass of the bottom-up parsing to parse num ∗ x, upon which it will return to the top-down again.

Example 8 (Top-down parsing during bottom-up parsing). The bidirectional parser in
Example 7 starts in the top-down mode and occasionally switches to the bottom-up mode. However,
it is also quite easy to switch back to a top-down mode while the parser is in a bottom-up-mode. If
the small language is extended by EBNF production F −→ id ( E (, E)? ) describing function calls,
the following rules must be added to the LLR-system of Example 7:

F −→ id ( )
F −→ id ( A )
A −→ E A′

A′ −→ ε
A′ −→ , E A′

=⇒

id x4 −→ F x4
id ( ) −→ F

id ( A ) −→ F
id ( x5 −→ id ( A A x5

A x6 −→ A′ E x6
A′ ) −→ )
A′ , −→ A′ E , ,

where x4 6∈ {(} and x5, x6 ∈ {num, id, (}. Note that when id ( x5 is observed, the parser switches
from a bottom-up into top-down mode only to reenter the bottom-up when each expression, i.e., an
argument to a function call, is expected.

5. Error Recovery

Error detection is relatively simple, as most parsing algorithms used nowadays have
the correct prefix property (stating that each recognized prefix of the input can be extended
into a valid input). The hard part is error recovery. However, unlike parsing, which is one
of the most formalized parts of a compiler, error recovery is not. Actual errors, i.e., those
made by the programmer, are not a well-defined concept at all and any formal definition
would most likely conflict with the way they are detected by a particular parser [16].

Global error recovery is about finding the correct string as similar to the actual
but erroneous input string. The similarity is usually measured by Hamming distance
based on the insertion, deletion, replacement or sometimes even transposition of sym-
bols. As global error recovery is not practical during compilation, most error recovery
parsers, e.g., hand-coded recursive-descent or generated by yacc/bison or ANTLR4 parser
generators [5,18,26] resort to panic-mode or phrase-level error recovery. These two methods
cannot be expressed by context-free grammars alone and must therefore be added to the
parser based on grammar separately. As shown below, they can be incorporated into an
LLR-system quite naturally. Hence, this section introduces new patterns for implementing
these two error recovery techniques in an LLR-system.
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5.1. Panic-Mode Error Recovery

Upon encountering a syntax error, the panic-mode error recovery skips a part of the
input string until a substring belonging to a preselected set of synchronizing substrings, or
followers, appears [18,47]. Consider, for example, an SLL(k) parser. A syntax error can be
detected in two cases:

1. No produce action can be performed because (with a nonterminal as the topmost
symbol) the analysis reached a sentential form [[ δ A z ]], where z ∈ T∗ and k : z]] 6∈
FIRSTG

′
k (A FOLLOWG

′
k (A)):

Skipping over the erroneous part of the input that cannot be derived from A is
described by a new symbol AF, where F is a set of followers of A, and rules

switch to panic-mode: Ay −→ AF y ∀y 6∈ FIRSTG
′

k′ (A FOLLOWG
′

k′ (A))

remove input symbols: AF ax −→ AF x ∀ax ∈ T∗k
′ \ F

switch back to parsing: AF y −→ y ∀y ∈ F

where k′ ≥ k. The “switch to panic-mode” rules insert symbol AF, which actually
performs skipping using the “remove input symbols” rules one symbol at a time until
one of the “switch back to parsing” rules recognizes one of the followers and ends
the skipping. In most applications k′ = k = 1, but as extending the lookahead is not
a problem in an LLR-system, the probability of a successful synchronization can be
increased by choosing k′ > k.
Choosing the right set of synchronizing substrings depends heavily on the language
being parsed: F = FOLLOWG

′

k′ (A) is only the simplest case, while several authors
advise choosing F in a slightly different way [16,18,47].

2. No shift action can be performed because (with a terminal as the topmost symbol) the analysis
reached a sentential form [[ δ a bz ]] where a, b ∈ T, a 6= b and z ∈ T∗:
By adding rules a b −→ b for all b 6= a, a is eliminated. The overall effect is that the
missing a has just been inserted into the input string [18].

Example 9. Consider again the language defined in Examples 3–6. The parsing of erroneous input
begin id num ; num end starts as

[[ begin id num ; num end ]]
=⇒ [[ S S begin id num ; num end ]]
=⇒∗ [[ S end L′ E= num ; num end ]]

when the shift action cannot be performed as symbols = and num does not match. Hence, the error
recovery rule = num −→ num is used and parsing continues as

=⇒ [[ S end L′ E num ; num end ]]
=⇒∗ [[ S end L′ ; num end ]]
=⇒ [[ S end L′ S ; ; num end ]]
=⇒ [[ S end L′ S num end ]]

when no produce action can be performed as no statement derived from S starts with a number.
Hence, the parser switches to the error recovery mode using the “switch to panic-mode” rule
S num −→ SF num and skips the part of input it cannot parse, i.e., num, until it finds a symbol
in F = FOLLOW(S) = {; , else, end, ]]}:

=⇒ [[ S end L′ SF num end ]]
=⇒ [[ S end L′ SF end ]]
=⇒ [[ S end L′ end ]]

From this, parsing proceeds successfully without any further error recovery.

The above scheme of implementing a panic-mode error recovery in an LLR-system
is a very simple one. If the typical recursive-descent implementation of an SLL(k) parser
is considered, the error is always detected within a function implementing the analysis
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of phrases derived from one particular nonterminal. As it has been demonstrated that
this additional information, namely which nonterminal is being parsed at the moment,
can help during error recovery [5,47], the scheme of implementing an SLL(k) parser is
slightly modified:

startup rules: [[ a −→ [[ SSa ∈ R ∀a ∈ T ∪ {]]}
shift rules: aa −→ ε ∈ R ∀a ∈ T

produce rules: Ax −→ A•XnXn−1 . . . X1x ∈ R
∀A −→ X1X2 . . . Xn ∈ R ∧
∀x ∈ FIRSTG

′
k (X1X2 . . . Xn FOLLOWG

′
k (A)),

delete rules: A•a −→ a ∈ R ∀a ∈ T ∪ {]]}

In this scheme, each symbol A• represents the left side of a production that the
symbols next to it were produced by. In terms of recursive-descent parsing, they represent
the function responsible for parsing phrases derived from nonterminal A. Once all symbols
derived from A have been parsed successfully, A• is simply deleted (as the function for
A returns).

However, if a syntax error occurs when a symbol Xl should be parsed, symbol A• can
be used for reducing a set of followers from all contexts, as symbol Xl can appear in just one
context [5,16]. More precisely, if a syntax error is detected in [[ δ A• Xn Xn−1 . . . Xl+1 Xlz]]
and the substring derived from Xl cannot be parsed, the set of followers of Xl can be
narrowed to FIRSTG

′
k (Xl+1Xl+2 . . . Xn FOLLOWG

′
k (A)), while ignoring all other occurrences

of Xl in the grammar. Furthermore, the sequence of symbols A• in the current sentential
form, which is being parsed with the LLR-system, represents the nodes along the branch in
the derivation tree leading from the root to the leaf, where the syntax error has been detected
and can be used to provide the context needed for generating much more informative
error messages.

Adding a panic-mode error recovery to the canonical LL(k) parser is achieved in
the same way as shown above for the SLL(k) parser, while LR parsers require a slightly
different approach. During the parser construction, nonterminals “representing major
program pieces, such as an expression, statement or block” [18] are preselected for possible
error recovery. When a syntax error is detected, the top-most states are removed from the
top of the stack one by one until one of the states [δ], such that the state [δA] exists for some
preselected nonterminal A, appears on the top of the stack. With [δ] at the top of the stack,
state [δA] is pushed on the stack and the input symbols are removed until a follower of A
is found. In the LLR-system, this can be described neatly with the following rules:

switch to panic-mode: [δ] x −→ [δ] []E x no shift or reduce action on k : x in [δ]
remove top-most states: [δ] []E −→ []E [δA] does not exist for any A ∈ E
push a new state: [δ] []E −→ [δ] [δA] []A [δA] exists for some A ∈ E
remove input symbols: []A ax −→ []A x ∀ax ∈ T∗k

′ \ FA
switch back to parsing: []A y −→ y ∀y ∈ FA

In this scheme, the set E contains all preselected nonterminals representing “major
program pieces” while sets FA represent the legal followers of nonterminals A, where
A ∈ E, of length k′ ≥ k. As before, choosing k′ > k increases the probability of a
successful synchronization.

Example 10. To observe how this formulation of panic-mode error recovery works, consider parsing
the erroneous expression num + (num + + num) using the LLR-system based on the LR(1)
parser for the grammar in Example 6 with the set of preselected nonterminals E = {E}:

[[ num + (num ++ num) ]]
=⇒ [[ S [[[] num + (num ++ num) ]]
=⇒∗ [[ S [[[] [[[E] [[[E+] [[[E+(] [[[E+(E] [[[E+(E+] + num) ]]
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In state [[[E+(E+], a syntax error is detected, as there is no action on + and thus there is
no applicable rule in R of an LLR-system based on an LR(1) action. Applying the “switch to
panic-mode” rule [[[E+(E+]+ −→ [[[E+(E+] []E +, the parsing continues as

[[ S [[[] [[[E] [[[E+] [[[E+(] [[[E+(E] [[[E+(E+] + num) ]]
=⇒ [[ S [[[] [[[E] [[[E+] [[[E+(] [[[E+(E] [[[E+(E+] []E + num) ]]
=⇒ [[ S [[[] [[[E] [[[E+] [[[E+(] [[[E+(E] []E + num) ]]
=⇒ [[ S [[[] [[[E] [[[E+] [[[E+(] []E + num) ]]

when the state [[[E+(] appears on the top of the stack. A (new instance of) state [[[E+(E] is pushed
on the stack and the remaining part of the expression derived from (just pushed) E is removed from
the input (note the difference between E and E in the subscript):

[[ S [[[] [[[E] [[[E+] [[[E+(] []E + num) ]]
=⇒ [[ S [[[] [[[E] [[[E+] [[[E+(] [[[E+(E] []E + num) ]]
=⇒∗ [[ S [[[] [[[E] [[[E+] [[[E+(] [[[E+(E] []E) ]]
=⇒ [[ S [[[] [[[E] [[[E+] [[[E+(] [[[E+(E] ) ]]

From this point in the derivation, the parsing can proceed without any further error recovery.

Finally, panic-mode error recovery adds a number of rules to an LLR-system, but
it resembles filling all empty cells of a parse table or populating all parse functions of a
recursive-descent parser with error branches.

5.2. Phrase-Level Error Recovery

The other popular method is the phrase-level error recovery. It is based on insertion,
deletion replacement or transposition of input symbols, just like the unpractical global
error recovery. However, to avoid the possibility of an infinite loop and to make it practical,
only the prefix of the yet unrecognized part of the input is modified.

Example 11. Consider parsing the erroneous expression num + (num ++ num) using the rules
of the LLR-system of Example 6. Without error recovery, the parsing ends as

[[ num + (num ++ num) ]] =⇒∗ [[ E + (E ++ num)]]
=⇒ [[ E + (E ++F)]] =⇒ [[ E + (E ++T)]] =⇒ [[ E + (E ++E)]]

as rule E + T −→ E cannot be applied because of the surplus +. Be aware, however, that if the
LLR-system is used, the parsing can continue beyond the position of a syntax error: in this case, the
third num is parsed even though it is encountered after the surplus +.

To avoid reaching the sentential form [[ E + (E ++E)]], one of the various error-recovery rules
must be added to the LLR-system. The list includes, among others, rules like ++ −→ + (deletion)
or ++ −→ + num+ (insertion). It is upon a parser designer to choose one of these rules. If the
former error recovery rule is added, the parsing starts as

[[ num + (num ++ num) ]] =⇒∗ [[ E + (E ++ num)]] =⇒ [[ E + (E + num)]],

and if the latter one is added, it starts as

[[ num + (num ++ num) ]] =⇒∗ [[ E + (E ++ num)]] =⇒ [[ E + (E + num + num)]].

In either case, the parsing successfully reaches the final sentential form [[ E ]].
It must be stressed that, without the error recovery, the parser still works correctly, as it still

detects an error by not terminating with [[ E ]]. Even if expressions are parsed within the bidirectional
parser, the error is still detected as no rule EEx −→ x, where x 6= +, can be applied, and thus the
sentential form cannot be reduced to [[ S ]].

The LLR-system has an ability to parse parts of the program taken out of their context.
This has been used in parsing fragments of the Pascal and C/C++ code by WEB and
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CWEB [13,14]. The same ability, as shown in the example above, allows the LLR-system to
parse parts of its input even though a syntax error has been detected and left uncorrected.
If language constructs are introduced by keywords assumed to be misused rarely or if it
contains any other patterns that identify the start of these constructs [18,47], the parser can
analyze major parts of the program, e.g., subroutines, declarations or statements, even if
the text around them is incorrect to the point that the parser cannot recover from parsing it.

6. Evaluation

Programming languages are usually parsed with algorithms based on context-free
grammars. However, if parsing is based on context-sensitive grammar or even type-0
grammar, the question arises about the price, which is paid when an algorithm that permits
a much more general description of a language syntax is used. The comparison can, of
course, only be made using languages that can be described by context-free grammars.
Nevertheless, the results obtained using these languages serve as a good indicator of
how efficient the parsing algorithm based on the LLR-system is compared to some more
traditional parsing algorithm.

To evaluate parsing based on the LLR-system, a prototype implementation of the
parser generator supporting all three algorithms has been made. Together with all the test
data, it is available at https://github.com/slivnik/LLR-systems (accessed on 12 March
2023, commit ca5d3f5). All the results reported in this section were obtained using an
Intel(R) Core(TM) i7-7700HQ processor running at 2.80 GHz (max 3.80 GHz).

Consider parsing arithmetic expressions described by the context-free grammar de-
fined in Example 6 first. The running times of parsing a random arithmetic expression
consisting of one million and one symbols (all nums are single digits and all ids are single
letters) are shown in Table 2 and compared to the running time of the bison-generated
parser. The first line in Table 2 refers to the LLR-system obtained by transforming the
grammar from Example 6 to LL grammar first and then to an LLR-system. The second line
refers to the LLR-system obtained by transforming the grammar from Example 6 directly
to the LLR-system. The third line refers to the LLR-system written by hand in Example 6.

As expected, the LLR-system written from scratch yields better results than the two
obtained by transforming the grammar using the transformations described in Section 4.
It can be observed that the parser based on the LLR-system shown in Example 6 is 18%
slower than the bison-generated parser. If both scanning and parsing are considered, as
shown in Table 3, the LLR-system parser is only 6% slower. However, it is worth examining
the absolute times too: the actual difference between the bison-generated parser and the
LLR-system is approx. 2 ms of the CPU time for a 1 Mb source file.

Table 2. The running times of parsing an arithmetic expression consisting of a million symbols using
the full backjumping, limited backjumping and DFA-based algorithm for the different LLR-systems
derived from the context-free grammar in Example 6.

Full Backjumping Limited Backjumping dfa-Based
Factor Time in Secs. Factor Time in Secs. Factor Time in Secs.

LR⇒ LL⇒ LLR-system 67.86 0.769031 s 3.28 0.037158 s 2.49 0.028260 s
LR⇒ LLR-system 50.07 0.567409 s 3.78 0.042878 s 3.31 0.037537 s

hand-coded LLR-system 19.49 0.220924 s 2.45 0.027768 s 1.18 0.013390 s

bison: 0.011333 s.

https://github.com/slivnik/LLR-systems
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Table 3. The running times of scanning and parsing an arithmetic expression consisting of a million
symbols using the full backjumping, limited backjumping, and DFA-based algorithm for the different
LLR-systems derived from the context-free grammar in Example 6.

Full Backjumping Limited Backjumping dfa-Based
Factor Time in Secs. Factor Time in Secs. Factor Time in Secs.

LR⇒ LL⇒ LLR-system 30.84 0.781970 s 1.97 0.049952 s 1.62 0.041080 s
LR⇒ LLR-system 22.88 0.580191 s 2.19 0.055662 s 1.98 0.050320 s

hand-coded LLR-system 9.25 0.234479 s 1.61 0.040776 s 1.06 0.026818 s

flex+bison: 0.025359 s.

Parsing arithmetic expressions consisting of 106 symbols is a rather synthetic test.
Hence, parsing Pascal, a real programming language, is considered next. Pascal has been
chosen for two reasons that both make measuring running time simpler. First, unlike C, it
can be parsed without a symbol table and thus the running time is easier to measure. Second,
compared to Java, source files in Pascal are usually much bigger. To avoid generating
random programs, source files of Knuth’s TANGLE, WEAVE, TEX and METAFONT (all available
on CTAN servers) were used as test inputs. There are two reasons for this choice. First,
these are not some synthetic programs but publicly available ones of considerable size that
will remain available for a very long time. Second, Pascal can be parsed without a symbol
table which makes measurements much simpler (the only other part necessary is lexer).

The running times of two LLR-systems were compared against a bison-generated
parser. The first one is based on the LL grammar for Pascal, but with a few LL conflicts
resolved as described in Section 4. A small subset of its 278 rules is shown in Figure 3 (num-
bers on the right side of rules are substituted by symbols found at the specified positions
on the left side). Rules expanding the symbols program, label_part, label_definitions
and label_definitions_rest illustrate how rules based on an LL(1) grammar look like.
However, having symbol statement on the top of the stack and IDENTIFIER in the looka-
head buffer, the LL(1) parser cannot know whether it should start a parsing assignment
statement or a procedure statement. As it can afford to check two input symbols instead of
just one (without a hack in the parser’s code), the decision can be made.

program (PROGRAM) -->
tDOT compound_statement subprogram_part variable_part type_part constant_part label_part program_header 2 ;

label_part (LABEL) --> tSEMIC label_definitions tLABEL 2 ;
label_part (PROCEDURE|FUNCTION|VAR|CONST|TYPE|BEGIN) --> 2 ;

label_definitions (INTEGERCONST) --> label_definitions_rest tINTEGERCONST 2 ;
label_definitions_rest (COMMA) --> label_definitions_rest tINTEGERCONST tCOMMA 2 ;
label_definitions_rest (SEMIC) --> 2 ;

statement (IDENTIFIER) (ASSIGN|DOT|LBRACKET|PTR) --> assignment_statement 2 3 ;
statement (IDENTIFIER) --> procedure_statement 2 ;

Figure 3. A subset of rules of the LL-grammar-based LLR-system for parsing Pascal.

The other LLR-system has been made from scratch and is found to be more efficient
(the same pattern as with the arithmetic expressions). A small subset of its 209 rules is
shown in Figure 4. A totally different approach is used here. For instance, the third rule
does not depend on the context: wherever LABEL is found, it triggers the parsing of label
declarations. Moreover, if it is reduced to label_declarations right after the program
header, it is merged together with it; otherwise, the program header changes to the same
symbol, namely program_upto_labels without any label declarations. Hence, this LLR-
system resembles the bottom-up shift-reduce parsing, but in a much more compact way,
and a programmer can have a better understanding of its reductions than if he or she would
inspect the reductions of an LR parser.
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program_header label_declarations (CONST|TYPE|VAR|PROCEDURE|FUNCTION|BEGIN) --> program_upto_labels(1,2) 3;
program_header (CONST|TYPE|VAR|PROCEDURE|FUNCTION|BEGIN) --> program_upto_labels(1) 2 ;

LABEL label_names SEMIC --> label_declarations(1,2,3) ;

LABEL INTEGERCONST --> 1 label_names(2) ;
label_names COMMA INTEGERCONST --> label_names(1,2,3) ;

Figure 4. Parsing Pascal: a subset of rules of the LLR-system not resembling a grammar.

Tables 4 and 5 contain running times of parsing all four programs with all three
algorithms. The running times are again compared to the bison-generated parser: the
parsers based on the LLR-system that was made specifically for LLR-parsing are less than
60% slower if the CPU time of the parsing is compared and less than 20% percent if both
scanning and parsing are considered.

Table 4. Parsing of TANGLE, WEAVE, TEX and METAFONT using two different LLR-systems; running
times of parsing in seconds and comparison to the bison-generated parser.

Full Backjumping Limited Backjumping dfa-Based
Factor Time in Secs. Factor Time in Secs. Factor Time in Secs.

TANGLE

LLR-system 1 16.77 0.004964 s 5.57 0.001648 s 2.45 0.000725 s
LLR-system 2 11.62 0.003440 s 3.28 0.000976 s 1.47 0.000436 s

WEAVE

LLR-system 1 16.96 0.010498 s 5.67 0.000619 s 2.45 0.001518 s
LLR-system 2 12.49 0.007733 s 3.18 0.001936 s 1.51 0.000933 s

TEX
LLR-system 1 16.13 0.041531 s 5.39 0.013884 s 2.41 0.006189 s
LLR-system 2 11.01 0.028322 s 3.04 0.007831 s 1.44 0.003696 s

METAFONT

LLR-system 1 17.33 0.043925 s 5.82 0.014754 s 2.51 0.006358 s
LLR-system 2 11.87 0.030086 s 3.23 0.008187 s 1.56 0.003959 s

bison: 0.000296 s (TANGLE), 0.000619 s (WEAVE), 0.002574 s (TEX), 0.002534 s (METAFONT).

Table 5. Parsing of TANGLE, WEAVE, TEX and METAFONT using two different LLR-systems: running
times of parsing and scanning in seconds and comparison to the bison-generated parser.

Full Backjumping Limited Backjumping dfa-Based
Factor Time in Secs. Factor Time in Secs. Factor Time in Secs.

TANGLE

LLR-system 1 5.89 0.005610 s 2.41 0.002296 s 1.45 0.001376 s
LLR-system 2 4.30 0.004092 s 1.71 0.001626 s 1.14 0.001087 s

WEAVE

LLR-system 1 6.20 0.011772 s 2.52 0.004783 s 1.47 0.002796 s
LLR-system 2 4.74 0.009011 s 1.69 0.003210 s 1.16 0.002203 s

TEX
LLR-system 1 6.12 0.046536 s 2.48 0.018866 s 1.47 0.011180 s
LLR-system 2 4.38 0.033338 s 1.69 0.012818 s 1.14 0.008701 s

METAFONT

LLR-system 1 5.92 0.049735 s 2.45 0.020571 s 1.45 0.012204 s
LLR-system 2 4.28 0.035925 s 1.68 0.014003 s 1.16 0.009786 s

flex+bison: 0.000952 s (TANGLE), 0.001898 s (WEAVE), 0.007603 s (TEX), 0.008400 s (METAFONT).

The difference in CPU time between parsing TEX and METAFONT using the bison-
generated parser and the LLR-based parser is less than 2 ms if the more efficient LLR-system
is used and less than 4 ms if the LL-based LLR-system is used. As TEX and METAFONT
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sources contain 19,203 and 18,769 lines of a pure Pascal code (excluding comments and
formatted using ptop), extrapolating this to one million lines of code yields a difference
of less than 0.1 s and approx. 0.2 s, respectively. If this was a real code with a proper
amount of comments, the difference would be even smaller, as comments never reach the
parser. Putting this into perspective, it takes the Free Pascal Compiler (version 3.2) 0.313 s
to compile TEX (with a few lines of code commented out for the sake of incompatibility).
Hence, if the bison-generated parser or LLR-based parser had been used, the difference
would amount to 0.3% or 1.1% of the compilation time.

As proved in Appendix B, the LLR-systems are equivalent to Turing machines. Hence,
comparing different LLR-systems and their complexity in general is a very difficult task.
More insight, at least for the practical purposes, can be obtained by inspecting individual
reductions of different LLR-systems for arithmetic reductions or for parsing Pascal (see
https://github.com/slivnik/LLR-systems, accessed on 12 March 2023, commit ca5d3f5).
For instance, in most cases, the introduction of a complementary symbol a for each terminal
symbol a ∈ T and a reduction aa −→ ε (as it is prescribed by the transformation of an LL
grammar into an LLR-system) can be avoided. As with context-free grammars, it takes a
bit of practice to gain the expertise needed for writing efficient parsers.

7. Conclusions

A new formalism, called the LLR-system, has been defined. As it is meant to be
used for parsing programming and domain-specific languages, two sections, namely
Sections 4 and 5, have been devoted to the definitions of initial patterns that can be used
and followed when building parsers based on LLR-systems. It is hoped, at the same time,
that the explanation of these patterns provides the insight into the structure of the LLR-
system and into the way of thinking needed to build an efficient LLR-system. By providing
these patterns and explanation, the LLR-system is perhaps given a better chance to become
used in practice.

As shown in the evaluation (Section 6), parsers based on LLR-systems are slightly
slower than classical context-free parsers. However, if their absolute running times are
taken into consideration, the difference is negligible when compared to the difference
in running times of code written in different programming languages. After all, it has
become perfectly acceptable that code written in one of the most widely used programming
languages nowadays is interpreted 70 times slower than when the equivalent compiled
code is run when written in another language [63]. Hence, only a few people would notice
or care if an interpreter or compiler used a parser that runs a 1–5 milliseconds longer even
when large programs, e.g., the entire source code of TEX or METAFONT, are parsed.

Thus, if a parser can be made using an existing algorithm without too much additional
code needed to support the parsing of the most complex language constructs, it should
be made this way. Otherwise, assuming that someone is skilled enough and willing to
implement a hand-coded recursive-descent parser, he or she can implement it as an LLR-
system just as well. The advantage of implementing it as an LLR-system is that many
add-ons or hacks can be implemented ”within-a-system” and can be, if needed later,
modified more easily. This is a significant step forward if compared with Markov normal
algorithms which, as already mentioned in Section 3, ”did not meet general agreement”,
because it is hard to write a set of adequate rules representing a parser [53].

Finally, it has been demonstrated how the LLR-system can be used for implementing
the existing context-free parsing algorithms with error recovery, which is always language
dependent, being part of the formal parser specification. Realizing the ability of the
LLR-system to parse languages with considerably more complex syntax structures than
are found in most existing programming and domain-specific languages, it would be
interesting to observe how a generation of an LLR-system-based parser could be added
to or integrated into some existing parser generator to observe how well the method
works once syntax-directed definitions [18] are supported. One such candidate is LISA, a

https://github.com/slivnik/LLR-systems
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compiler–compiler capable of generating parsers supporting not only S- or L-attributed
syntax-directed definitions, but attribute grammars as well [64].
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Appendix A. List of Abbreviations

Throughout the paper, abbreviations are used for various parsing algorithms. Table A1
contains a brief explanation of abbreviations. An interested reader is referred to the
reference works for further information about each method. The formulation of LL, SLL,
LR, and LALR parsers used in Section 4, i.e., as rewriting systems using shift and produce
rules for LL and SLL parsing and shift and reduce rules for LR and LALR parsing, is
explained in detail in [15,16].

Table A1. List of abbreviations.

CYK Cook-Younger-Kasami (tabular) parsing algorithm

LL (Top-down) shift-produce parsing method which scans the input from left
to right and produces the leftmost derivation [15,16]

LL(k) (The canonical) LL(k) parsing, uses the lookahead of k symbols [15,16]
SLL(k) The strong LL(k) parsing, a simplification of the LL(k) parsing [15,16]
GLL(k) The generalized LL(k) parsing, works with ambiguous grammars
ALL(∗) An LL parsing which can extend the decision automaton in runtime [4,5]

LR (Bottom-up) shift-reduce parsing method which scans the input from left to
right and produces the rightmost derivation in reverse order [15,16]

LR(k) (The canonical) LR(k) parsing, uses the lookahead of k symbols [15,16]
LALR(k) The lookahead LL(k) parser, a simplification of the LR(k) parser [15,16]
GLR(k) The generalized LL(k) parsing, works with ambiguous grammars

LLLR A bidirectional parsing method, a combination of LL and LR parsing, pro-
duces the leftmost derivation [11]

PEG Parsing Expression Grammars [46]

Appendix B. Theorem

The following theorem states that the LLR-system is Turing-complete. In other words,
the restrictions imposed on the form of reductions and how reductions are used do not
degrade its computational power. However, the theorem and its proof do not bring
anything necessary for the understanding of the other parts of the paper and are included
for the sake of completeness only.

Theorem A1. L is accepted by a deterministic Turing machine if and only if L is accepted by an
LLR-system.

Proof. (=⇒) Consider a deterministic Turing machineM = 〈Q, Σ, Γ, δ, q0, B, F〉 (as defined
in [19]) and assume, without a loss of generality, that δ(q f , X) is undefined for all q f ∈ F
and X ∈ Γ. Define an LLR-system R = 〈V, Σ, R, S, [[, ]]〉, where V = Q ∪ Γ ∪ {S, [[, ]], •},
{S, [[, ]], •} ∩ (Q ∪ Γ} = ∅, which simulates the computation ofM using a state to mark
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the position ofM’s tape head: the symbol “pointed to” by the tape head is the first symbol
right of the state. To achieve this, R must include the following reductions:

1. Introducing the initial state:

∀X ∈ V \ {•} :
(

[[X −→ [[• q0X
)
∈ R

Each of these reductions starts the simulation of machineM in the initial state and
with the tape head pointing to the leftmost symbol of the input string. Only one of
these reductions will be used during the entire reduction process and only once: the
sole purpose of symbol • is to ensure thatM is not started multiple times.

2. Ensuring the infinite tape:

∀q ∈ Q \ F :
(

q]] −→ qB]]
)
∈ R

Whenever the state reaches the right marker, the tape head would have reached a new
blank tape cell and therefore the sentential form is extended by another B.

3. SimulatingM:

δ(q, X) = 〈q′, Y, R〉 =⇒ ∀Z ∈ V \ {•} :
(

qXZ −→ Yq′Z
)
∈ R

δ(q, X) = 〈q′, Y, L〉 =⇒ ∀Z ∈ V \ {•} :
(

ZqX −→ q′ZY
)
∈ R

Non-final states perform transitions as specified byM are possibly interrupted by
extending the sentential form by a new B whenever needed.

4. Cleaning up and accepting:

∀qF ∈ F, X ∈ V \ {[[, ]], •} :
(

XqF −→ qF
)
∈ R

∀qF ∈ F, X ∈ V \ {[[, ]], •} :
(

qFX −→ qF
)
∈ R

∀qF ∈ F :
(

[[ • qF]] −→ [[S]]
)
∈ R

The final state first deletes all symbols of the sentential form and finally announces
acceptance by mutating into S.

It is shown by induction on the length of theM’s computation thatR actually simulates
M and accepts input if and only ifM accepts it. As this part of the proof is a matter of
routine (and is basically the same as the corresponding part of the proof of Theorem 3
in [8]), it is left as an exercise.

(⇐=) The LLR-system can be implemented on a digital computer (up to the limit of
the available memory needed to store the sentential form). Therefore, the deterministic
Turing machine can simulate it (with all the memory needed on its infinite tape).
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